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1. Introduction

In 1959, A. Signorini [1] proposed an interesting contact problem which was well known as
Signorini Problem. Since then, many researchers have carried on the research to this problem and
reformulated as the variational inequality problem (the VI in short) [2]. A key step for the solution of
the VI was introduced by Hartman and Stampacchia [3] in 1966, which produce the VI as an
important tool in studying optimization theory, engineering mechanics, economics and applied
sciences in a unified and general framework (see [4,5]).

Under appropriate conditions, there are two general methods for solving the VI problem: The
projection method and the regularized method. Many projection-type algorithms for solving the VI
problem can be found in [6–11]. The gradient method is the simplest algorithm in which only one
projection on feasible set is performed, but a strongly monotonicity is required to obtain the
convergence of the method. To avoid the hypothesis of the strongly monotonicity, Korpelevich [6]
proposed a decisive algorithm for solving the variational inequalities in Euclidean space, which was
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called the extragradient-type method. In 2011, the subgradient extragradient-type method was
introduced by Censor et al. [7], which for solving variational inequalities in real Hilbert space. Very
recently, Liu [11] proposed an inertial Tseng’s extragradient algorithm for solving pseudomonotone
variational inequalities.

It is natural to consider the algorithm for solving the variational inequalities in the setting of Banach
spaces or Hilbert spaces. Several results were obtained in the case of various iterative algorithms for
finding a common element of the fixed points set and the set of solutions of the variational inequality
problem in Hilbert spaces or Banach spaces (see [12–24]). Especially, the fixed point technique was
introduced by Browder [12] in 1967. Then Liu and Kong [19] provided a algorithm for finding a
common element of fixed points set and variational inequality in Banach space. Recently, Ceng [24]
introduced two subgradient extragradient methods for solving pseudomonotone variational inequalities
and fixed point problems.

Motivated by the works mentioned, in the present paper, we extend subgradient extragradient
algorithm proposed by [22] for solving a common solution of variational inequalities and fixed point
problems in Banach spaces. It is worth stressing that our algorithm has a simple structure and the
convergence of algorithms is not required to know the Lipschitz constant of the mapping.

The paper is organized as follows. In Section 2, we present some preliminaries that will be needed
in the sequel. In Section 3, we propose an algorithm and analyze its convergence. Finally, in Section 4
we present a numerical example and comparison.

2. Mathematical preliminaries

Assume that X is a real Banach space with its dual X∗, ∥ · ∥ and ∥ · ∥∗ denote the norms of X
and X∗, respectively, ⟨x∗, x⟩ is the duality coupling in X∗ × X, and xn −→ x (xn ⇀ x) is called a
sequence {xn} convergence to x strongly (weakly). Let C be a nonempty closed convex subset of X,
and F : C −→ X∗ be a continuous mapping. Consider with the following variational inequality (for
short, VI(F,C)) which consists in finding a point x ∈ C such that

⟨F(x), y − x⟩ ≥ 0, ∀y ∈ C. (2.1)

Let S be the solution set of (2.1).
Definition 2.1. A mapping F : C −→ X∗ is said as follows:

(A1) Monotone, if ⟨F(x) − F(y), x − y⟩ ≥ 0, ∀x, y ∈ C;
(A2) Pseudomonotone, if ⟨F(y), x − y⟩ ≥ 0⇒ ⟨F(x), x − y⟩ ≥ 0, ∀x, y ∈ C;
(A3) Lipschitz-continuous with constant L > 0, if there exists L > 0 such that ∥ F(x) − F(y) ∥≤ L ∥
x − y ∥, ∀x, y ∈ C.

