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Abstract: In this paper, we propose an efficient method for some special solutions of the quaternion
matrix equation AXB + CYD = E. By integrating real representation of a quaternion matrix with
H-representation, we investigate the minimal norm least squares solution of the previous quaternion
matrix equation over different constrained matrices and obtain their expressions. In this way, we first
apply H-representation to solve quaternion matrix equation with special structure, which not only
broadens the application scope of H-representation, but further expands the research idea of solving
quaternion matrix equation. The algorithms only include real operations. Consequently, it is very
simple and convenient, and it can be applied to all kinds of quaternion matrix equation with similar
problems. The numerical example is provided to illustrate the feasibility of our algorithms.
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1. Introduction

In this paper, we adopt the following notations. R represents the real number field; Rn stands for the
set of all real column vectors with order n; Rm×n stands for the set of all m×n real matrices. C represents
the complex number field; Cn stands for the set of all complex column vectors with order n; Cm×n

stands for the set of all m×n complex matrices. The sets Un, U−n, Vn, Wn represent the set of all n×n
tridiagonal symmetric matrices, tridiagonal skew-symmetric matrices, Brownian matrices, Generalized
Rotation matrices, respectively. Q stands for the quaternion skew-field; Qn stands for the set of all
quaternion column vectors with order n; Qm×n represents the set of all m × n quaternion matrices;
HTQn×n, AHTQn×n, BQn×n, MQn×n represent the set of all n × n quaternion tridiagonal Hermitian
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matrices, quaternion tridiagonal anti-Hermitian matrices, quaternion Brownian matrices, quaternion
Generalized Rotation matrices, respectively. In represents the unit matrix with order n. For matrix
A, AT , AH, A† stand for the transpose, the conjugate transpose, Moore-Penrose inverse of matrix A,
respectively. ⊗ represents the Kronecker product of matrices. ‖·‖ represents the Frobenius norm of
a matrix or Euclidean norm of a vector. For C = (c1, c2, . . . , cn) ∈ Rm×n, vec(C) means the vector
operator, i.e., vec(C) = (cT

1 , c
T
2 , . . . , c

T
k )T .

Matrix equations can be encountered in many areas, such as system theory, control theory, stability
analysis, some fields of pure and applied mathematics and so on [1–3]. With the rapid development
of these fields, more and more scholars are interested in matrix equations and have obtained many
valuable results [4–6]. Now, we turn our attention to quaternion matrix equation. Quaternion matrix
equations and their least squares solutions are widely applied in many fields, such as computer science,
quantum mechanics, control theory, field theory and so on [7–9]. Therefore, many people are engaged
in studying theoretical properties and numerical computations of quaternion matrix equations. By
means of complex representation, Jiang et al. studied algebraic algorithm for quaternion least squares
problem [10] and quaternion eigenvalue problem [11]; Yuan et al. studied the quaternion least squares
problems for the quaternion matrix equations AXB + CXD = E [12], X − AX̂B = C [13]. By applying
the real representation of quaternion matrices, Wang et al. proposed an iterative method for solving the
quaternion least squares problem [14].

Consider the generalized Sylvester matrix equation

AXB + CYD = E, (1.1)

If B and C are identity matrices, then the matrix Eq (1.1) reduces to the well-known Sylvester
matrix Eq [15]. If C and D are identity matrices, then the matrix Eq (1.1) reduces to the well-
known Stein matrix equation. It has extensive application value in robust control, feedback control,
pole assignment design, neural network and so on [16–18]. There are many important results about
their solutions, for example, [19] and [20] considered the solvability condition for the complex and
real matrix Eq (1.1), respectively. For the quaternion matrix Eq (1.1), [21] derived necessary and
sufficient conditions for the existence of a solution or a unique solution using the method of complex
representation of quaternion matrices; [12, 22] studied η-Hermitian and η-anti-Hermitian solutions to
the quaternion matrix equations AXB + CXD = E, AXB + CYD = E, respectively; [23] obtained the
expression of solutions of a system of quaternion matrix equations including η-Hermicity. Also, it is
worth noting that a number of important results on Sylvester operators have been obtained in recent
years. For instance, [24] studied some features of slice semi-regular functions SξM(Ω) on a circular
domain Ω and verified the equivalence of slice semi-regular functions via Sylvester operators; [25]
applied the existing results to establish some outcomes of the study of the behaviour of a class
of linear operators, which include the Sylvester ones, acting on slice semi-regular functions. The
name of Sylvester operator is due to the fact that, when dealing with matrices, equation S f ,g(χ) = b
is usually called Sylvester equation. In the most common use, Sylvester equations are special
matrices equations, introduced by Sylvester himself [26], which are used in several subjects, including
similarity, commutativity, control theory and differential equation [27]. In the quaternionic setting,
such equations were studied with different purposes. In this paper, we consider the least squares
problem with different constrains for quaternion matrix Eq (1.1) based on the real representation of
quaternion matrices together with the H-representation method, which is able to transform a matrix-
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valued equation into a standard vector-valued equation with independent coordinates. The related
problems are described as follows.
Problem 1. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n, and

TL =
{
(X,Y)|X ∈ HTQp×p, Y ∈ AHTQq×q, ‖AXB + CYD − E‖ = min

}
.

