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Abstract: In this paper, we firstly formulate a new hyperchaotic Hamiltonian system and demonstrate
the existence of multi-equilibrium points in the system. The characteristics of equilibrium points,
Lyapunov exponents and Poincaré sections are studied. Secondly, we investigate the complex
dynamical behaviors of the system under holonomic constraint and nonholonomic constraint,
respectively. The results show that the hyperchaotic system can generated by introducing constraint.
Additionally, the hyperchaos control of the system is achieved by applying linear feedback control.
The numerical simulations are carried out in order to analyze the complex phenomena of the systems.

Keywords: Hamiltonian system; hyperchaos; constraint; hyperchaos control
Mathematics Subject Classification: 34K18, 34H10, 65P20

1. Introduction

As a kind of important model, Hamiltonian system is widely used in many fields [1–7]. And the
chaotic behaviors of Hamiltonian systems have attracted many scientists and many remarkable
research results are obtained. Based on energy analysis of a Sprott-A system, H. Jia and his
cooperators formulate a new four-dimension chaotic Hamiltonian system. Then the chaotic
characteristic of the 4-D system and the existence of coexisting hidden attractors are studied by
numerical analysis and field programmable gate array (FPGA) implementation [8]. The Sprott-A
system is reported by Sprott in 1994, which is a algebraically simple three-dimensional chaotic
system [9]. The chaotic behaviors of a paradigmatic low-dimensional Hamiltonian system subjected
to different scenarios of parameter drifts of non-negligible rates are investigated in [10]. In addition,
similar studies were carried out in [11–13]. Compared to chaos, hyperchaos is more complex and has
stronger randomness and unpredictability. Thus, hyperchaos has great potential applications. For
example, hyperchaos could help us build better quantum computer [14]. Therefore, we constructed a
new hyperchaotic Hamiltonian system. The rich dynamical behaviors of the system with holonomic

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022285


5118

constraint and nonholonomic constraint, and hyperchaos control are investigated.
The organization of this paper is as follows. In Section 2, we formulate a six-dimension

hyperchaotic Hamiltonian system. The invariance, equilibrium points and their linear stability, and
hyperchaotic behaviors of the system are analyzed. In Section 3, we present a holonomic constrained
system and a nonholonomic constrained system, respectively. By using the method of [15], the
explicit equations for constrained systems are obtained. The influences of constrained condition on
the hyperchaotic behaviors of the Hamiltonian system are investigated. In Section 4, based on
feedback control, how to control the hyperchaotic behaviors of the Hamiltonian system and
holonomic system are studied. The conclusions are summarized in Section 5.

2. Hyperchaotic Hamiltonian system

In this section, we assume that the Hamiltonian system is described by a function

H(q, p, t) =
p2

1 + p2
2 + p2

3 − θq
2
1 − θq

2
2 − θq

2
3

2
+
β(q4

1 + q4
2 + q4

3)
4

+ ηq1(q3 + q2 −
ηq1

2
), (2.1)

here q = (q1, q2, q3) is the generalized coordinate, p = (p1, p2, p3) is the canonical momentum and t
denotes time. Then, we obtain the Hamiltonian system as follows:

q̇1 = p1,

q̇2 = p2,

q̇3 = p3,

ṗ1 = −βq3
1 + (η2 + θ)q1 − η(q2 + q3),

ṗ2 = −βq3
2 + θq2 − ηq1,

ṗ3 = −βq3
3 + θq3 − ηq1,

(2.2)

where, θ, β, η are positive parameters. The dot expresses the derivative with respect to t.
Obviously, the system (2.2) is invariant for the coordinate transformation

(q1, q2, q3, p1, p2, p3)→ (−q1,−q2,−q3,−p1,−p2,−p3),

thus it is symmetric with respect to the origin. For arbitrary equilibrium point E = (q1, q2, q3, p1, p2, p3)
of (2.2), the Jacobian matrix is  O I3

J3 O

 ,
where I3 denotes third order identity matrix and

J3 =


−3 β q2

1 + η2 + θ −η −η

−η −3 β q2
2 + θ 0

−η 0 −3 β q3
2 + θ

.
Correspondingly, the characteristic equation at E is as follows:

f (λ) = λ6 − tr (J3) λ4 + τ λ2 − |J3| , (2.3)

where
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τ = (9 q1
2q2

2 + 9 q1
2q3

2 + 9 q2
2q3

2)β2 + (−3 (η2 + θ)q2
2 − 6 q1

2θ − 3 (η2 + θ)q3
2 − 3 q2

2θ

−3 θ q3
2)β + 2 (η2 + θ)θ + θ2 − 2 η2.

