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Abstract: In this paper, we study a fractional order COVID-19 model using different techniques and
analysis. The sumudu transform is applied with the environment as a route of infection in society to
the proposed fractional-order model. It plays a significant part in issues of medical and engineering as
well as its analysis in community. Initially, we present the model formation and its sensitivity analysis.
Further, the uniqueness and stability analysis has been made for COVID-19 also used the iterative
scheme with fixed point theorem. After using the Adams-Moulton rule to support our results, we
examine some results using the fractal fractional operator. Demonstrate the numerical simulations to
prove the efficiency of the given techniques. We illustrate the visual depiction of sensitive parameters
that reveal the decrease and triumph over the virus within the network. We can reduce the virus by the
appropriate recognition of the individuals in community of Saudi Arabia.
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1. Introduction

Mathematical models are known to address and answer specific questions for the disease under
consideration. For example, for the prediction of the spread of infectious diseases, epidemiological
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models are very supportive. To control the disease, it assists the community to notice sensitive features.
We aim to explore one of these models to study the behavior of the virus COVID-19 that appeared in
early 2020 and is still not fully controlled. For the better understanding of physical phenomena, we
look into fractional calculus. Several operators were demonstrated in the literature [1, 2] with the help
of fractional calculus. Few implementations of these operators can be seen in [3–7]. In Cη-Calculus,
Golmankhaneh et al. [8] explained the Sumudu transform and Laplace. In 2019, with the help of the
fractional model, Goyal provided an approach [9] to control the Lassa hemorrhagic fever disease. In
China, Zhao et al. [10] formulated a model to control COVID-19. It spreads from person to person via
connection with the contaminated person using breathing the same air, coughing, sneezing, touching,
and touching the same surfaces. The prime prevention approaches are wearing a mask in public at all
times, washing your hands, and maintaining a proper distance from anyone. A well-defined approach
of the fractional-order model is described in [11]. Some fractional models of COVID-19 are coming up
recently, in which Atangana and Khan [12] have investigated the condition of China due to pandemics.
In [13], by considering Fuzzy Caputo and ABC derivative founders look into the dynamical study of
the COVID-19 model. Further, the writers measured the model of COVID in the Caputo operator [14].
Using actual data from March 02 to April 14 [15], Alshammari also contributed to the pandemic. To
enforce the fractional model [16–18], the investigator applied the homotopy analysis transform method
(HATM), and the comparison showed that this technique is highly effective. In [17], stability of fractal
differentials in the sense of Lyapunov is defined. Moreover, based on the fractal set, they generalized
the non-local fractional integrals and derivatives. A hybrid method based on operational matrices of
the derivative is proposed and successfully applied to explore the solution of the mobile–immobile
advection-dispersion problem of variable order [19]. similarly, Work with exact solutions and existing
methods included numerical and analytical was made [20] that showed an excellent level of accuracy
for the problems. Some applications of fractional order model with local and non-local nonsingular
kernel have also been studied in [21–27]. Padmavathi et al. [28] also worked on the q-HATM with
the latest operator Atangana-Baleanue to get finer recognization, and they expressed their results in
the form of visualization. For the set up of operational matrices, a piecewise function was deployed
in [29]. Also, for implementation in a simple way, researchers converted the design into a linear
system. In [30], a fractional Biswas-Milovic model was inspected through the technique of fractional
complex transform. To analyze the nonlinear oscillatory fractional-order differential equation, A
spectral approach through the Chelyshkov polynomial method (CPM) and Picard iterative (PI) was
used [31]. Mehmood et al. [32] used the techniques Galerkin-Petrove (G-P) and Rung Kutta (RK)
to study the model and they concluded that in comparison, the G-P technique is better. The effect of
vaccination of COVID-19 through different values of parameters had studied in [33]. The common
SEIR model is generalized in order to show the dynamics of COVID-19 transmission taking into
account the ABO blood group of the infected people. Fractional order Caputo derivative are used
in the proposed model [34].