Recall that a point x ∈ C is called fixed point of an operator T : C → C, if T x = x. We shall denote
the set of fixed points of T by F(T ). It is well known that in a real Hilbert space, x is the solution of
the VI(F,C) if and only if x is the solution of the fixed point equation x = PC(x − λF(x)), where λ is
an arbitrary positive constant. Therefore, fixed point algorithms can be used to solve VI(F,C). The
mapping T : C → C is called nonexpansive, if,

∥ T (x) − T (y) ∥≤∥ x − y ∥, ∀x, y ∈ C.
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The normalized duality mapping JX (usually write by J) of X into 2X∗ is defined by

J(x) = {x∗ ∈ X∗|⟨x, x∗⟩ =∥ x∗ ∥2=∥ x ∥2}

for all x ∈ X. Let q ∈ (0, 2]. The generalized duality mapping Jq : X → 2X∗ is defined (the definitions
and properties, see [15]) by

Jq(x) = { jq(x) ∈ X∗|⟨ jq(x), x⟩ =∥ x ∥∥ jq(x) ∥, ∥ jq(x) ∥=∥ x ∥q−1}

for all x ∈ X. More details, can be found in [25].
Let U = {x ∈ X : ∥x∥ = 1}, and the norm of X is called Gâteaux differentiable if for each x, y ∈ U,

the limit
lim
t→0

∥ x + ty ∥ − ∥ x ∥
t

(2.2)

exists. In this case, the space X is also called smooth. It is well known that if X is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection, and furthermore, there exists
inverse mapping J−1 which coincides with the duality mapping J∗ on X∗. X is said to be uniformly
smooth if (2.2) converges uniformly for x, y ∈ U. It is strictly convex if ∥ x+y

2 ∥< 1 for all x, y ∈ U and
x , y. The modulus δX of convexity is defined by

δX(ε) = in f {1− ∥
x + y

2
∥ |x, y ∈ BX, ∥ x − y ∥≥ ε},

for all ε ∈ [0, 2], where BX is the closed unit ball of X. A Banach space X is called uniformly convex if
δX(ε) > 0. A Banach space X is uniformly convex iff for any two sequences {xn}, {yn} ∈ X,

lim
n→∞
∥xn∥ = lim

n→∞
∥yn∥ = 1 and lim

n→∞
∥xn + yn∥ = 2, lim

n→∞
∥xn − yn∥ = 0

hold. Moreover, X is called 2-uniformly convex if there exists c > 0 such that for all ε ∈ [0, 2],
δX(ε) > cε2. Obviously, every 2-uniformly convex Banach space is uniformly convex.

Alber [25] introduces a functional V(x∗, y) : X∗ × X −→ R by

V(x∗, y) =∥ x∗ ∥2∗ −2⟨x∗, y⟩+ ∥ y ∥2 . (2.3)

The operator PC : X∗ −→ C ⊆ X is called the generalized projection operator if it associates to an
arbitrary fixed point x∗ ∈ X∗, where x∗ is the solution to the minimization problem

V(x∗, x̃∗) = inf
y∈C

V(x∗, y),

and x̃∗ = PC x∗ ∈ C ⊂ X is called a generalized projection of the point x∗. For more results about PC

refer to [25]. The next lemma can describe the properties of PC.
Lemma 2.1. [25] Let C be a nonempty closed convex set in X and x∗, y∗ ∈ X∗, x̃∗ = PC x∗ . Then

(1) ⟨Jx̃∗ − x∗, y − x̃∗⟩ ≥ 0, ∀y ∈ C;
(2) V(Jx̃∗, y) ≤ V(x∗, y) − V(x∗, x̃∗), ∀y ∈ C;
(3) V(x∗, z) + 2⟨y∗, J−1x∗ − z⟩ ≤ V(x∗ + y∗, z),∀z ∈ X.

By the definition of V , it is easy to check the following lemma.
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Lemma 2.2. For any x, y, z ∈ X and α ∈ (0, 1),
(1) (∥ x ∥ − ∥ y ∥)2 ≤ V(Jx, y) ≤ (∥ x ∥ + ∥ y ∥)2;
(2) V(αJx + (1 − α)Jy, z) ≤ αV(Jx, z) + (1 − α)V(Jy, z);
(3) V(Jx, z) = V(Jx, y) + V(Jy, z) + 2⟨Jz − Jy, y − x⟩;
(4) V(Jx, y) ≤∥ x ∥∥ Jx − Jy ∥ + ∥ y ∥∥ x − y ∥ .

In [26], they prove following lemma.
Lemma 2.3. [26] Let X be a real 2-uniformly convex Banach space. Then, there exists µ ≥ 1 such

that for all x, y ∈ X,
1
τ
∥x − y∥2 ≤ φ(x, y).