It is easy to visualize that the system (2.2) always has the equilibrium point E0 = (0, 0, 0, 0, 0, 0),
the characteristic equation of Jacobian matrix is

λ6 +
(
−η2 − 3 θ

)
λ4 +

(
2

(
η2 + θ

)
θ + θ2 − 2 η2

)
λ2 − θ2

(
η2 + θ

)
+ 2 η2θ. (2.4)

In the following, similar to [16], we investigate the stability of E0 by discussing the coefficients of
characteristic polynomial at different conditions. When η2θ + θ2 ≥ 2η2, the roots of the characteristic
equation are

λ1,2 = ±
√
θ, λ3,4 = ±

√
2 η2+2

√
η4+8 η2+4 θ

2 , λ5,6 = ±

√
2 η2−2

√
η4+8 η2+4 θ

2 .

When η2θ + θ2 ≤ 2η2, λ5,6 becomes

±

√
2 η2 − 2

√
η4 + 8 η2 + 4 θ

2
i,

the other characteristic roots above remain unchanged. It shows that E0 is an unstable equilibrium
point.

Next, we illustrate that the system (2.2) exist non-zero equilibrium point. Let ṗ2 = 0, ṗ3 = 0, we
have β q2

3 − θ q2 = β q3
3 − θ q3, (q2 − q3)(β q2

2 + β q2q3 + β q3
2 − θ) = 0, then

q2 = q3, q2
2 + q2q3 + q3

2 = θ
β
.

When q2 = q3, substitute q1 =
q2(β q2

2−θ)
η

into ṗ1 = 0, direct calculation shows that

q2 f (q2) = 0, f (q2) =
β4q2

8

η3 −
3β3θ q2

6

η3 +
3β2θ2q2

4

η3 + (−β θ
3

η3 +
(η2+θ)β

η
)q2

2 −
(η2+θ)θ

η
− 2 η.

Since
lim
q2→0

f (q2) < 0, lim
q2→∞

f (q2) > 0,

it follows that f (q2) has non-zero roots. Furthermore, if q2 = 0, we have q1 = 0 based on ṗ2 = 0, then
we have q3 = 0 based on ṗ1 = 0. And we also obtain q1 = 0, q2 = 0 when q3 = 0. Therefore, if q2 and
q3 satisfy q2

2 + q2q3 + q3
2 − θ

β
= 0, we obtain q2q3 , 0. In conclusion, the system (2.2) exist non-zero

equilibrium point.
To further illustrate the equilibrium points and dynamical behaviors of the system (2.2), we fix

the parameters η = 0.1, θ = 0.5, β = 2.5. The calculations show that the system (2.2) has twenty-
seven equilibrium points, the values of equilibrium points and their corresponding characteristic root
results are given in Table 1. It shows that the system (2.2) has hyperbolic equilibrium points and
non-hyperbolic equilibrium points, and there exist unstable manifold and stable manifold around the
equilibrium points from Table 1. Here, all the calculation results are done by Maple software. Because
it does not affect the description and result of the problem, for the convenience of expression, only
approximate results are given in this paper. For the other calculation results, the same process is done
based on the same consideration. It has been long supposed that the existence of chaotic behavior
in the microscopic motions is responsible for their equilibrium and non-equilibrium properties [17].
In addition, Lyapunov characteristic exponents have been widely employed in studying dynamical
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systems, especially for measuring the exponential divergence of nearby orbits along certain directions
in phase space [18, 19]. A. Wolf and his cooperators have presented a trajectory algorithm to calculate
the Lyapunov exponents [20]. The basic idea of the method is to keep track of perturbations away
from the trajectory in linearized phase space. And the Wolf algorithm is comparatively suitable for the
analysis of experimental data [21]. So in this paper, we calculate the Lyapunov exponents using Wolf
method, where the system is integrated using a fourth-order Runge Kutta method with a fixed step size
equal to 0.01 [21]. And any system containing more than one positive Lyapunov exponent is defined
to be hyperchaotic [22]. By computations, the Lyapunov exponents are obtained as follows:

LE1 ≈ 0.125, LE2 ≈ 0.067, LE3 ≈ 0.000, LE4 ≈ −0.000, LE5 ≈ −0.067, LE6 ≈ −0.125,

thus the system (2.2) is hyperchaotic. The spectra of Lyapunov exponents of (2.2) is given in Figure 1.
It indicates that the values of Lyapunov exponents tend to stable after 40000 steps.

Table 1. The equilibrium points and their corresponding eigenvalues of system (2.2).

equilibrium points eigenvalues of Jacobian matrix at these equilibria

(0, 0, 0, 0, 0, 0) ±0.7071067 ±0.6029015 ±0.8040582
(0, 0.4472135,−0.4472135, 0, 0, 0) ±i ±1.0065440i ±0.7232778
(0,−0.4472135, 0.4472135, 0, 0, 0) ±i ±1.0065440i ±0.7232778
(0.2148994, 0.4239380, 0.4239380, 0, 0, 0) ±0.4278272 ±0.9208291i ±0.9313031i

(−0.2148994,−0.424,−0.4239380, 0, 0, 0) ±0.4278272 ±0.9208291i ±0.9313031i

(0.3159384, 0.4114423, 0.4114423, 0, 0, 0) ±0.4509019i ±0.8772889i ±0.8971908i

(−0.3159384,−0.4114423,−0.4114423, 0, 0, 0) ±0.4509019i ±0.8772889i ±0.8971908i

(0.4328059, 0.0902347, 0.0902347, 0, 0, 0) ±0.6625199 ±0.6736186 ±0.9538011i

(−0.4328059,−0.0902347,−0.0902347, 0, 0, 0) ±0.6625199 ±0.6736186 ±0.9538011i

(0.5279016,−0.4927975,−0.4927975, 0, 0, 0) ±1.1220833i ±1.1495087i ±1.2815618i

(−0.5279016, 0.4927975, 0.4927975, 0, 0, 0) ±1.1220833i ±1.1495087i ±1.2815618i

(0.0934702, 0.0187268, 0.4375559, 0, 0, 0) ±0.6100958 ±0.7595198 ±0.9711627i

(−0.0934702,−0.0187268,−0.4375559, 0, 0, 0) ±0.6100958 ±0.7595198 ±0.9711627i

(0.3936921, 0.0814390, 0.4008976, 0, 0, 0) ±0.6777331 ±0.7625330i ±0.8862569i

(−0.3936921,−0.0814390,−0.4008976, 0, 0, 0) ±0.6777331 ±0.7625330i ±0.8862569i

(0.4608604, 0.3909578,−0.4876500, 0, 0, 0) ±0.7898325i ±1.0304795i ±1.1519976i

(−0.4608604,−0.3909578, 0.4876500, 0, 0, 0) ±0.7898325i ±1.0304795i ±1.1519976i

(0.4856721, 0.1025224,−0.4895725, 0, 0, 0) ±0.6535438 ±1.0863578i ±1.1757842i

(−0.4856721,−0.1025224, 0.4895725, 0, 0, 0) ±0.6535438 ±1.0863578i ±1.1757842i

(0.0934702, 0.4375559, 0.187268, 0, 0, 0) ±0.6100958 ±0.7595198 ±0.9711627i

(−0.0934702,−0.4375559,−0.187268, 0, 0, 0) ±0.6100958 ±0.7595198 ±0.9711627i

(0.3936921, 0.4008976, 0.0814390, 0, 0, 0) ±0.6777331 ±0.7625330i ±0.8862569i

(−0.3936921,−0.4008976,−0.0814390, 0, 0, 0) ±0.6777331 ±0.7625330i ±0.8862569i

(−0.4608604, 0.4876500,−0.3909578, 0, 0, 0) ±0.7898325i ±1.0304795i ±1.1519976i

(0.4608604,−0.4876500, 0.3909578, 0, 0, 0) ±0.7898325i ±1.0304795i ±1.1519976i

(−0.4856721, 0.4895725,−0.1025224, 0, 0, 0) ±0.6535438 ±1.0863578i ±1.1757842i

(0.4856721,−0.4895725, 0.1025224, 0, 0, 0) ±0.6535438 ±1.0863578i ±1.1757842i
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Figure 1. Lyapunov exponents of (2.2).