Some basic definitions of fractional calculus are described in Section 2. Later, a fractional-order
COVID-19 model is presented in Section 3. Moreover, sensitivity analysis of the model and some
theorems are added. Further in Section 4, the simulations are demonstrated. The last section consists
of a conclusion.
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2. Materials and methods

In this section, some primary notions have been described that are helpful to analyze the system.
Definition 1. For z ∈ H1(x, y) and κ ∈ (0, 1). The Caputo-Fabrizio fractional derivative [35] is defined
as

CF Dκ
t

(
z(t)

)
=

M(κ)
1 − κ

∫ t

x
z
′

(ρ)exp
[
− κ

t − ρ
1 − κ

]
(2.1)

where M(κ) is a normalization function.
Definition 2. Antagana-Baleanu in Caputo sense (ABC) can be defined [36] as

ABC
α Dα

t (ψ(t)) =
AB(α)
n − α

∫ χ

α

dn

dwn f (w)Eα

(
−α

(χ − w)α

n − α

)
dw, n − 1 < α < n, (2.2)

where Eα is the Mittag-Leffler function and AB(α) is a normalization function. For Eq (2.2), a Laplace
transformation is presented as:

L[ABC
α Dα

t (ψ(t))](S ) =
AB(α)
1 − α

S αL[ψ(τ)](S ) − S α−1ψ(0)
S α + α

1−α

. (2.3)

For using ST for (2.2), we obtain

S T [ABC
0 Dα

t (ψ(t))](S ) =
B(α)

1 − α + αS α
[S Tψ(t) − ψ(0)]. (2.4)

Definition 3. Atangana-Baleanu fractional integral of order µ of a function ψ(t) can be expressed
as [37]

ABC
µ Iµχ(ψ(χ)) =

1 − µ
B − µ

ψ(χ) +
µ

B(µ)Γ(µ)

∫ χ

α

ψ(S )(χ − S )µ−1ds. (2.5)

3. Fractional order COVID-19 model

The current section investigates the displaying of the novel Coronavirus. We start the demonstrating
interaction be meaning the host populace by N(t) dividing into five totally unrelated epidemiological
classes based on dynamics of COVID-19 contamination. These classes comprise of susceptible S ,
exposed U, irresistible appearance indications of disease C, contaminated with no illness symptoms
Ca and the people recuperated are denoted R respectively. Classical order Covid-19 model is given
in [38] and fractional order form with ABC sense is shown in followings equation

ABC
0 Dα

t S (t) = H −
(
µ1U + µ2C + µ3Ca + µ4B

)S
N
− bS ,

ABC
0 Dα

t U(t) =
(
µ1U + µ2C + µ3Ca + µ4B

)S
N
−

(
ρ + b

)
U,

ABC
0 Dα

t C(t) = ρ
(
1 − τ

)
U −

(
b + c1 + d1

)
C,

ABC
0 Dα

t Ca(t) = τρU −
(
b + d2

)
Ca, (3.1)
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ABC
0 Dα

t R(t) = d1C + d2Ca − bR,
ABC
0 Dα

t B(t) = φ1U + φ2C + φ3Ca − σB.

With initial condintion

S (0) ≥ 0, U(0) ≥ 0, C(0) ≥ 0, Ca(0) ≥ 0, R(0) ≥ 0, B(0) ≥ 0.

Here H, b, and µ are represents birth rate, passing rate in each class and infected rate respectively.
The parameters µ1, µ2 and µ3 are the viable transmission paces of contamination due to exposed,
symptomatically-infected and symptomatically-infected individuals, respectively. µ4 denotes the age
of infection due to climate. We denote the incubation period of the individuals by ρ. d1 and d2 are
represents the recovery rates from infected population. The contribution of the virus to the environment
due to exposed, and the population of both infected compares (i.e., C and Ca) are shown respectively
by φ1, φ2 and φ3. We have

λ(t) =
(µ1U + µ2C + µ3Ca + µ4B)

N
, l1 = (ρ + b),

l2 = (b + c1 + d1), l3 = (b + d2).

From above, we have

ABC
0 Dα

t S (t) = Π − λ(t)S − bS ,
ABC
0 Dα

t U(t) = λ(t)S − l1U,
ABC
0 Dα

t C(t) = ρ(1 − τ)U − k2C,
ABC
0 Dα

t Ca(t) = τρU − k3Ca, (3.2)
ABC
0 Dα

t R(t) = d1C + d2Ca − bR,
ABC
0 Dα

t B(t) = φ1U + φ2C + φ3Ca − σB.

3.1. Equilibria and sensitivity analysis

We define corona free equilibria as:

M1 =
(
S 1,U1,C1,C1

a,R
1, B1

)
=

(H
b
, 0, 0, 0, 0, 0

)
(3.3)

and the corona existing equilibria as:

M2 =
(
S ∗,U∗,C∗,C∗a,R

∗, B∗
)

(3.4)

we get S ∗, U∗, C∗, C∗a, R∗, B∗ as:

S ∗ =
H

λ + b
, U∗ =

λS ∗

ρ + b
, C∗ =

(1 − τ)ρU∗

b + c1 + d1
, C∗a =

τρU∗

b + d2
,

R∗ =
d1C∗ + d2C∗a

b
, B∗ =

φ1U∗ + +φ2C∗ + φ3Ca∗

σB
(3.5)
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where

λ∗ =
(µ1U∗ + µ2C∗ + µ3C∗a + µ4B∗)