The minimum value of the set of all τ is denoted by τX(also write by τ) and is called the 2-uniform
convexity constant of X.

The following Lemma which will be useful to our subsequent convergence analysis.
Lemma 2.4. [27] Let {an} be a sequence of real numbers that does not decrease at infinity in the

sense that there exists a subsequence {an j} of {an} which satisfies an j < an j+1 for all j ∈ N. Define the
sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : ak < ak+1},

where n0 ∈ N such that {k ≤ n0 : ak < ak+1} is nonempty. Then the following hold:
(1) τ(n) ≤ τ(n + 1) < · · · , and τ(n) −→ ∞;
(2) aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1.

3. Main results

In this section, we introduce a new subgradient extragradient algorithm for solving pseudomonotone
variational inequality and fixed point problems in Banach spaces. At first, let’s make the following
assumptions.

Assumption 3.1:
(a) X is a real 2-uniformly convex Banach space and C is its nonempty closed convex subset.
(b) F : X → X∗ is pseudomonotone on C, L-Lipschitz continuous on X, and T is a nonexpansive

mapping of C into itself such that S
⋂

F(T ) , ∅.
(c) The mapping F is sequentially weakly continuous, i.e., for each sequence {xn} ∈ C: if xn ⇀ x,

then F(xn)⇀ F(x).

Our algorithm has the following forms:
Algorithm 3.1:
(Step 0) Take λ0 > 0, x0 ∈ X, µ ∈ (0, 1). Choose a nonnegative real sequence {θn} such that∑∞

n=0 θn < ∞.

(Step 1) Given the current iterate xn, compute

yn = PC(Jxn − λnF(xn)).

If xn = yn, and T xn = xn, then stop: xn is a solution. Otherwise,
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(Step 2) Construct Tn = {x ∈ X|⟨Jxn − λnF(xn) − Jyn, x − yn⟩ ≤ 0} and compute

zn = PTn(Jxn − λnF(yn)), tn = J−1(αnJx0 + (1 − αn)Jzn),

xn+1 = J−1(βnJzn + (1 − βn)J(Ttn)).

(Step 3) Compute

λn+1 =

min{µ(∥xn−yn∥
2+∥zn−yn∥

2)
2⟨F(xn)−F(yn),zn−yn⟩

, λn + θn}, i f ⟨F(xn) − F(yn), zn − yn⟩ > 0,

λn + θn, otherwise.

Set n := n + 1 and return to step 1.

We prove the strong convergence theorem for Algorithm 3.1. Firstly, we give the following lemma,
which plays a crucial role in the proof of the main theorem.

Lemma 3.1. Assume that xn, yn, λn are the sequences generated by Algorithm 3.1 and
Assumption 3.1 holds, then
(1) If xn = yn and T xn = xn, for some n ∈ N, then xn ∈ S

⋂
F(T );

(2) lim
n→∞
λn = λ ∈ [min{ µL , λ0}, λ0 + θ], where θ =

∑∞
n=0 θn.

Proof. (1) If xn = yn, by Algorithm 3.1, we have xn = PC(Jxn − λnF(xn)), and thus xn ∈ C. By the
definition of PC, we have

⟨Jxn − λnF(xn) − Jxn, xn − x⟩ ≥ 0 ∀x ∈ C.

Therefore,
⟨−λnF(xn), xn − x⟩ = λn⟨F(xn), x − xn⟩ ≥ 0 ∀x ∈ C.

Since λn > 0, we have xn ∈ S . Combining T xn = xn, we obtain xn ∈ S
⋂

F(T ).
(2) Since F is a Lipschitz-continuous mapping with positive constant L, in the case of ⟨F(xn) −

F(yn), zn − yn⟩ > 0, we get

µ(∥xn − yn∥
2 + ∥zn − yn∥

2)
2⟨F(xn) − F(yn), zn − yn⟩

≥
2µ∥xn − yn∥∥zn − yn∥

2∥F(xn) − F(yn)∥∥zn − yn∥
≥
µ∥xn − yn∥

L∥xn − yn∥
=
µ

L
.