The Poincaré map of a system is defined by crossings of orbits with one plane [23]. And the
evolution of a dynamical system can be studied by using surfaces of section, in which color is used to
visualize the fourth dimension [24–29]. Therefore, we consider the projection of 4D space on a 3D
subspace, where color is used to indicate the 4th dimension. The (q1, p1, p3, q2) 4D surface of section
is depicted in Figure 2, the location of the consequents is given in the (q1, p1, p3) subspace and are
colored according to their q2 value. The corresponding Poincaré map on the section hyperplane
p2 = 0 is shown in Figure 3. Here, initial value is (0.01, 0.01, 0.01, 0.001, 0.001, 0.001). Figure 4
indicates that the Hamiltonian system is sensitive to initial values, where the blue trajectories’ initial
value is (0.01, 0.01, 0.01, 0.001, 0.001, 0.001), the red trajectories’ initial value is
(0.01, 0.01, 0.001, 0.001, 0.001, 0.001) and the green trajectories’ initial value is
(0, 0, 0, 0.43, 0.09, 0.09), respectively.

Figure 2. Projection on (q1, p1, p3, q2).

Figure 3. Poincaré map on the section p2 + p3 = 0.
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Figure 4. Projections with different initial conditions.

It should be noted that the system has different dynamical characteristics under different initial
values, such as initial value is (0.01, 0.01, 0.001, 0.001, 0.001, 0.001), the Lyapunov exponents are:

LE1 ≈ 0.123, LE2 ≈ 0.038, LE3 ≈ 0.000, LE4 ≈ −0.000, LE5 ≈ −0.038, LE6 ≈ −0.123.

The spectra of Lyapunov exponents with the initial value is given in Figure 5. The results show
that different initial conditions lead to different spectra of Lyapunov exponents and occur different
hyperchaotic behaviors. Figure 6 shows the (q1, p1, p3, q2) 4D surface of section and the location of the
consequents is given in the (q1, p1, p3) subspace and are colored according to their q2 value.

Figure 5. Lyapunov exponents of (2.2).

Figure 6. Projection on (q1, p1, p3, q2).

AIMS Mathematics Volume 7, Issue 4, 5117–5132.
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Obviously, (2.2) is still a Hamiltonian system when the parameters of the Hamiltonian system are
all non-positive. There are still many equilibrium points in the system under certain parameters, such
as η = −0.2, θ = −0.5, β = −1. The values of equilibrium points and their corresponding characteristic
root results are given in Table 2. In this section, since we mainly focus on the dynamical behaviors
of the Hamiltonian system with positive parameters, the detailed analysis of (2.2) with non-positive
parameters is omitted.

Table 2. The equilibrium points and their corresponding eigenvalues of system (2.2).

equilibrium points eigenvalues of Jacobian matrix at these equilibria

(0, 0, 0, 0, 0, 0) ±0.7071067i ±0.873812i ±0.443228i

(0,−0.7071067, 0.7071067, 0, 0, 0) ±1.000000 ±0.7161559i ±1.0260990
(0, 0.7071067,−0.7071067, 0, 0, 0) ±1.000000 ±0.7161559i ±1.0260990
(−0.5286183,−0.2386217,−0.2386217, 0, 0, 0) ±0.6910036 ±0.5737411i ±0.6544866i

(0.5286183, 0.2386217, 0.2386217, 0, 0, 0) ±0.6910036 ±0.5737411i ±0.6544866i

(−0.9116707, 0.8459018, 0.8459018, 0, 0, 0) ±1.2236845 ±1.2832186 ±1.4773885
(0.9116707,−0.8459018,−0.8459018, 0, 0, 0) ±1.22368453 ±1.2832186 ±1.4773885

3. The system under constraint conditions

Constraints exist in a wide range of systems, such as fluid particle systems [30], multi-qubit
systems [31] and robotic system [32], etc. In this section, we mainly study the hyperchaotic
phenomena in system (2.2) under the holonomic constraint condition and nonholonomic constraint
condition.