Find out (XH,YA) ∈ TL such that

‖(XH,YA)‖ = min
(X,Y)∈TL

‖(X,Y)‖ .

The solution (XH,YA) in Problem 1 is called the minimal norm least squares tridiagonal mixed solution.
Problem 2. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n, and

BL =
{
(X,Y)|X ∈ BQp×p, Y ∈ BQq×q, ‖AXB + CYD − E‖ = min

}
.

Find out (XB,YB) ∈ BL such that

‖(XB,YB)‖ = min
(X,Y)∈BL

‖(X,Y)‖ .

The solution (XB,YB) in Problem 2 is called the minimal norm least squares Brownian solution.
Problem 3. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n, and

ML =
{
(X,Y)|X ∈ MQp×p, Y ∈ MQq×q, ‖AXB + CYD − E‖ = min

}
.

Find out (XM,YM) ∈ ML such that

‖(XM,YM)‖ = min
(X,Y)∈ML

‖(X,Y)‖ .

The solution (XM,YM) in Problem 3 is called the minimal norm least squares Rotation solution.
The remaining content of this paper is organized as follows. In Section 2, we study and recall some

preliminary results with regard to the real representation of a quaternion matrix, and then introduce
some matrix sets with special structures. In Section 3, we give the concept of H-representation and
subsequently study its properties. In Section 4, on the basis of the real representation matrix of a
quaternion matrix andH-representation of matrices with special structures, operational properties, the
properties of Frobenius norm and Moore-Penrose generalized inverse, we can convert Problems 1–3
into the corresponding problems of the real matrix equation over free variables, and then the unique
solution (X,Y) and expressions for special solution are established. In addition, the necessary and
sufficient conditions for the quaternion matrix equation to have solution with special structure are
included as corollaries. In Section 5, we provide numerical algorithms for solving Problems 1–3 by
the results obtained in Section 4, and afterwards we present a numerical example to verify the feasibility
of our proposed method. Finally, in Section 6, we put some conclusions.

2. Basic definitions

We start by recalling the usual Kronecker product.
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Definition 2.1. For any two matrices A = (ai j) ∈ Rm×n, B ∈ Rp×q, the Kronecker product of A and B is
defined as

A ⊗ B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 ∈ Rmp×nq.

We now turn to recall the standard representation of a quaternion.

Definition 2.2. A quaternion q ∈ Q is represented as

q = q1 + q2i + q3j + q4k,

where q1, q2, q3, q4 ∈ R, and three imaginary units i, j,k satisfy

i2 = j2 = k2 = ijk = −1, ij = k, jk = i and ki = j.

Definition 2.3. A quaternion matrix A ∈ Qm×p is represented as

A = A1 + A2i + A3j + A4k,

where A1, A2, A3, A4 ∈ R
m×p. The conjugate matrix of A is defined as

A = A1 − A2i − A3j − A4k.

We recall a standard norm in this setting.

Definition 2.4. [28] The Frobenius norm of A = A1 + A2i + A3j + A4k is defined as

‖A‖ =

√
‖A1‖

2 + ‖A2‖
2 + ‖A3‖

2 + ‖A4‖
2.

Definition 2.5. [28] For A = A1 + A2i + A3j + A4k ∈ Qm×p, its real representation matrix
−→
A is defined

as follows:

−→
A =


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

 ∈ R4m×4p.

According to the matrix blocks of the real representation matrix
−→
A , if we know a column block of

−→
A , we know

−→
A . For the sake of convenience, we use

−→
A c to represent the first column block of

−→
A , i.e.,

−→
A c =


A1

A2

A3

A4

 .
Next, we investigate some properties of

−→
A c, which will be used in the sequel.
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Lemma 2.1. [28] Suppose A, B ∈ Qm×n, C ∈ Qn×p, t ∈ R, then we have

(i)A = B⇔
−→
A =
−→
B ⇔

−→
A c =

−→
Bc;

(ii)
−−−−→
A + B =

−→
A +
−→
B ,
−→
tA = t

−→
A ,
−−→
AC =

−→
A
−→
C ;

(iii)
−−−−→
A + Bc =

−→
A c +

−→
Bc,
−→
tAc = t

−→
A c,
−−→
ACc =

−→
A
−→
C c;

(iv) ‖A‖ =
1
2

∥∥∥∥−→A∥∥∥∥ =
∥∥∥∥−→A c

∥∥∥∥ .
Proof. We only provide detailed proof of

−−→
AC =

−→
A
−→
C ,
−−→
ACc =

−→
A
−→
C c, and the rest are similarly verifiable.