Thus, {λn} has the upper bound λ0 + θ, and lower bound min{ µL , λ0}. Similar to the proof of Lemma 3.1
in [21], we have that

lim
n→∞
λn = λ ∈ [min{

µ

L
, λ0}, λ0 + θ].

The proof is complete. □

Theorem 3.1. Assume that Assumption 3.1 holds, the sequence {αn} satisfies {αn} ⊂ (0, 1),∑∞
n=0 αn = ∞, lim

n→∞
αn = 0 and βn ∈ (0, 1). Let {xn} be a sequence generated by Algorithm 3.1. Then

{xn} strongly converges to a solution x∗ = PS
⋂

F(T )Jx0.
Proof. We divide the proof into two steps.
Step 1. The sequences {xn}, {yn}, {zn}, and {tn} generated by Algorithm 3.1 are bounded.
To observe this, take u ∈ S

⋂
F(T ). Noting that yn ∈ C, we have ⟨F(u), yn − u⟩ ≥ 0, for all n ∈ N.

Since F is pseudomonotone, we have ⟨F(yn), yn − u⟩ ≥ 0, ∀n ∈ N. Then,

0 ≤ ⟨F(yn), yn − u + zn − zn⟩ = ⟨F(yn), yn − zn⟩ − ⟨F(yn), u − zn⟩.
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This implies that
⟨F(yn), yn − zn⟩ ≥ ⟨F(yn), u − zn⟩, ∀n ∈ N. (3.1)

By the definition of Tn, we know ⟨Jxn − λnF(xn) − Jyn, zn − yn⟩ ≤ 0. Then

⟨Jxn − λnF(yn) − Jyn, zn − yn⟩

= ⟨Jxn − λnF(xn) − Jyn, zn − yn⟩ + λn⟨F(xn) − F(yn), zn − yn⟩

≤ λn⟨F(xn) − F(yn), zn − yn⟩. (3.2)

By Lemma 2.1(2), the definition of λn+1 and combining (3.1), (3.2), we obtain

V(Jzn, u) = V(JPTn(Jxn − λnF(yn)), u)
≤ V(Jxn − λnF(yn), u) − V(Jxn − λnF(yn), zn)
= ∥Jxn − λnF(yn)∥2 − 2⟨Jxn − λnF(yn), u⟩ + ∥u∥2

− ∥Jxn − λnF(yn)∥2 + 2⟨Jxn − λnF(yn), zn⟩ − ∥zn∥
2

= −2⟨Jxn, u⟩ + 2λn⟨F(yn), u − zn⟩ + 2⟨Jxn, zn⟩ + ∥u∥2 − ∥zn∥
2

= V(Jxn, u) − V(Jxn, zn) + 2λn⟨F(yn), u − zn⟩

≤ V(Jxn, u) − V(Jxn, zn) + 2λn⟨F(yn), yn − zn⟩

= V(Jxn, u) − V(Jxn, yn) − V(Jyn, zn) + 2⟨Jxn − λnF(yn) − Jyn, zn − yn⟩

≤ V(Jxn, u) − V(Jxn, yn) − V(Jyn, zn) + 2λn⟨F(xn) − F(yn), zn − yn⟩

≤ V(Jxn, u) − V(Jxn, yn) − V(Jyn, zn) + λn
µ

λn+1
(∥xn − yn∥

2 + ∥zn − yn∥
2). (3.3)

From Lemma 3.1(2), we obtain lim
n→∞
λn

µ

λn+1
= µ(0 < µ < 1). It means that there exists a positive

integer number N0, such that for all n > N0, 0 < λn
µ

λn+1
< 1. Combining Lemma 2.3 and (3.3), we know

that there exits a 2-uniformly convex constant τ, such that when n > N0,

V(Jzn, u) ≤ V(Jxn, u) − V(Jxn, yn) − V(Jyn, zn) + λn
µ

λn+1
(∥xn − yn∥

2 + ∥zn − yn∥
2)

≤ V(Jxn, u) − (1 − µτ)(V(Jxn, yn) + V(Jyn, zn))
≤ V(Jxn, u).