N∗
(3.6)

By substituting (3.5) into (3.6), we get λ∗ as:

Z1λ
∗ + Z2 = 0, (3.7)

where

Z1 = σ
(
ρl3(b + d1)(1 − τ) + l2(ρτ(d2 + b) + bl3)

)
,

Z2 = l1l2l3bσ(1 − R0). (3.8)

For the derivation, the reproduction number R0 is the spectral radius of Y ∗ Z−1, where Y and Z are the
transmission and the transition matrices respectively. Thus, we get

R0 =
ρ(1 − τ)(µ4φ2 + µ2σ)

l1l2σ
+
ρτ(µ4φ3 + µ3σ)(µ4φ2 + µ2σ)

l1l3σ
+
µ4φ1 + µ1σ

l1σ
(3.9)

or
R0 =

l2[ρτ(µ4φ2 + µ3σ) + l3(µ4φ1 + µ1σ)] + ρl3(1 − τ)(µ4φ2 + µ2σ)
l1l2l3σ

(3.10)

Sensitivity of R0 can be analyzed by taking the partial derivatives of reproductive number for the
involved parameters as follows

∂R0

∂ρ
=

(l1l2l3σ[l2τ(µ4φ2 + µ3σ) + l3(1 − τ)(µ4φ2 + µ2σ)]
(l1l2l3σ)2 > 0,

∂R0

∂τ
=

(l1l2l3ρσ[l2(µ4φ2 + µ3σ) − l3(µ4φ2 + µ2σ)]
(l1l2l3σ)2 > 0,

∂R0

∂l1
= −

l2l3σ[(l2(ρτ(µ4φ2 + µ3σ) + l3(µ4φ1 + µ1σ)) + ρl3(1 − τ)(µ4φ2 + µ2σ)]
(l1l2l3σ)2 < 0,

∂R0

∂l2
= −

[(l1l2l2
3σ(µ4φ1 + µ1σ) + (l1l2

3ρσ(1 − τ)(µ4φ2 + µ2σ)]
(l1l2l3σ)2 < 0,

∂R0

∂l3
=

l1l3σ(µ4φ1 + µ1σ)[l3 − l2ρτ]
(l1l2l3σ)2 > 0,

∂R0

∂µ1
=

1
l1l2

> 0,

∂R0

∂µ2
=

ρ(1 − τ)
l1l2

> 0,

∂R0

∂µ3
=

1
l1l3

> 0,

∂R0

∂µ4
=

l2ρτφ2 + l3φ1 + ρl3(1 − τ)φ2

l1l2l3σ
> 0,
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∂R0

∂φ1
=

µ4

l1l2σ
> 0,

∂R0

∂φ2
=

ρµ4[l2τ − l3(1 − τ)]
l1l2l3σ

> 0,

∂R0

∂σ
= −

l1l2l3µ4[l2ρτφ2 + l3φ1 + ρl3(1 − τ)φ2]
(l1l2l3σ)2 < 0.

Clearly, in case of change in parameter R0 is very sensitive. In this manuscript, ρ, τ, l3, µ1, µ2, µ3, µ4,
φ1, φ2 are growing while l1, l2, σ are reducing. Thus, based on sensitivity analysis, we can say that
prevention is better to control the disease.
Theorem 1. For a Banach Space (G, |.|) and F is a self-map of K fulfilling

‖FX − Fr‖ 6 θ‖G − FG‖ + θ‖G − r‖. (3.11)

∀ G, r ∈ G where 0 ≤ θ ≤ 1. Let F be a Picard F-stable.
We take into consideration Eq (3.2) and get

1 − α

B(α)αΓ(α + 1)Eα

(
− 1

1−αWα
) =

1 − α
Y

(3.12)

Theorem 2. We describe F as a self-map by

F[S (w+1)(t)] = S (w+1)(t) = S w(0) + S T−1
[1 − α

Y
× S T

{
H −

(µ1E + µ2I + µ3Ia + µ4B)
N

S − bS
}]
,

F[U(w+1)(t)] = U(w+1)(t) = Uw(0) + S T−1
[1 − α

Y
× S T

{ (µ1U + µ2C + µ3Ca + µ4B)
N

S − (ρ + b)U
}]
,

F[C(w+1)(t)] = C(w+1)(t) = Cw(0) + S T−1
[1 − α

Y
× S T

{
ρ(1 − τ)U − (b + c1 + d1)C

}]
,

F[Ca(w+1)(t)] = Ca(w+1)(t) = Ca(w)(0) + S T−1
[1 − α

Y
× S T

{
τρU − (b + δ2)Ca

}]
, (3.13)