Suppose A = A1 + A2i + A3j + A4k ∈ Qm×n, C = C1 + C2i + C3j + C4k ∈ Qn×p, then

AC = (A1C1 − A2C2 − A3C3 − A4C4) + (A1C2 + A2C1 + A3C4 − A4C3)i
+ (A1C3 − A2C4 + A3C1 + A4C2)j + (A1C4 + A2C3 − A3C2 + A4C1)k.

According to the Definition 2.5, we have

−→
A =


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

 , −→C =


C1 −C2 −C3 −C4

C2 C1 −C4 C3

C3 C4 C1 −C2

C4 −C3 C2 C1

 , −→C c =


C1

C2

C3

C4

 ,
and

−−→
AC =

[ A1C1−A2C2−A3C3−A4C4 −A1C2−A2C1−A3C4+A4C3 −A1C3+A2C4−A3C1−A4C2 −A1C4−A2C3+A3C2−A4C1
A1C2+A2C1+A3C4−A4C3 A1C1−A2C2−A3C3−A4C4 −A1C4−A2C3+A3C2−A4C1 A1C3−A2C4+A3C1+A4C2
A1C3−A2C4+A3C1+A4C2 A1C4+A2C3−A3C2+A4C1 A1C1−A2C2−A3C3−A4C4 −A1C2−A2C1−A3C4+A4C3
A1C4+A2C3−A3C2+A4C1 −A1C3+A2C4−A3C1−A4C2 A1C2+A2C1+A3C4−A4C3 A1C1−A2C2−A3C3−A4C4

]

=


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1



C1 −C2 −C3 −C4

C2 C1 −C4 C3

C3 C4 C1 −C2

C4 −C3 C2 C1


=
−→
A
−→
C ,

−−→
ACc =


A1C1 − A2C2 − A3C3 − A4C4

A1C2 + A2C1 + A3C4 − A4C3

A1C3 − A2C4 + A3C1 + A4C2

A1C4 + A2C3 − A3C2 + A4C1

 =


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1



C1

C2

C3

C4

 =
−→
A
−→
C c.

�

We now recall a couple of algebraic results about the structure of quaternion matrices and their real
representation.

Lemma 2.2. [14] Suppose X ∈ Qp×p, then vec(
−→
X ) = Jvec(

−→
X c), where

J =


diag(I4p, . . . , I4p)
diag(Fp, . . . , Fp)
diag(Hp, . . . ,Hp)
diag(S p, . . . , S p)

 ,
AIMS Mathematics Volume 7, Issue 4, 5029–5048.
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and

Fp =


0 −Ip 0 0
Ip 0 0 0
0 0 0 Ip

0 0 −Ip 0

 , Hp =


0 0 −Ip 0
0 0 0 −Ip

Ip 0 0 0
0 Ip 0 0

 , S p =


0 0 0 −Ip

0 0 Ip 0
0 −Ip 0 0
Ip 0 0 0

 .
Lemma 2.3. [14] Suppose X = X1 + X2i + X3j + X4k ∈ Qp×p, then

vec(
−→
X c) = K


vec(X1)
vec(X2)
vec(X3)
vec(X4)

 ,
where

K =



Ip 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 Ip 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 Ip 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 Ip 0 · · · 0
0 Ip · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 Ip · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 Ip · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 Ip · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · Ip 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · Ip 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · Ip 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · Ip



∈ Q4p2×4p2
.

Remark 2.1. Either the J in Lemma 2.2 or the K in Lemma 2.3 is just a bridge connecting the left
and right sides of its equation. By the structure of real representation of quaternion matrix and its first
column block, we only need to figure out the relationship between the left and right sides of its equation
to express J or K.

We will now present four special matrix sets. We refer to [29] for all the concepts involved in this
paper.

Definition 2.6. A tridiagonal symmetric matrix P ∈ Un is an n × n matrix with the following form
x11 x12 · · · 0

x12 x22
. . .

...
...

. . .
. . . xn−1,n

0 · · · xn−1,n xnn

 .
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Definition 2.7. A tridiagonal skew-symmetric matrix P ∈ U−n is an n × n matrix with the following
form 

0 x12 · · · 0

−x12 0 . . .
...

...
. . .

. . . xn−1,n

0 · · · −xn−1,n 0

 .
Definition 2.8. A matrix P ∈ Vn is called the Brownian matrix, if

bi, j+1 = bi j, j > i,
i, j = 1, . . . , n − 1.

bi+1, j = bi j, j < i,

Specifically, the form is as follows:

b1 bn+1 bn+1 · · · bn+1 bn+1

b2n b2 bn+2 · · · bn+2 bn+2

b2n b2n+1 b3 · · · bn+3 bn+3
...

...
... · · · · · ·

b2n b2n+1 b2n+2
... bn−1 b2n−1

b2n b2n+1 b2n+2
... b3n−2 bn


.

Definition 2.9. A Generalized Rotation matrix P ∈Wn is an n × n matrix with the following form

c0 c1 c2 · · · cn−1

αcn−1 c0 c1 cn−2

αcn−2 αcn−1 c0
. . .

...
...

. . .
. . . c1

αc1 αc2 · · · αcn−1 c0


.