Then, by Lemma 2.2(2) and the definition of xn+1, we obtain for every n > N0,

V(Jxn+1, u) = V(βnJzn + (1 − βn)J(Ttn), u)
= ∥βnJzn + (1 − βn)J(Ttn)∥2 − 2⟨βnJzn + (1 − βn)J(Ttn), u⟩ + ∥u∥2

≤ βn∥Jzn∥
2 − 2βn⟨Jzn, u⟩ + βn∥u∥2

+(1 − βn)∥J(Ttn)∥2 − 2(1 − βn)⟨J(Ttn), u⟩ + (1 − βn)∥u∥2

= βnV(Jzn, u) + (1 − βn)V(J(Ttn), u)
≤ βnV(Jzn, u) + (1 − βn)V(Jtn, u)
= βnV(Jzn, u) + (1 − βn)V(αnJx0 + (1 − αn)Jzn, u)
≤ βnV(Jzn, u) + (1 − βn)(αnV(Jx0, u) + (1 − αn)V(Jzn, u))
= (βn + (1 − βn)(1 − αn))V(Jzn, u) + (1 − βn)αnV(Jx0, u)
≤ (βn + (1 − βn)(1 − αn))V(Jxn, u) + (1 − βn)αnV(Jx0, u)
= (1 − (1 − βn)αn)V(Jxn, u) + (1 − βn)αnV(Jx0, u)
≤ max{V(Jx0, u),V(Jxn, u)}
≤ · · · ≤ max{V(Jx0, u),V(JxN0 , u)}.
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Thus, {V(Jxn, u)} is bounded. Combining V(Jxn, u) ≥ 1
τ
∥xn − u∥2, we get {xn} is bounded.

Furthermore, from (3.3), we have the fact that {yn}, {zn}, and {tn} are bounded.
Step 2. {xn} strongly converges to a point x∗ = PS

⋂
F(T )Jx0.

Let x∗ = PS
⋂

F(T )Jx0. From Lemma 2.1(1), we can obtain

⟨Jx0 − Jx∗, z − x∗⟩ ≤ 0, ∀z ∈ S
⋂

F(T ).

From Step 1, we know that there exists ∃N0 ≥ 0, such that ∀n ≥ N0, V(Jzn, x∗) ≤ V(Jxn, x∗), and
the sequences {xn}, {yn} {zn} and {tn} are bounded. Moreover, by Lemma 2.1(3) and Lemma 2.2, exists
N0 ≥ 0, such that for every n ≥ N0,

V(Jxn+1, x∗) = V(βnJzn + (1 − βn)J(Ttn), x∗)
≤ βnV(Jzn, x∗) + (1 − βn)V(J(Ttn), x∗)
≤ βnV(Jzn, x∗) + (1 − βn)V(αnJx0 + (1 − αn)Jzn, x∗)
≤ βnV(Jzn, x∗) + (1 − βn)(2αn⟨Jx0 − Jx∗, tn − x∗⟩ + (1 − αn)V(Jzn, x∗))
= (βn + (1 − βn)(1 − αn))V(Jzn, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩. (3.4)

By (3.3), (3.4) and Lemma 2.3, Lemma 3.1(2), we can obtain that for every n ≥ N0,

V(Jxn+1, x∗) ≤ (βn + (1 − βn)(1 − αn))V(Jzn, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩

≤ (βn + (1 − βn)(1 − αn))(V(Jxn, x∗) − (1 − λn
µ

λn+1
)(V(Jxn, yn) + V(Jyn, zn)))

+ 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩

≤ V(Jxn, x∗) − (1 − µτ)(V(Jxn, yn) + V(Jyn, zn)) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩. (3.5)

Two cases arise:
Case 1. From the result of Lemma 2.5 in [28], set an = φ(xn, x∗) = V(Jxn, x∗). By the proof of

Step 1, there exists N1 ∈ N(N1 ≥ N0), such that {φ(xn, x∗)}∞n=N1
is nonincreasing sequence. Then {an}

∞
n=1

converges. By using this in (3.5), when n > N1 ≥ N0, we have

(1 − µτ)(V(Jxn, yn) + φ(yn, zn)) ≤ V(Jxn, x∗) − V(Jxn+1, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩.