F[R(w+1)(t)] = R(w+1)(t) = Rw(0) + S T−1
[
1 − α

Y
× S T

{
d1I + d2Ca − bR

}]

F[B(w+1)(t)] = B(w+1)(t) = Bw(0) + S T−1
[
1 − α

Y
× S T

{
φ1U + φ2C + φ3Ca − σB

}]
,

Then, we reach

‖F[S w(t)] − F[S x(t)]‖ ≤ ‖S w(t) − S x(t)‖ + S T−1
[
1 − α

Y
×

S T
{
H −

(µ1‖Uw(t) − Ux(t)‖ + µ2‖Cw(t) −Cx(t)‖ + µ3‖Cw(t) −Cx(t)‖ + mu4‖Bw(t) − Bx(t)‖)
N

‖S w(t) − S x(t)‖ − b‖S w(t) − S x(t)‖
}]
,
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‖F[Uw(t)] − F[Ux(t)]‖ ≤ ‖Uw(t) − Ux(t)‖ + S T−1
[
1 − α

Y
×

S T
{ (µ1‖Uw(t) − Ux(t)‖ + µ2‖Cw(t) −Cx(t)‖ + mu3‖Cw(t) −Cx(t)‖ + mu4‖Bw(t) − Bx(t)‖)

N

‖S w(t) − S x(t)‖ − (ρ + b)‖Uw(t) − Ux(t)‖
}]
,

‖F[Cw(t)] − F[Cx(t)]‖ ≤ ‖Cw(t) −Cx(t)‖ + S T−1
[
1 − α

Y

×S T
{
ρ(1 − τ)‖Uw(t) − Ux(t)‖ − (b + c1 + d1)‖Cw(t) −Cx(t)‖

}]
,

‖F[Ca(w)(t)] − F[Ca(x)(t)]‖ ≤ ‖Ca(w)(t) −Ca(x)(t)‖ + S T−1[
1 − α

Y
× S T

{
τρ‖Uw(t) − Ux(t)‖ − (b + d2)‖Ca(w)(t) −Ca(x)(t)‖

}]
,

‖F[Rw(t)] − F[Rx(t)]‖ ≤ ‖Rw(t) − Rx(t)‖ + S T−1
[
1 − α

Y

×S T
{
d1‖Cw(t) −Cx(t)‖ + d2‖Ca(w)(t) −Ca(x)(t)‖ − b‖Rw(t) − Rx(t)‖

}]
,

‖F[Bw(t)] − F[Bx(t)]‖ ≤ ‖Bw(t) − Bx(t)‖ + S T−1
[
1 − α

Y
× S T

{
φ1‖Uw(t) − Ux(t)‖

+φ2‖Cw(t) −Cx(t)‖ + φ3‖Ca(w)(t) −Ca(x)(t)‖ − σ‖Bw(t) − Bx(t)‖
}]
.
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F satisfies the condition associated with Theorem 1 if

θ(0, 0, 0, 0, 0, 0), θ =



‖S w(t) − S x(t)‖ × ‖ − (S w(t) − S x(t))‖ + H

−
(µ1‖Uw(t)−Ux(t)‖+µ2‖Cw(t)−Cx(t)‖+µ3‖Cw(t)−Cx(t)‖+µ4‖Bw(t)−Bx(t)‖)

N ‖S w(t) − S x(t)‖
−b‖S w(t) − S x(t)‖,
‖Uw(t) − Ux(t)‖ × ‖ − (Uw(t) − Ux(t))‖
+

(µ1‖Uw(t)−Ux(t)‖+µ2‖Cw(t)−Cx(t)‖+µ3‖Cw(t)−Cx(t)‖+µ4‖Bw(t)−Bx(t)‖)
N ‖S w(t) − S x(t)‖

−(ρ + µ)‖Ew(t) − Ex(t)‖,
‖Cw(t) −Cx(t)‖ × ‖(−Cw(t) −Cx(t))‖ + ρ(1 − τ)‖Uw(t) − Ux(t)‖
−(b + c1 + d1)‖Cw(t) −Cx(t)‖,
‖Ca(w)(t) −Ca(x)(t)‖ × ‖ − (Ca(w)w(t) −Ca(x)(t))‖ + τρ‖Uw(t) − Ux(t)‖
−(b + d2)‖Ca(w)(t) −Ca(x)(t)‖,
‖Rw(t) − Rx(t)‖ × ‖ − (Rw(t) − Rx(t))‖ + d1‖Cw(t) −Cx(t)‖
+d2‖Ca(w)(t) −Ca(x)(t)‖ − b‖Rw(t) − Rx(t)‖,
‖Bw(t) − Bx(t)‖ × ‖ − (Bw(t) − Bx(t))‖ + φ1‖Uw(t) − Ux(t)‖
+φ2‖Cw(t) −Cx(t)‖ + φ3‖Ca(w)(t) −Ca(x)(t)‖ − σ‖Bw(t) − Bx(t)‖.