3. H-Representation and its properties

In this section, we will briefly introduce the notion of H-representation and the related properties.
Besides, we will also analyze the structure of four special matrix sets mentioned above by means of
H-representation and present theirH-representation matrices.

Definition 3.1. [30] Consider a p-dimensional complex matrix subspace X ⊂ Cn×n over the field C.
Assume that e1, e2, . . . , ep form a basis of X, and define H = [vec(e1) vec(e2) . . . vec(ep)]. If for each
X ∈ X, we express ψ(X) = vec(X) in the form of

ψ(X) = vec(X) = HX̃

with a p × 1 vector X̃, then HX̃ is called an H-representation of ψ(X), and H is called an H-
representation matrix of ψ(X).

AIMS Mathematics Volume 7, Issue 4, 5029–5048.



5036

Remark 3.1. 1) The H-representation of ψ(X) for X ∈ X is not unique because of the fact that the
matrix H may be different owing to the basis choices of X. Apparently, when the basis of X is fixed, the
H-representation matrix H, as well as X̃, is uniquely determined; 2) ψ is used here only as a function
name for the convenience of defining its inverse in the sequel.

In what follows, based on the special matrix sets defined in Section 2, we present some simple
examples to elucidate Definition 3.1.

Example 3.1. Let X = U3, X = (xi j)3×3, then dim(X) = 5. If we select the following basis of X

e1 =


1 0 0
0 0 0
0 0 0

 , e2 =


0 1 0
1 0 0
0 0 0

 , e3 =


0 0 0
0 1 0
0 0 0

 , e4 =


0 0 0
0 0 1
0 1 0

 , e5 =


0 0 0
0 0 0
0 0 1

 .
It is then easy to compute

ψ(X) = vec(X) = [x11 x12 0 x12 x22 x23 0 x23 x33]T ,

H =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


, X̃ = [x11 x12 x22 x23 x33]T .

Example 3.2. Let X = V3, then dim(X) = 7. If we select the following basis of X

e1 =


1 0 0
0 0 0
0 0 0

 , e2 =


0 0 0
1 0 0
1 0 0

 , e3 =


0 1 1
0 0 0
0 0 0

 , e4 =


0 0 0
0 1 0
0 0 0

 ,
e5 =


0 0 0
0 0 0
0 1 0

 , e6 =


0 0 0
0 0 1
0 0 0

 , e7 =


0 0 0
0 0 0
0 0 1

 .
Then it is easy to compute

ψ(X) = vec(X) = [b1 b6 b6 b4 b2 b7 b4 b5 b3]T ,

H =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, X̃ = [b1 b6 b4 b2 b7 b5 b3]T .
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Example 3.3. Let X =W3, then dim(X) = 3. If we select the following basis of X

e1 =


1 0 0
0 1 0
0 0 1

 , e2 =


0 0 1
α 0 0
0 α 0

 , e3 =


0 1 0
0 0 1
α 0 0

 .
Then we can obtian

ψ(X) = vec(X) = [c0 αc2 αc1 c1 c0 αc2 c2 c1 c0]T ,

H =



1 0 0
0 α 0
0 0 α

0 0 1
1 0 0
0 α 0
0 1 0
0 0 1
1 0 0


, X̃ = [c0 c2 c1]T .

In this paper, we are interested in the H-representation for X = Un/U−n/Vn/Wn. For X = Un, we
select a standard basis throughout this paper as

{E11, E21, E22, E32, . . . , En−1,n−1, En,n−1, En,n} = {Ei j : 1 ≤ j ≤ i ≤ n},

where Ei j = (elk)n×n with ei j = e ji = 1 and the other entries are zeros. Clearly, for the above given
bases, if X = Un, then for any Xn = (xi j)n×n ∈ X, we have

X̃n = (x11, x21, x22, x32, . . . , xn−1,n−1, xn,n−1, xnn)T . (3.1)

For X = U−n, we select a standard basis throughout this paper as

{E′21, E
′
32, . . . , E

′
n,n−1} = {E′i j : 1 ≤ j < i ≤ n},

where E′i j = (e′lk)n×n with e′i j = −1, e′ji = 1 and the other entries are all zeros. For the above given
bases, if X = U−n, then for any X−n = (x′i j)n×n ∈ X, we have

X̃−n = (x′21, x
′
32, . . . , x

′
n,n−1)T . (3.2)

For the convenience of description, the following Z andW both represent X.
Similarly, for Z = Vn, we select a standard basis as

{F11, F21, F12, F22, F32, F23, . . . , Fn−1,n−1, Fn,n−1, Fn−1,n, Fn,n} = {Fi j, F ji : 1 ≤ i ≤ j ≤ n},

where Fii = ( flk)n×n with fii = 1, and Fi j, F ji are n × n matrices with fi j = 1, f ji = 1 for ∀ j > i,
respectively, and the other entries are zeros. Based on above bases, for any Zn = (zi j)n×n ∈ Z, we have

Z̃n = (z11, z21, z12, z22, z32, z23, . . . , zn−1,n−1, zn,n−1, zn−1,n, zn,n)T . (3.3)
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Likewise, forW =Wn, we select a standard basis as

{D11,D21, . . . ,Dn1} = {Di1 : 1 ≤ i ≤ n},

with D11 = In and Di1 =

[
Ii−1

αIn−i+1

]
, 2 ≤ i ≤ n.