By V(Jx0 − Jxn, x∗) is bounded and {an}
∞
n=1 converges, we have that when n −→ ∞,

V(Jxn, x∗) − V(Jxn+1, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩ −→ 0.

Combining φ(xn, yn) ≥ 0 and 0 < µ, αn < 1, we have that when n −→ ∞,

∥xn − yn∥
2 −→ 0 and ∥yn − zn∥

2 −→ 0. (3.6)

Thus, when n −→ ∞,
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∥Jxn+1 − Jzn∥ = ∥βnJzn + (1 − βn)J(Ttn) − Jzn∥

= (1 − βn)∥J(Ttn) − Jzn∥ = (1 − βn)(∥J(Ttn) − Jtn∥∥Jtn − Jzn∥

≤ (1 − βn)∥Jtn − Jzn∥ = (1 − βn)αn∥Jx0 − Jzn∥ ≤ (1 − βn)αnM1 −→ 0, (3.7)

for some M1 > 0. By (3.7), we also can see that ∥J(Ttn) − Jzn∥ −→ 0, ∥Jtn − Jzn∥ −→ 0. From
∥J(Ttn) − Jtn∥ ≤ ∥J(Ttn) − Jzn∥ + ∥J(zn) − Jtn∥, we have ∥J(Ttn) − Jtn∥ −→ 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subset of X∗, we have ∥xn+1 −

zn∥ −→ 0. Therefore, we get that when n −→ ∞,

∥Ttn − tn∥ −→ 0. (3.8)

Thus, when n −→ ∞,

∥xn+1 − xn∥ ≤ ∥xn+1 − zn∥ + ∥zn − yn∥ + ∥yn − xn∥ −→ 0,

and
∥xn − tn∥ ≤ ∥xn − xn+1∥ + ∥xn+1 − zn∥ + ∥zn − tn∥ −→ 0. (3.9)

Since {xn} is bounded, then there exists a subsequence {xnk} that converges weakly to some z0 ∈ X,
such that xnk ⇀ z0. By (3.9), we also have {tnk} converges weakly to z0. It follows from (3.8) and the
definition of the nonexpansive mapping T that z0 ∈ F(T ).

Now, we show that z0 ∈ S .
Since {xnk} converges weakly to z0, we have

lim sup
n→∞

⟨Jx0 − Jx∗, xn − x∗⟩ = lim
k→∞
⟨Jx0 − Jx∗, xnk − x∗⟩ = ⟨Jx0 − Jx∗, z0 − x∗⟩. (3.10)

Since ∥xn − yn∥
2 −→ 0, we know that ynk ⇀ z0 and z0 ∈ C. Since ynk = PC(xnk − λnk F(xnk)), by

Lemma 2.1(1), we have that for all z ∈ C, ⟨Jxnk − λnk F(xnk) − Jynk , z − ynk⟩ ≤ 0. This implies that

⟨Jxnk − Jynk , z − ynk⟩ ≤ λnk⟨F(xnk), z − ynk⟩.

Therefore, we have that for all z ∈ C,

1
λnk

⟨Jxnk − Jynk , z − ynk⟩ + ⟨F(xnk), ynk − xnk⟩ ≤ ⟨F(xnk), z − xnk⟩.

Fixing z ∈ C, according to (3.6), and considering that {xnk} is bounded, we can obtain

lim inf
k→∞

⟨F(xnk), z − xnk⟩ ≥ 0.

Choose a decreasing nonnegative sequence {εk}, such that limk→∞ εk = 0. By definition of the lower
limit, for each εk, there exists a smallest positive integer Mk such that for all k ≥ Mk,

⟨F(xnk), z − xnk⟩ + εk ≥ 0. (3.11)
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Clearly, as {εk} is decreasing, {Mk} is increasing.
If there exists a subsequence {xnki

} of {xnk}, such that for every i, F(xnki
) = 0, then

⟨F(z0, z − z0⟩ = lim
i→∞
⟨F(xnki

), z − xnki
⟩ = 0.