3.1. Holonomic constraint

Assume the constraint on Hamiltonian system (2.2) is

q2
1 + q2

2 + q2
3 = L2. (3.1)

Differentiating Eq (3.1) with respect to time, we obtain

φ(q, p) := qpT = 0, (3.2)

where
q = (q1, q2, q3), p = (p1, p2, p3).

Differentiating Eq (3.2) with respect to time, we have

ApṗT = bp, (3.3)

where

Ap = q, bp = −ppT .

The matrix

H−1
pp = (∂

2H
∂p2 )−1 = I3.
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[15] presented a method for getting the explicit equations of constrained Hamiltonian system through
the development of the connection between the Lagrangian concept of virtual displacements and
Hamiltonian dynamics. By using the three-step approach in [15], the holonomic Hamiltonian system
[(2.2), (3.1)] becomes  q̇ = ∂H

∂p ,

ṗ = −∂H
∂q + C(q, p),

(3.4)

where

C(q, p) = (I3)−1qT (qI3
−1qT )−1(−ppT + q∂H

∂q ).

Then,

C(q, p) = I3


q1

q2

q3

 (q2
1 + q2

2 + q2
3)−1(bp + Ap

∂H
∂q ) = 1

L2


q1

q2

q3

C1(q, p),

where

C1(q, p) = β q1
4 + β q2

4 + β q3
4 − η2q1

2 + 2 η q1q2 + 2 η q1q3 − θ q1
2 − θ q2

2 − θ q3
2 − p1

2 − p2
2 − p3

2.

Thus the holonomic Hamiltonian system is transformed into
q̇ = p,
ṗ1 =

F1(q1,q2,q3,p1,p2,p3)
L2 ,

ṗ2 =
F2(q1,q2,q3,p1,p2,p3)

L2 ,

ṗ3 =
F3(q1,q2,q3,p1,p2,p3)

L2 ,

(3.5)

where
F1(q1, q2, q3, p1, p2, p3) = −L2β q1

3 + β q1
5 + β q1q2

4 + β q1q3
4 + L2η2q1 − η

2q1
3 − L2η q2 − L2η q3

+2 η q1
2q2 + 2 η q1

2q3 − p1
2q1 − p2

2q1 − p3
2q1,

F2(q1, q2, q3, p1, p2, p3) = −L2β q2
3+β q1

4q2+β q2
5+β q2q3

4−η2q1
2q2−η q1L2+2 η q1q2

2+2 η q1q2q3

−p1
2q2 − p2

2q2 − p3
2q2,

F3(q1, q2, q3, p1, p2, p3) = −L2β q3
3+β q1

4q3+β q2
4q3+β q3

5−η2q1
2q3−η q1L2+2 η q1q2q3+2 η q1q3

2

−p1
2q3 − p2

2q3 − p3
2q3.

Obviously, the system (3.5) is invariant for the coordinate transformation

(q1, q2, q3, p1, p2, p3)→ (−q1,−q2,−q3,−p1,−p2,−p3).

In order to intuitively reflect the complex dynamical behaviors of the constraint system, we fix
the parameters β = 2.5, η = 1 and L = 0.01. The calculations show that the system (3.5) has six
equilibrium points, the values of equilibrium points and their corresponding characteristic root results
are given in Table 3.
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Table 3. The equilibrium points and their corresponding eigenvalues of system (3.5).

equilibrium points eigenvalues of Jacobian matrix at these equilibria

(0.0000000, 0.0070710,−0.0070710, 0, 0, 0) ±0.0001581 ±0.0141421 ±0.0100006i

(0.0000000,−0.0070710, 0.0070710, 0, 0, 0) ±0.0001581 ±0.0141421 ±0.0100006i

(0.0057735, 0.0057735, 0.0057735, 0, 0, 0) ±0.0099991 ±0.0141427 ±0.0173200
(−0.0057735,−0.0057735,−0.0057735, 0, 0, 0) ±0.0099991 ±0.0141427 ±0.0173200
(−0.0081648, 0.0040825, 0.0040825, 0, 0, 0) ±0.0141421i ±0.0173208i ±0.0199993i