Based on above bases, ifW =Wn, then for any Wn = (wi j)n×n ∈W, we have

W̃n = (w0,wn−1,wn−2, . . . ,w1)T . (3.4)

As soon as a standard basis is given, X̃n, X̃−n, Z̃n, and W̃n are uniquely determined by Xn, X−n, Zn and
Wn, respectively. Thus, we can state the following definition:

Definition 3.2. We define σ1 : Xn = (xi j)n×n ∈ Un 7→ X̃n, where X̃n is defined in (3.1), σ2 : X−n =

(x′i j)n×n ∈ U−n 7→ X̃−n, where X̃−n is defined in (3.2), τ : Zn = (zi j)n×n ∈ Vn 7→ Z̃n, where Z̃n is defined
in (3.3), and φ : Wn = (wi j)n×n ∈Wn 7→ W̃n, where W̃n is defined in (3.4).

Remark 3.2. ψ, σ1, σ2, τ and φ are obviously invertible in the sense that for any (ν, ν1, ν2, ν3, ν4) ∈
Cn2
×C2n−1 ×Cn−1 ×C3n−2 ×Cn, we have (ψ−1(ν), σ−1

1 (ν1), σ−1
2 (ν2), τ−1(ν3), φ−1(ν4)) ∈ Cn×n ×Un ×U−n ×

Vn ×Wn. It should be noted that ψ, σ1, σ2, τ and φ are defined on different domains.

Note that ψ(Xn) is a column vector formed by all elements of Xn, while σ1(Xn), σ2(X−n), τ(Zn),
φ(Wn) are column vectors formed by different nonzero elements of Xn, X−n, Zn, Wn, respectively. For
clarity, we denote the H-matrix in H-representation corresponding to X = Un by H1

n , the H-matrix in
H-representation corresponding to X = U−n by H1

−n, the H-matrix inH-representation corresponding
to X = Vn by H2

n , the H-matrix inH-representation corresponding to X =Wn by H3
n .

The following corollary is obvious from Definitions 3.1 and 3.2.

Corollary 3.1. For a n2 × 1 vector µ1, if ψ−1(µ1) ∈ Un, then there exists a (2n − 1) × 1 vector ν1, such
that µ1 = H1

nν1. For a n2 × 1 vector µ2, if ψ−1(µ2) ∈ U−n, then there exists a (n − 1) × 1 vector ν2, such
that µ2 = H1

−nν2. For a n2 × 1 vector µ3, if ψ−1(µ3) ∈ Vn, then there exists a (3n− 2)× 1 vector ν3, such
that µ3 = H2

nν3. For a n2 × 1 vector µ4, if ψ−1(µ4) ∈ Wn, then there exists a n × 1 vector ν4, such that
µ4 = H3

nν4.

4. The solutions for Problems 1–3

In this section, we solve Problems 1–3 via the real representation of quaternion matrices and H-
representation. We first convert above least squares problems into corresponding problems of real
matrix equation by using the real representation, then in order to reduce the size of original problems,
we remove the redundancy and extract effective elements throughH-representation. Finally, we obtain
the solutions of Problems 1–3.

Lemma 4.1. [31] The least squares solutions of the linear system of equations Ax = b, with A ∈ Rm×n

and b ∈ Rm can be represented as
x = A†b + (I − A†A)y,

where, y ∈ Rn is an arbitrary vector. The minimal norm least squares solution of the linear system of
equations Ax = b is A†b.
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Lemma 4.2. [31] The linear system of equations Ax = b, with A ∈ Rm×n and b ∈ Rm has a solution
x ∈ Rn if and only if

AA†b = b.

When Ax = b is compatible, the general solution can be represented as

x = A†b + (I − A†A)y,

where, y ∈ Rn is an arbitrary vector. Ax = b has a unique solution if and only if

rank(A) = n.

In this case, the unique solution is x = A†b.