It means z0 ∈ S .
If there exists a positive integer N2 ∈ N such that for all positive integer nki ≥ N2, F(xnki

) , 0. Let
unki
= F(xnki

)/∥F(xnki
)∥2. Then for each positive integer nki ≥ N2, ⟨F(xnki

), unki
⟩ = 1. Thus, from (3.11),

we have that for all positive integer nki ≥ N2,

⟨F(xnki
), z + εkunki

− xnki
⟩ ≥ 0. (3.12)

Since F is pseudomonotone, then we have from (3.12) that ⟨F(z+ εkunki
), z+ εkunki

− xnki
⟩ ≥ 0. This

implies that

⟨F(z), z − xnki
⟩ ≥ ⟨F(z) − F(z + εkunki

), z + εkunki
− xnki

⟩ − εk⟨F(z), unki
⟩. (3.13)

Since {xnk} converges weakly to z0 ∈ C, and F is sequentially weakly continuous on C, we get
F(xnk) converges weakly to F(z0). If F(z0) = 0, then z0 ∈ S . Now, assume that F(z0) , 0. Combining
∥F(z0)∥ ≤ lim inf

k→∞
∥F(xnk)∥ and limk→∞ εk = 0, we get that the right-hand of (3.13) tends to zero. Thus,

we obtain that for all z ∈ C,

⟨F(z), z − z0⟩ = lim
k→∞
⟨F(z), z − xnki

⟩ ≥ 0.

By the result of Lemma 3.1 in [29], we also have z0 ∈ S . combine Lemma 2.1(1) and (3.10), we can
obtain,

lim sup
n→∞

⟨Jx0 − Jx∗, xn − x∗⟩ ≤ 0.

By Lemma 2.1(3) and (3.6), we have that for all positive integer n > max{N1,N2},

V(Jxn+1, x∗) ≤ (βn + (1 − βn)(1 − αn))V(Jxn, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩
= (1 − (1 − βn)αn)V(Jxn, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩.

It follows from the result of [14, Lemma 3.3] and [28, Lemma 2.5], we obtain lim
n→∞
φ(xn, x∗) = 0,

that means
lim
n→∞

xn = x∗.

Case 2. Assume that there exists a subsequence {xm j} of {xn} such that for all j ∈ N, φ(xm j , x
∗) <

φ(xm j+1, x∗). Then, from Lemma 2.4, we know that there exists a nondecreasing sequence mk ∈ N such
that lim

k→∞
mk = ∞ and for every k ∈ N:

φ(xmk , x
∗) < φ(xmk+1, x∗) and φ(xk, x∗) < φ(xmk+1, x∗). (3.14)

By (3.5) and Lemma 3.1(2), we have
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(1 − µτ)(φ(xmk , ymk) + φ(ymk , zmk))
≤ V(Jxmk , x

∗) − V(Jxmk+1, x∗) + 2(1 − βn)αn⟨Jx0 − Jx∗, tn − x∗⟩. (3.15)

Since {xn} is bounded, then exists a subsequence {xmk} of {xn} which converges weakly to z0 ∈ X.
Use the same argument as shown in Case 1, and Combining (3.15) we obtain

lim
k→∞
∥xmk − ymk∥ = 0, lim

k→∞
∥zmk − ymk∥ = 0, lim

k→∞
∥xmk+1 − xmk∥ = 0.

Similarly we can obtain

lim sup
k→∞

⟨Jx0 − Jx∗, tmk+1 − x∗⟩ = lim sup
k→∞

⟨Jx0 − Jx∗, tmk − x∗⟩ ≤ 0.

It follows from (3.15) and the proof of case 1, for all mk ≥ N0, we have

φ(xmk+1, x∗) ≤ (1 − αmk(1 − βmk))φ(xmk , x
∗) + 2(1 − βmk)αmk⟨Jx0 − Jx∗, tmk − x∗⟩

≤ (1 − αmk(1 − βmk))φ(xmk+1, x∗) + 2(1 − βmk)αmk⟨Jx0 − Jx∗, tmk − x∗⟩.