We add that F is Picard k-stable.
Theorem 3. If we use the technique of recurrence then the system (3.2) posses a particular singular
solution.
Proof. Assume Hilbert space H = Z2(x,w) × (0,T )) which can be defined as

h : ((m,w) × (0,T )) −→ R,
∫ ∫

ghdgdh < ∞. (3.14)

Then, we take into consideration:

θ(0, 0, 0, 0, 0, 0, ), θ =



H − λ(t)S − bS ,

λ(t)S − l1U,

ρ(1 − τ)U − l2C,

τρU − l3Ca,

d1C + d2Ca − bR,

φ1U + +φ2C + φ3Ia − σB.

(3.15)

We establish that the inner product of

T ((S 11(t) − S 12(t),U21(t) − U22(t),C31(t) − I32(t),Ca(41)(t) −Ca(42)(t),R51(t) − R52(t),
B61(t) − B62(t), (V1,V2,V3,V4,V5,V6)),

where(
(S 11(t) − S 12(t)), (E21(t) − E22(t)), (I31(t) − I32(t)), (Ia(41)(t) − Ia(42)(t)), (R51(t) − R52(t)),
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(B61(t) − B62(t))
)

are the special solution of the system. Then, we have{
H − λ(t)(S 11(t) − S 12(t)) − b(S 11(t) − S 12(t)),V1

}
≤ H‖V1‖ − λ(t)‖(S 11(t) − S 12(t))‖‖V1‖ + b‖(S 11(t) − S 12(t))‖‖V1‖,

{
λ(t)(S 11(t) − S 12(t)) − (ρ + b)(U21(t) − U22(t)),V2

}
≤ λ(t)‖(S 11(t) − S 12(t))‖‖V2‖ + (ρ + b)‖U21(t) − U22(t)‖‖V2‖,

{
ρ(1 − τ)(U21(t) − U22(t)) − (b + c1 + d1)(C31(t) −C32(t)),V3

}
≤ ρ(1 − τ)‖(U21(t) − U22(t)‖‖V3‖ + (b + c1 + d1)‖(C31(t) −C32(t)‖‖V3‖,

{
τρ(U21(t) − U22(t)) − (b + d2)(Ca(41)(t) −Ca(42)(t)),V4

}
≤ τρ‖(U21(t) − U22(t)‖‖V4‖ + (b + d2)‖Ca(41)(t) −Ca(42)(t)‖‖V4‖

{
d1(C31(t) −C32(t)) + d2(Ca(41)(t) −Ca(42)(t)) − b(R51(t) − R52(t)),V5

}
≤ d1‖(C31(t) −C32(t)‖)‖V5‖ + d2‖Ca(41)(t) −Ca(42)(t)‖‖V5‖ + b‖R51(t) − R52(t)‖‖V5‖,

{
φ1(U21(t) − U22(t)) + φ2(C31(t) −C32(t)) + φ3(Ca(41)(t) −Ca(42)(t)) − σ(B61(t) − B62(t)),V6

}
≤ φ1‖(U21(t) − U22(t)‖‖V6‖ + φ2‖(C31(t) −C32(t)‖)‖V6‖ + φ3‖Ca(41)(t) −Ca(42)(t)‖‖V6‖

−σ‖(B61(t) − B62(t)‖‖V6‖.

In case of large number e1, e2, e3, e4, e5 and e6, both solutions happen to be converged to the
exact solution. By applying the concept of topology, we can get six positive very small variables(
Xe1 , Xe2 , Xe3 , Xe4 , Xe5 and Xe6 .