Theorem 4.3. Suppose A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n be given. Hence the set
TL of Problem 1 can be expressed as

TL =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H1G
†

1vec(
−→
E c) + H1(I5p+7q−8 −G†1G1)y, ∀y ∈ R5p+7q−8

}
, (4.1)

And then, the minimal norm least squares solution (XH,YA) of Problem 1 satisfies(
X̄H

ȲA

)
= H1G

†

1vec(
−→
E c). (4.2)

where X̄ =


vec(X1)
vec(X2)
vec(X3)
vec(X4)

 , Ȳ =


vec(Y1)
vec(Y2)
vec(Y3)
vec(Y4)

 , H1 =



H1
p

H1
−p

H1
−p

H1
−p

H1
−q

H1
q

H1
q

H1
q


,

G1 =

(
(
−→
BT

c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

)
H1. (4.3)

Proof. For X = X1 + X2i + X3j + X4k ∈ HTQp×p, Y = Y1 + Y2i + Y3j + Y4k ∈ AHTQq×q, according to
Lemmas 2.1–2.3, we have

‖AXB + CYD − E‖ =
∥∥∥∥−−−−−−−−−−−−−−−→AXB + CYD − Ec

∥∥∥∥ =
∥∥∥∥−−−→AXBc +

−−−−→
CYDc −

−→
E c

∥∥∥∥
=

∥∥∥∥vec(
−→
A
−→
X
−→
Bc +

−→
C
−→
Y
−→
Dc −

−→
E c)

∥∥∥∥
=

∥∥∥∥(
−→
BT

c ⊗
−→
A)vec(

−→
X ) + (

−→
DT

c ⊗
−→
C )vec(

−→
Y ) − vec(

−→
E c)

∥∥∥∥
=

∥∥∥∥(
−→
BT

c ⊗
−→
A)Jvec(

−→
X c) + (

−→
DT

c ⊗
−→
C )J′vec(

−→
Y c) − vec(

−→
E c)

∥∥∥∥
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=
∥∥∥∥(
−→
BT

c ⊗
−→
A)JKX̄ + (

−→
DT

c ⊗
−→
C )J′K′Ȳ − vec(

−→
E c)

∥∥∥∥
=

∥∥∥∥∥∥((−→BT
c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

) (X̄
Ȳ

)
− vec(

−→
E c)

∥∥∥∥∥∥ ,
where J′, K′ have the same structure with the J, K, respectively. Since X1 ∈ Up, Xt ∈ U−p, Y1 ∈

U−q, Yt ∈ Uq(t = 2, 3, 4), in light of Corollary 3.1, we can derive

vec(X1)
vec(X2)
vec(X3)
vec(X4)
vec(Y1)
vec(Y2)
vec(Y3)
vec(Y4)


=



ψ(X1)
ψ(X2)
ψ(X3)
ψ(X4)
ψ(Y1)
ψ(Y2)
ψ(Y3)
ψ(Y4)


=



H1
p

H1
−p

H1
−p

H1
−p

H1
−q

H1
q

H1
q

H1
q





X̃1

X̃2

X̃3

X̃4

Ỹ1

Ỹ2

Ỹ3

Ỹ4


.

For the convenience of what follows, let us denote

H1 =



H1
p

H1
−p

H1
−p

H1
−p

H1
−q

H1
q

H1
q

H1
q


, X̌ =


X̃1

X̃2

X̃3

X̃4

 , Y̌ =


Ỹ1

Ỹ2

Ỹ3

Ỹ4

 ,

G1 =

(
(
−→
BT

c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

)
H1.

Then we can obtain ∥∥∥∥∥∥((−→BT
c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

) (X̄
Ȳ

)
− vec(

−→
E c)

∥∥∥∥∥∥
=

∥∥∥∥∥∥((−→BT
c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

)
H1

(
X̌
Y̌

)
− vec(

−→
E c)

∥∥∥∥∥∥
=

∥∥∥∥∥∥G1

(
X̌
Y̌

)
− vec(

−→
E c)

∥∥∥∥∥∥ .
Thus ‖AXB + CYD − E‖ assume its minimum value

‖AXB + CYD − E‖ = min,

if and only if

∥∥∥∥∥∥G1

(
X̌
Y̌

)
− vec(

−→
E c)

∥∥∥∥∥∥ does.

For the real matrix equation

G1

(
X̌
Y̌

)
= vec(

−→
E c),
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by Lemma 4.1, its least squares solution can be represented as(
X̌
Y̌

)
= G†1vec(

−→
E c) + (I5p+7q−8 −G†1G1)y, y ∈ R5p+7q−8. (4.4)

Moreover, (4.1) is derived by multiplying both sides of (4.4) by the matrix H1. Meanwhile, (4.2) can
be derived. �

By virtue of Theorem 4.3, we can give the necessary and sufficient condition in order to prove the
existence of tridiagonal mixed solution for the quaternion matrix equation AXB + CYD = E, and the
expression for the tridiagonal mixed solution when (1.1) is compatible.