Since 0 < αn, βn < 1, this implies that ∀ mk ≥ N1, we have

φ(xmk , x
∗) ≤ φ(xmk+1, x∗) ≤ 2⟨Jx0 − Jx∗, tmk − x∗⟩.

And then
lim sup

k→∞
φ(xmk , x

∗) ≤ lim sup
k→∞

2⟨Jx0 − Jx∗, xmk+1 − x∗⟩ ≤ 0,

we obtain lim sup
k→∞

φ(xmk , x
∗) = 0, that means lim

k→∞
∥xmk − x∗∥2 = 0. Since ∥xk − x∗∥ ≤ ∥xmk+1 − x∗∥, we

have lim
k→∞
∥xk − x∗∥ = 0. Therefore xk → x∗. The proof is complete. □

4. Numerical experiments

In this section, we give a numerical experiment to demonstrate the convergence and efficiency of
the proposed algorithm. We will compare Algorithm 3.1 with a strongly convergent algorithms as
HSEGM proposed in [30, Theorem 4.2].

Example 4.1 Let H = L2([0, 1]). We apply our problem in H with norm ∥x∥ = (
∫ 1

0
|x(t)|2dt)

1
2 and

inner product ⟨x, y⟩ =
∫ 1

0
x(t)y(t)dt, x, y ∈ H. The operator F : H → H is of form

Fx(t) = max(0, x(t)), t ∈ [0, 1],

for all x ∈ H. Clearly, F is Lipschitz-continuous and monotone (so is also pseudomonotone). The
feasible set is C = {x ∈ H : ∥x∥ ≤ 1}. Observe that 0 ∈ S and so S , ∅. Let T : H → H is defined by

T x(t) =
∫ 1

0
tx(s)ds, t ∈ [0, 1].
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Clearly, 0 ∈ F(T ) and so F(T ) , ∅. Since

|T x(t) − Ty(t)|2 = |
∫ 1

0
t(x(s) − y(s))ds|2 ≤

∫ 1

0
|(x(s) − y(s))|2ds = ∥x − y∥2.

This means that T is nonexpansive and therefore

∥T x − Ty∥2 =
∫ 1

0
|T x(t) − Ty(t))|2dt ≤ ∥x − y∥2.

Hence, the solution of the problem is x∗ = 0. To terminate the algorithms, we use the condition
∥xn − x∗∥ ≤ ε and ε = 10−3 for all the algorithms. We take αn =

1
100n , βn =

1
2n+1 , θn = 0, λ0 = 0.7 and

µ = 0.9 for Algorithm 3.1. For Theorem 4.2 in [30], we take αn =
1

100n , βn =
1

2n+1 and τ = 0.7. The
numerical results are showed in Table 1 and Figure 1.

Table 1. Comparison between the Algorithm 3.1 and Theorem 4.2 in [30].

x0 Algorithm A Theorem 4.2 in [30]
iter. time iter. time

case 1 1
4 t2e−4t 4 8.58 4 8.27

case 2 1
120 (1 − t2) 4 8.34 4 8.06

case 3 1
100 sin(t) 4 8.34 4 8.14
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Figure 1. Comparison between the Algorithm 3.1 and Theorem 4.2 in [30] with case 2.

Remark 4.1. Observing from the numerical results of the example presented above, the conclusion
that our algorithm is consistent, stable, effective and easy to implement is obtained. This example
shows that Algorithm 3.1 converges slightly slower than that of Theorem 4.2 in [30], but it has some
advantages. First, it is done without any information of the Lipschitz constant of the cost operator F.
Second, the step size is variable in Algorithm 3.1. Third, it can be applied to solve fixed point problem
for non-expansive mappings in a real 2-uniformly convex Banach space, and furthermore, it is more
useful in the infinite-dimensional spaces.

5. Conclusions

In this paper, we consider a strong convergence result for solving a common solution of
pseudomonotone Variational Inequalities and fixed point problems in convex Banach spaces. Our
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algorithm is based on the subgradient extragradient methods with a new step size, the convergence of
algorithm is established without the knowledge of the Lipschitz constant of the mapping. Finally,
some numerical experiments are given to illustrate the convergence of our algorithms and compared
with other known methods.
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