)
‖(S − S 11‖, ‖S − S 12‖ ≤

Xe1

ξ
, ‖(U − U21‖, ‖U − U22‖ ≤

Xe2

ζ
,

‖(C −C31‖, ‖C −C32‖ ≤
Xe3

ω
, ‖(Ca −Ca(41)‖, ‖Ca −Ca(42)‖ ≤

Xe4

ε
,

‖(R − R51‖, ‖R − R52‖ ≤
Xe5

ε
, ‖(B − B61‖, ‖B − B62‖ ≤

Xe6

%

where

ξ = 6
{
H − λ(t)‖(S 11(t) − S 12(t))‖ + b‖(S 11(t) − S 12(t))‖

}
‖V1‖,
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ζ = 6
{
λ(t)‖(S 11(t) − S 12(t))‖ + (ρ + b)‖U21(t) − U22(t)‖

}
‖V2‖,

ω = 6
{
ρ(1 − τ)‖(U21(t) − U22(t)‖ + (b + c1 + d1)‖(C31(t) −C32(t)‖

}
‖V3‖,

ε = 6
{
τρ‖(U21(t) − U22(t)‖ + (b + d2)‖Ca(41)(t) −Ca(42)(t)‖)

}
‖V4‖,

ε = 6
{
d1‖(C31(t) −C32(t)‖) + d2‖Ca(41)(t) −Ca(42)(t)‖ + b‖R51(t) − R52(t)‖)

}
‖V5‖,

% = 6
{
φ1‖(U21(t) − U22(t)‖ + φ2‖(C31(t) −C32(t)‖) + φ3‖Ca(41)(t) −Ca(42)(t)‖

−σ‖(B61(t) − B62(t)‖)
}
‖V6‖,

But it is obvious that (
H − λ(t)‖(S 11(t) − S 12(t))‖ + b‖(S 11(t) − S 12(t))‖

)
, 0,

(
λ(t)‖(S 11(t) − S 12(t))‖ + (ρ + b)‖U21(t) − U22(t)‖

)
, 0,

(
ρ(1 − τ)‖(U21(t) − U22(t)‖ + (b + c1 + d1)‖(C31(t) −C32(t)‖)

)
, 0,

(
τρ‖(U21(t) − U22(t)‖ + (b + d2)‖Ca(41)(t) −Ca(42)(t))

)
, 0,

(
d1‖(C31(t) −C32(t)‖) + d2‖Ca(41)(t) −Ca(42)(t)‖ + b‖R51(t) − R52(t)‖

)
, 0,

(
φ1‖(U21(t) − U22(t)‖ + φ2‖(C31(t) −C32(t)‖) + φ3‖Ca(41)(t) −Ca(42)(t)‖ − σ‖(B61(t) − B62(t)‖

)
, 0,

where

‖V1‖, ‖V2‖, ‖V3‖, ‖V4‖, ‖V5‖, ‖V6‖ , 0.

Therefore, we have

‖S 11 − S 12‖ = 0, ‖U21 − U22‖ = 0, ‖C31 −C32‖ = 0,
‖Ca(41) −Ca(42)‖ = 0, ‖R51 − R52‖ = 0, ‖B61 − B62‖) = 0.
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which yields that

S 11 = S 12,U21 = U22,C31 = C32,Ca(41) = Ca(42),R51 = R52, B61 = B62.

This completes the proof of uniqueness. If we use the Adams-Moulton rule for Atangana-Baleanu
fractional integral to indicate the mathematical strategies then

AB
0 Iαt [ f (tw+1)] =

1 − α
B(α)

+
α

Γ(α)

∞∑
j=0

[ f (tw+1) − f (tw)
2

]
dαj , (3.16)

where

dαj = ( j + 1)1−α − ( j)1−α.

We obtain the following for the system 3.1:

S (w+1)(t) − S w(0) = S w
0 (t) +

1 − α
B(α)

[
H −

(λ(tw+1) − λ(tn)
2

)(S (tw+1) − S (tw)
2

)
−b

(S (tw+1) − S (tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[
H −

(λ(tw+1) − λ(tw)
2

)(S (tw+1) − S (tw)
2

)
−b

(S (tw+1) − S (tw)
2

)]
,

U(w+1)(t) − Uw(0) = Uw
0 (t) +

1 − α
B(α)

[(λ(tw+1) − λ(tw)
2

)(S (tw+1) − S (tw)
2

)
−(ρ + b)

(U(tw+1) − U(tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[(λ(tw+1) − λ(tw)
2

)(S (tw+1) − S (tw)
2

)
−(ρ + b)

(U(tw+1) − U(tw)
2

)]
,

C(w+1)(t) −Cw(0) = Cw
0 (t) +

1 − α
B(α)

[
ρ(1 − τ)

(U(tw+1) − U(tw)
2

)
− (b + c1 + d1)

(C(tw+1) −C(tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[
ρ(1 − τ)

(U(tw+1) − U(tw)
2

)
− (b + c1 + d1)

(C(tw+1) −C(tw)
2

)]
,

Ca(w+1)(t) −Ca(w)(0) = Cw
a(0)(t) +

1 − α
B(α)

[
τρ

(U(tw+1) − U(tw)
2

)
− (b + d2)