Corollary 4.4. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n be given, and G1 be defined
as in (4.3). Then (1.1) has a solution X ∈ HTQp×p, Y ∈ AHTQq×q, if and only if

(G1G
†

1 − I4mn)vec(
−→
E c) = 0. (4.5)

If (4.5) holds, the solutions set of (1.1) can be represented as

ST =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H1G
†

1vec(
−→
E c) + H1(I5p+7q−8 −G†1G1)y, ∀y ∈ R5p+7q−8

}
. (4.6)

Moreover, (1.1) has unique tridiagonal mixed solution (X′H,Y
′
A), if and only if

rank(G1) = 5p + 7q − 8,

and the unique tridiagonal mixed solution (X′H,Y
′
A) satisfies(

X̄′H
Ȳ ′A

)
= H1G

†

1vec(
−→
E c). (4.7)

Proof. According to the proof of Theorem 4.3, Lemma 4.2 and the definition of Moore-Penrose
generalized inverse, we have

‖AXB + CYD − E‖ =

∥∥∥∥∥∥G1

(
X̌
Y̌

)
− vec(

−→
E c)

∥∥∥∥∥∥
=

∥∥∥∥∥∥G1G
†

1G1

(
X̌
Y̌

)
− vec(

−→
E c)

∥∥∥∥∥∥
=

∥∥∥∥G1G
†

1vec(
−→
E c) − vec(

−→
E c)

∥∥∥∥
=

∥∥∥∥(G1G
†

1 − I4mn)vec(
−→
E c)

∥∥∥∥ ,
thus (1.1) has tridiagonal mixed solution (X,Y) if and only if

‖AXB + CYD − E‖ = 0⇐⇒
∥∥∥∥(G1G

†

1 − I4mn)vec(
−→
E c)

∥∥∥∥ = 0⇐⇒ (G1G
†

1 − I4mn)vec(
−→
E c) = 0.
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So we get the formula in (4.5). Under the condition that (4.5) is established, the solution (X,Y) of (1.1)
satisfies

G1

(
X̌
Y̌

)
= vec(

−→
E c).

Moreover, the solution (X,Y) of (1.1) satisfies(
X̌
Y̌

)
= G†1vec(

−→
E c) + (I5p+7q−8 −G†1G1)y, ∀y ∈ R5p+7q−8.

Similarly, we can deduce (4.6) by multiplying both sides of the above equation by the matrix H1. At
the same time, the unique tridiagonal mixed solution (4.7) can also be obtained. �

In what follows, we concentrate on Problems 2 and 3. By Theorem 3.1, for (X,Y) with special
structure, we can give its H-representation matrix, which will help us extract effective elements and
reduce the complexity of operations. Based on the above ideas, the following conclusions can be easily
obtained.

Theorem 4.5. Suppose A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n. Hence the set BL of
Problem 2 can be represented as

BL =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H2G
†

2vec(
−→
E c) + H2(I12p+12q−16 −G†2G2)y, ∀y ∈ R12p+12q−16

}
, (4.8)

and then, the minimal norm least squares solution (XB,YB) of Problem 2 satisfies(
X̄B

ȲB

)
= H2G

†

2vec(
−→
E c), (4.9)

where

H2 =



H2
p

H2
p

H2
p

H2
p

H2
q

H2
q

H2
q

H2
q


, G2 =

(
(
−→
BT

c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

)
H2.

Corollary 4.6. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n be given. G2 is defined in
Theorem 4.5. Then (1.1) has a solution X ∈ BQp×p, Y ∈ BQq×q, if and only if

(G2G
†

2 − I4mn)vec(
−→
E c) = 0. (4.10)

If (4.10) holds, the Brownian solutions set of (1.1) can be represented as

SB =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H2G
†

2vec(
−→
E c) + H2(I12p+12q−16 −G†2G2)y, ∀y ∈ R12p+12q−16

}
,
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furthermore, (1.1) has unique Brownian solution (X′B,Y
′
B), if and only if

rank(G2) = 12p + 12q − 16,

and the unique Brownian solution (X′B,Y
′
B) satisfies(
X̄′B
Ȳ ′B

)
= H2G

†

2vec(
−→
E c). (4.11)

Remark 4.1. When X ∈ BQp×p, Y ∈ BQq×q, according to Theorem 4.5, we can give H2, G2, then
Corollary 4.6 can be obtained by a proof method similar to Corollary 4.4.

Similar to Theorem 4.5, when X ∈ MQp×p, Y ∈ MQq×q, we can give H3, G3 for studying Problem 3.

Theorem 4.7. Suppose A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n. Hence the set ML of
Problem 3 can be expressed as

ML =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H3G
†

3vec(
−→
E c) + H3(I4p+4q −G†3G3)y, ∀y ∈ R4p+4q

}
, (4.12)

and then, the minimal norm least squares solution (XM,YM) of Problem 3 satisfies(
X̄M

ȲM

)
= H3G

†

3vec(
−→
E c), (4.13)

where

H3 =



H3
p

H3
p

H3
p

H3
p

H3
q

H3
q

H3
q

H3
q


, G3 =

(
(
−→
BT

c ⊗
−→
A)JK, (

−→
DT

c ⊗
−→
C )J′K′

)
H3.