(0.0081648,−0.0040825,−0.0040825, 0, 0, 0) ±0.0141421i ±0.0173208i ±0.0199993i

Similarly, it indicate that the system (3.5) has unstable manifold and stable manifold at the
equilibrium points. The Lyapunov exponents are obtained as follows:

LE1 ≈ 0.004, LE2 ≈ 0.001, LE3 ≈ 0.000, LE4 ≈ 0.000, LE5 ≈ −0.004, LE6 ≈ −0.001,

the initial value is (0, 0, 0.01, 0.011, 0.051, 0.051). Therefore, the holonomic system (3.5) is
hyperchaotic. Figure 7 indicates that the holonomic Hamiltonian system is sensitive to initial values,
where the blue trajectories’ initial value is (0, 0, 0.01, 0.011, 0.051, 0.051), the magenta trajectories’
initial value is (0, 0.01, 0, 0.011, 0.051, 0.051) and the green trajectories’ initial value is
(0.01, 0, 0, 0.011, 0.051, 0.051), respectively. The (q3, p1, p3, q2) 4D surface of section of Poincaré
section on the section hyperplane p2 = 0 for the first condition is depicted in Figure 8, the location of
the consequents is given in the (q3, p1, p3) subspace and are colored according to their q2 value.

Figure 7. Projections with different initial values.

Figure 8. Poincaré map on the section p2 = 0.
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3.2. Nonholonomic constraint

Assume the constraint on Hamiltonian system (2.2) is
q̇1 + q̇2 − q3 = 0. (3.6)

Differentiating Eq (3.6) with respect to time, we have q̈1 + q̈2 = q̇3, then

Ap = (1, 1, 0), bp = p3, Hpp = I3.

By using the method in [15], the nonholonomic constraint system [(2.2), (3.6)] is equivalent to
q̇ = p,
ṗ1 = G1(q1, q2, q3, p1, p2, p3),
ṗ2 = G2(q1, q2, q3, p1, p2, p3),
ṗ3 = −β q3

3 − η q1 + θ q3,

(3.7)

where

G1(q1, q2, q3, p1, p2, p3) = 1
2 ( p3 + θ q1 − θ q2 + η q1 − η q2 − η q3 − β q1

3 + β q2
3 + η2q1),

G2(q1, q2, q3, p1, p2, p3) = 1
2 ( p3 − θ q1 + θ q2 − η q1 + η q2 + η q3 + β q1

3 − β q2
3 − η2q1).

Similarly, we fix the parameters θ = 0.5, β = 2.5, η = 0.1, the nonholonomic system (3.7) has three
unstable equilibrium point

(0, 0, 0, 0, 0, 0), (0, 0.4898979, 0, 0, 0, 0), (0,−0.4898979, 0, 0, 0, 0),

the corresponding eigenvalues of Jacobian matrix of (3.7) at these equilibria are

0, 0.1030839, 0.6312678, 0.7933172, −0.7156897, −0.8119793;
0, −0.7937423, 0.4699607 ± 0.0358103i, −0.0730895 ± .5787367i;
0, −0.7937423, 0.4699607 ± 0.0358103i, −0.0730895 ± .5787367i.

The Lyapunov exponents are

LE1 ≈ 0.002, LE2 ≈ 0.001, LE3 ≈ 0.000, LE4 ≈ −0.000, LE5 ≈ −0.001, LE6 ≈ −0.003,

here initial value is (0, 0.02, 0.02, 0.01, 0.01, 0.2). Thus, the nonholonomic constrained Hamiltonian
system is hyperchaotic. Figure 9 shows the (q1, q3, p1, p2) 4D surface of section and the location of
the consequents is given in the (q1, q3, p1) subspace and are colored according to their p2 value. The
corresponding Poincaré map on the section hyperplane p3 = 0 is given in Figure 10.

Figure 9. Projection on (q1, q3, p1, p2).
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Figure 10. Poincaré map on the section p3 = 0.