(Ca(tw+1) −Ca(tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[
φ1

(U(tw+1) − U(tw)
2

)
+ φ2

(C(tw+1) −C(tw)
2

)
+ φ3

(Ca(tw+1) −Ca(tw)
2

)
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−σ
(B(tw+1) − B(tw)

2

)]
,

R(w+1)(t) − Rw(0) = Rw
0 (t) +

1 − α
B(α)

[
d1

(C(tw+1) −C(tw)
2

)
+ d2

(Ca(tw+1) −Ca(tw)
2

)
−b

(R(tw+1) − R(tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[
d1

(C(tw+1) −C(tw)
2

)
+ d2

(Ca(tw+1) −Ca(tw)
2

)
−b

(R(tw+1) − R(tw)
2

)]
,

B(w+1)(t) − Bw(0) = Bw
0 (t) +

1 − α
B(α)

[
φ1

(U(tw+1) − U(tw)
2

)
+ φ2

(C(tw+1) −C(tw)
2

)
+φ3

(Ca(tw+1) −Ca(tw)
2

)
− σ

(B(tw+1) − B(tw)
2

)]
+

α

Γ(α)

∞∑
j=0

dαj

[
φ1

(U(tw+1) − U(tw)
2

)
+φ2

(C(tw+1) −C(tw)
2

)
+ φ3

(Ca(tn+1) −Ca(tw)
2

)
− σ

(B(tn+1) − B(tw)
2

)]
.

An operator } : E → E can be set out as:

}(∆)(t) = ∆(0) +
ϑtϑ−1(1 −$)

AB($)
f(t,∆(t)) +

$ϑ

AB($)Γ($)

∫ t

0
λϑ−1(t − λ)ϑ−1f(t,∆(t))dλ (3.17)

For f(t,∆(t)) that attains the development and Lipscitz condition, so for ∆ ∈ Z ∃ positive constants
Ef, Ff such that

f(t,∆(t)) ≤ Ef|∆(t)| + Ff. (3.18)

Also, for ∆, ∆̂ ∈ Z ∃ constant Gf > 0 such that

|f(t,∆(t)) −f(t, ˆ∆(t))| ≤ Gf|∆(t) − ∆̂(t))|. (3.19)

Theorem 4. If the state defined in (3.18) is true and by assuming the continuous function f : [0, τ] ×
X → R then it has unique outcome.
Proof. In the beginning, we reveal that } is completely continuous that are explained in (3.17). while
f is a continuous function, so } is also continuous function. Consider J = {∆ ∈ X : ‖∆‖ ≤ R, R > 0}.
For any ∆ ∈ X, we have

}(∆)(t) = maxt∈[0,τ]|∆(0) +
ϑtϑ−1(1 −$)

AB($)
f(t,∆(t)) +

$ϑ

AB($)Γ($)

∫ t

0
λϑ−1(t − λ)ϑ−1f(t,∆(t))dλ|

≤ ∆(0) +
ϑτϑ−1(1 −$)

AB($)
(Ef‖∆‖ + Mf) + maxt∈[0,τ]

$ϑ

AB($)Γ($)

∫ t

0
λϑ−1(t − λ)ϑ−1|f(t,Π(t))dλ|

≤ ∆(0) +
ϑτϑ−1(1 −$)

AB($)
(Ef‖∆‖ + Ff) +

$ϑ

AB($)Γ($)
(Ef‖∆‖ + Ff)τ$+ϑ−1H(υ + ϑ)
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≤ R.

Hence, } is uniformly bounded, and J($ + ϑ) representing the beta function.
For equicontinuity of }, we take t1 < t2 ≤ τ. Then consider

}(∆)(t2) − }(∆)(t1) = |
ϑtϑ−1

2 (1 −$)
AB($)

f(t2,∆(t2)) +
$ϑ

AB($)Γ($)

∫ t2

0
λϑ−1(t2 − λ)ϑ−1f(t,∆(t))dλ

−
ϑtϑ−1

1 (1 −$)
AB($)

f(t1,∆(t1)) +
$ϑ

AB($)Γ($)

∫ t1

0
λϑ−1(t1 − λ)ϑ−1f(t,∆(t))dλ|

≤
ϑtϑ−1

2 (1 −$)
AB($)

(Lf|∆(t)|,Mf) +
$ϑ

AB($)Γ($)
(Ef|∆(t)|, Ff)t$+ϑ−1

2 H($ + ϑ)

−
ϑtϑ−1

1 (1 −$)
AB($)