Corollary 4.8. Let A ∈ Qm×p, B ∈ Qp×n, C ∈ Qm×q, D ∈ Qq×n, E ∈ Qm×n be given. G3 is defined in
Theorem 4.7. Then (1.1) has a solution X ∈ MQp×p, Y ∈ MQq×q, if and only if

(G3G
†

3 − I4mn)vec(
−→
E c) = 0. (4.14)

If (4.14) holds, the Rotation solutions set of (1.1) can be expressed as

SM =

{
(X,Y)

∣∣∣∣∣ (X̄Ȳ
)

= H3G
†

3vec(
−→
E c) + H3(I4p+4q −G†3G3)y, ∀y ∈ R4p+4q

}
,

in addition, (1.1) has unique Rotation solution (X′M,Y
′
M), if and only if

rank(G3) = 4p + 4q,

and the unique Rotation solution (X′M,Y
′
M) satisfies(
X̄′M
Ȳ ′M

)
= H3G

†

3vec(
−→
E c). (4.15)
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5. Algorithms and numerical experiments

In this section, on the basis of the discussions in Section 4, we propose the algorithms of solving
Problems 1–3, and then give a numerical example to prove the feasibility of the proposed algorithms.

Algorithm 5.1. (Problem 1)
(1) Input A, B, C, D, E ∈ Qn×n, output

−→
BT

c ,
−→
DT

c ,
−→
A ,
−→
C , vec(

−→
E c),

(2) Input J, K, H1
n , H1

−n, output H1, G1,
(3) According to (4.2), calculate the minimal norm least squares solution (XH,YA) of Problem 1.

Algorithm 5.2. (Problem 2)
(1) Input A, B, C, D, E ∈ Qn×n, output

−→
BT

c ,
−→
DT

c ,
−→
A ,
−→
C , vec(

−→
E c),

(2) Input J, K, H2
n , output H2, G2,

(3) According to (4.9), calculate the minimal norm least squares solution (XB,YB) of Problem 2.

Algorithm 5.3. (Problem 3)
(1) Input A, B, C, D, E ∈ Qn×n, output

−→
BT

c ,
−→
DT

c ,
−→
A ,
−→
C , vec(

−→
E c),

(2) Input J, K, H3
n , output H3, G3,

(3) According to (4.13), calculate the minimal norm least squares solution (XM,YM) of Problem 3.

Example 5.1. Consider the quaternion matrix equation AXB + CYD = E, where

A = rand(m, p) + rand(m, p)i + rand(m, p)j + rand(m, p)k,

B = rand(p, n) + rand(p, n)i + rand(p, n)j + rand(p, n)k,

C = rand(m, q) + rand(m, q)i + rand(m, q)j + rand(m, q)k,

D = rand(q, n) + rand(q, n)i + rand(q, n)j + rand(q, n)k.

Denote Xs = Xs
1 + Xs

2i + Xs
3j + Xs

4k, Y s = Y s
1 + Y s

2i + Y s
3j + Y s

4k.
(i) For s = 1. Then

X1 = X1
1 + X1

2 i + X1
3j + X1

4k ∈ HTQp×p,

Y1 = Y1
1 + Y1

2 i + Y1
3 j + Y1

4 k ∈ AHTQq×q.

Let AX1B + CY1D = E.
(ii) For s = 2. Then

X2 = X2
1 + X2

2 i + X2
3j + X2

4k ∈ BQp×p,

Y2 = Y2
1 + Y2

2 i + Y2
3 j + Y2

4 k ∈ BQq×q.

Let AX2B + CY2D = E.
(iii) For s = 3. Then

X3 = X3
1 + X3

2 i + X3
3j + X3

4k ∈ MQp×p,

Y3 = Y3
1 + Y3

2 i + Y3
3 j + Y3

4 k ∈ MQq×q.

Let AX3B + CY3D = E.
In all cases, the quaternion matrix Eq (1.1) have the unique solutions (XH,YA), (XB,YB),

(XM,YM),respectively. Of course, for s ∈ {1, 2, 3}, (Xs,Y s) is also the minimal norm least squares
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solution of the quaternion matrix Eq (1.1) over X ∈ HTQp×p/BQp×p/MQp×p and Y ∈ AHTQq×q/

BQq×q/MQq×q. By Algorithms 5.1–5.3, for s ∈ {1, 2, 3}, we compute (Xs′ ,Y s′). Let m = p = n = q = 2K
and the error ε = log10(

∥∥∥(Xs′ ,Y s′) − (Xs,Y s)
∥∥∥). The relation between K and the error ε is shown in

Figure 1.

Figure 1. The error for Problems 1–3.

According to Figure 1, we obtain that the errors ε are all no more than -9 for s ∈ {1, 2, 3}, which
confirms the difference between the numerical solution and the exact solution is tiny. In other words,
these three figures of Figure 1 are very similar, which is consistent with the actual situation. Therefore,
our proposed algorithms are very feasible.

6. Conclusions

In this paper, by combining the real representation of quaternion matrices with H-representation,
we convert the least squares problem of the quaternion matrix Eq (1.1) into a corresponding problem
of the real matrix equation over free variables. Then we derive the expression of the minimal norm
least squares solution for the quaternion matrix Eq (1.1) over different constrained matrices as in
Problems 1–3. Our resulting expressions are expressed only by real matrices, and the algorithms only
involve real operations. The final example shows that our proposed method is feasible and convenient
to analyze such a matrix problem with special structures.
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