4. Hyperchaos control

From the above discussion, we can see that the constraints (3.1) and (3.6) have changed the status
of the hyperchaotic system. It indicates that the hyperchaotic system can be generated by introducing
constraint into higher-dimension Hamiltonian system. In some cases, the hyperchaotic behaviors will
cause serious harm, for example, may lead to catastrophic voltage collapse or even blackout in actual
power system [33], thus, these hyperchaotic systems need to be controlled by appropriated methods.
In this section, we will investigate the control problem of the hyperchaotic system. Chaos control has
been widely concerned by scholars, and many valuable chaotic controller have been designed, such
as optimal control [34, 35], impulse control [36], feedback control [37], etc. To achieve hyperchaos
control, the linear feedback control [37] is used to suppress hyperchaos to stable equilibrium. Suppose
that the controlled system is the following form:

q̇ = p + uq,
ṗ1 = −βq3

1 + (η2 + θ)q1 − η(q2 + q3) + up1,

ṗ2 = −βq3
2 + θq2 − ηq1 + up2,

ṗ3 = −βq3
3 + θq3 − ηq1 + up3,

(4.1)

where u is feedback coefficient. We select the same values of the parameters in Section 2, the
Jacobian matrix of (4.1) is

Jc =



u 0 0 1 0 0

0 u 0 0 1 0

0 0 u 0 0 1

−7.5 q1
2 + 0.51 −0.1 −0.1 u 0 0

−0.1 −7.5 q2
2 + 0.5 0 0 u 0

−0.1 0 −7.5 q3
2 + 0.5 0 0 u


.

When u = −1, there is only one zero-equilibrium point (0, 0, 0, 0, 0, 0) in the system (4.1). By
computations, the eigenvalues of Jc is as follows:

−1.707, −0.293, −1.602, −1.804, −0.397, −0.959.

Therefore, the controlled hyperchaotic system (4.1) is asymptotically stable at equilibrium
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(0, 0, 0, 0, 0, 0). The behaviors of the state q1, q2, q3, p1, p2, p3 of (2.2) and (4.1) with time are shown in
Figures 11 and 12, respectively. Here, the horizontal coordinate data denote time, initial value is
(0.01, 0.01, 0.01, 0.001, 0.001, 0.001).

Figure 11. Time series of (2.2).

Figure 12. Time series of (4.1).

It should be noted that the linear feedback control method is also applicable in system (3.5). In this
case, the controlled system is as follows:

q̇ = p + kq,
ṗ1 =

F1(q1,q2,q3,p1,p2,p3)
L2 + kp1,

ṗ2 =
F2(q1,q2,q3,p1,p2,p3)

L2 + kp2,

ṗ3 =
F3(q1,q2,q3,p1,p2,p3)

L2 + kp3.

(4.2)

Similarly, we obtain the unique asymptotic stable equilibrium point E1(0, 0, 0, 0, 0, 0), the
corresponding eigenvalues at E1 is as follows:

−5.01, −4.99, −5, −5, −5, −5,

here k = −5. The controlled hyperchaotic system (4.2) is asymptotically stable at E1.
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The behaviors of the state q1, q2, q3, p1, p2, p3 of (3.5) and (4.2) with time are shown in Figures 13
and 14, respectively. Here, the horizontal coordinate data denote time, initial value is
(0, 0, 0.01, 0.011, 0.051, 0.051). In conclusion, the hyperchaos control of the hyperchaotic
system (2.2) and system (3.5) can be achieved by selecting appropriate feedback coefficients.

Figure 13. Time series of (3.5).

Figure 14. Time series of (4.2).

5. Conclusions

In this paper, a new hyperchaotic Hamiltonian system is formulated and analysis the complex
dynamic behaviors including the multi-equilibrium points their characteristics, Poincaré section,
Lyapunov exponents. The explicit equations of the Hamiltonian system under holonomic constraint
and nonholonomic constraint are obtained. The results show that the constrained systems have
different dynamic behaviors from the unconstrained system and the new hyperchaotic systems are
generated by introducing holonomic constraint and nonholonomic constraint. Finally, the hyperchaos
control is achieved by using linear feedback which suppress hyperchaotic system to asymptotic stable
zero-equilibrium.
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