(Ef|∆(t)|, Ff) −
$ϑ

AB($)Γ($)
(Ef|∆(t)|, Ff)t$+ϑ−1

1 H($ + ϑ),

If t1 → t2 then ‖}(∆)(t2) − }(∆)(t1) → 0‖.
Consequently ‖}(∆)(t2) − }(∆)(t1) → 0‖ , as t1 → t2. Thus, } is completely continuous by theorem
of Arzela-Ascoli

Thus, } is equicontinuous and under the condition of Arzela-Ascoli theorem it is completely
continuous. Consequently, the following result of Schauder’s fixed point, it has at least one solution.
Theorem 5. By assuming the condition (3.19) is accurate and ρ = (ϑτ

ϑ−1(1−$
AB($) + $ϑ

AB($)Γ($) τ
$+ϑ−1J($+

ϑ))If then for ρ < 1 gives a sole outcome.
For ∆, ∆̂ ∈ X, we have

|}(∆), }∆̂| = maxt∈[0,τ]| +
ϑtϑ−1(1 −$)

AB($)
[(f(t,∆(t)) −f(t, ˆ∆(t))]

+
$ϑ

AB($)Γ($)

∫ t

0
λϑ−1(t − λ)ϑ−1dλf(λ, ˆ∆(λ))|

≤

[
ϑτϑ−1(1 −$)

AB($)
+

$ϑ

AB($)Γ($)
τ$+ϑ−1H($,ϑ)

]
‖}(∆) − } ˆ(∆)‖

≤ ρ‖}(∆) − } ˆ(∆)‖.

Thus, } has contraction and by using the Banach contraction principle, it has a special outcome.

4. Simulation and Discussion

In the simulation of a model, parameters have a key contribution. Here we use the actual data
of Saudi Arabia having parameters values given in [38]. After that, we have spreading rates of
the uncovered (µ1), symptomatic (µ2), asymptomatic (µ3), and environment (µ4) are 0.2259, 0.1298,
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0.4579, 0.0969, respectively. Further, we got the values of the incubation period (ρ = 0.1141),
asymptotically infected persons (τ = 0.3346), the Improvement rate of C (d10.3346), and the
improvement rate of Ca (d2 = 0.0867). The parameters φ1 = 0.2616, φ1 = 0.0100, φ1 = 0.1815, σ =

0.2786 represents the contribution caused by U, C, Ca, destruction of virus. We presented the
simulation data in Figures 1–6 with several values of fractional order (α). In Figures 1–3, 5 and 6,
we will observe that S (t), U(t), C(t), Ca(t) and B(t) population increase with decreasing the fractional
order α where as R(t) start decreasing by decreasing fractional values. It is observed that the decrease
in pandemic peaks is comparatively faster for smaller values of α as shown in Figures 1–6. Fractional
parameter shows the study of COVID-19 outbreak continuously from starting place to their end
boundary. It can be easily seen that the COVID-19 spread is more and more and recovery rate reduces
from the actual data of Saudi Arabia when study it by every smaller region. This type study will help
us locate the rate of actual number of infected people. The impact of memory index α on the dynamics
of virus concentration in the environment at α is analyzed to check the outbreak of this pandemic.

0 50 100 150 200 250 300

t

2

2.5

3

3.5

S
(t

)

107 Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 1. Simulation of S(t) proposed fractional order operator.
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Figure 2. Simulation of U(t) proposed fractional order operator.
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Figure 3. Simulation of C(t) proposed fractional order operator.
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Figure 4. Simulation of Ca(t) proposed fractional order operator.
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Figure 5. Simulation of R(t) proposed fractional order operator.
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Figure 6. Simulation of B(t) proposed fractional order operator.

5. Conclusions

Mathematical modeling plays an important role to control, planning and reduce the bad impact
of infectious disease in the society from last decays. Results of fractional order model have a
memory effect on epidemic model as compared to classical model. In this formation, results show that
contaminated parts are reduced by lowering the fractional order. Some notional outcomes are produced
for the model to demonstrate the productivity of the created procedures.Graphical representation
indicates that we can reduce the cases rapidly if communities of the country follow some rules,
including social distance, cleaning their hands, keeping away from the throng. Theoretical results
are investigated for the fractional-order model, which proved the efficiency of the developed schemes.
Numerical simulation has been made to check the actual behavior of the COVID-19 outbreak. Such
type of study will be helpful in future to understand the outbreak of this epidemic and to control the
disease in a community. The power of these component operators is their non-local features that are not
in the integer separator operator. Separated features of differentiated statistics define the memory and
transfer structures of many mathematical models. As a reality that fractional order models are more
practical and beneficial than classical integer order models. Fractional order findings produce a greater
degree of freedom in these models. Unnecessary order outscoring is powerful tools for understanding
the dynamic behavior of various bio objects and systems.
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