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Abstract: Delay differential equations (DDEs) are used to model some realistic systems as they 
provide some information about the past state of the systems in addition to the current state. These 
DDEs are used to analyze the long-time behavior of the system at both present and past state of such 
systems. Due to the oscillatory nature of DDEs their explicit solution is not possible and therefore one 
need to use some numerical approaches. In this article, we developed a higher-order numerical scheme 
for the approximate solution of higher-order functional differential equations of pantograph type with 
vanishing proportional delays. Some linear and functional transformations are used to change the given 
interval 0, T   into standard interval 1, 1   in order to fully use the properties of orthogonal 
polynomials. It is assumed that the solution of the equation is smooth on the entire domain of interval 
of integration. The proposed scheme is employed to the equivalent integrated form of the given 
equation. A Legendre spectral collocation method relative to Gauss-Legendre quadrature formula is 
used to evaluate the integral term efficiently. A detail theoretical convergence analysis in L  norm is 
provided. Several numerical experiments were performed to confirm the theoretical results. 

Keywords: Long time behavior; delay differential equations; Legendre quadrature formula; 
convergence analysis; numerical examples 
Mathematics Subject Classification: 65M70, 34K28  
 

 



4947 

AIMS Mathematics  Volume 7, Issue 4, 4946–4959. 

1. Introduction 

In nature there are so many physical phenomena where the state of the system not only depends 
on the current state but also depends on the history of the function. In this case it is more natural to 
model such type of phenomena using the delay differential equations (DDEs), where the state of the 
function depends on the current state as well as on the history of the function. Among the many 
available delay differential system, pantograph type delay differential equation is more commonly used 
in mathematical modeling of chemical and pharmaceutical kinetics, control problems and ships aircraft 
where they are used in navigational control electronic systems. It is called pantograph type equation 
because it was first used to investigate that how an electric current is obtained by the electric 
locomotive of a pantograph. Consider the kth-order functional differential equation of pantograph type 
of the form: 

𝑦 𝑥 ∑ λ 𝑥 𝑦 𝑥 ∑ 𝜇 𝑥 𝑦 𝛼 𝑥 𝑔 𝑥 , 𝑥 ∈  0, 𝑇    (1) 

subject to  

𝑦 0 𝑦 , 𝑚 0, 1, . . . , 𝑘 1 .     (2) 

For 𝑘 2, spectral method will be based on the integrated form of given equation. The functions 
λ 𝑥   and 𝜇 𝑥   are given analytical functions on 𝐼 ∶ 0, 𝑇   and 𝛼  ∈ 0, 1 , 𝑙  0, 1  is a fixed 
constant known as proportional delay. For simplicity, we employed and analyzed spectral method for 
the second order functional differential equation, that is 𝑘 2. Eq (1) will take the form: 

𝑦′′ 𝑥 ∑ 𝜆 𝑥 𝑦 𝑥 ∑ 𝜇 𝑥 𝑦 𝛼 𝑥 𝑔 𝑥 , 𝑥 ∈  0, 𝑇    (3) 

subject to 

𝑦 0 𝑦 , 𝑦 0 𝑦 .        (4) 

Equation (3) plays an important role in modeling of many physical phenomena like, for example in 
electrodynamics and in nonlinear dynamical systems. In practice it is arises in the problems when 
λ 𝑥  and 𝜇 𝑥   are real constant and 𝛼  𝑥   is real valued function. The case λ 𝑥 0,  is also 
important in the number theory in the context of partitioning [12, 14]. Numerical solution of first order 
pantograph type delay differential equation has been studied extensively in numerous papers such as 
[1–5, 9–15, 17–28]. A spectral collocation method is applied to integro-delay differential equation with 
proportional delay in [6, 29, 30]. A comprehensive list of references for the solution of DDEs can be 
found in [16]. A very limited work is available regarding the approximate solution of higher-order 
pantograph equation, especially using the higher-order schemes. To this end, we will use spectral 
discretization based on Legendre spectral collocation method to solve Eq (3) subject to Eq (4) 
numerically in order to get an accurate solution for a very few numbers of collocation points, as spectral 
methods are well known for their exponential rate of convergence. 

The rest of the paper is organized as follows. In Section 2, we discuss the spectral method for the 
approximate solution of Eq (3). Section 3 includes some useful lemmas and convergence analysis of 
our proposed scheme in 𝐿  norm. In Section 4, we perform some numerical test to confirm the spectral 
accuracy and Section 5 consist of conclusion. 
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2. Spectral collocation method 

In order to fully use the properties of orthogonal polynomials for ease of convergence analysis, 
spectral methods will be employed on the standard interval 1, 1  . For this reason, we use the 
following transformation 

𝑥
𝑇
2

1 𝑡 , 𝑡
2𝑥
𝑇

1. 

Using this transformation, Eqs (3) and (4) will take the form: 

𝑢 𝑡 ∑ A 𝑡 𝑢 𝑡 ∑ 𝐵 𝑡 𝑢 𝛼 𝑡 𝛼 1 𝐺 𝑡 , 𝑡 ∈  1, 1   (5) 

subject to  

𝑢 1 𝑦 , 𝑢 1 𝑦 .        (6) 

Where  

𝑢 𝑡 𝑦
𝑇
2

1 𝑡 , 𝐺 𝑡
𝑇
2

𝑔
𝑇
2

1 𝑡 , 

𝐴
𝑇
2

λ
𝑇
2

1 𝑡 , 𝐴
𝑇
2

λ
𝑇
2

1 𝑡 , 

𝐵
𝑇
2

𝜇
𝑇
2

1 𝑡 , 𝐵
𝑇
2

𝜇
𝑇
2

1 𝑡 , 

with 

𝑢 1 𝑢 , 𝑢′ 1 𝑢 , 

where 𝑢 𝑦 , 𝑢 𝑦 . 

For any given positive integer 𝑁,  we denote the collocation points by 𝑡   , which is the set of 

𝑁 1 ,  Legendre Gauss points corresponding to weights 𝜔  . Let 𝑃   denote the space of all 
polynomials of degree not exceeding𝑁 . For any𝑣 ∈ 𝐶 1, 1  , we define the Lagrange interpolating 
polynomial 

𝐼 𝑣 𝑡 ∑  𝑣 𝑡 𝐹 𝑡 ,       (7) 

where 𝐹 𝑡  is the Lagrange interpolation polynomial associated with the Legendre collocation 

points 𝑡 . Spectral method will be employed to the integrated form. For this reason, integrate Eq (5), 

and using 𝑢 𝑦 , 𝑢 𝑦 , we get, 

𝑢′ 𝑡 𝑢 ∑  A 𝑠 𝑢 𝑠 𝑑𝑠 ∑  𝐵 𝑠 𝑢 𝛼 𝑠 𝛼 1 𝑑𝑠 𝐺 𝑠 𝑑𝑠, (8) 

𝑢 𝑡 𝑢 𝑢′ 𝑠 𝑑𝑠.        (9) 

We assume that Eqs (8) and (9) holds at collocation points 𝑡 , to get 
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𝑢 𝑡 𝑢 ∑  A 𝑠 𝑢 𝑠 𝑑𝑠 ∑  𝐵 𝑠 𝑢 𝛼 𝑠 𝛼 1 𝑑𝑠 𝐺 𝑠 𝑑𝑠, 
 (10) 

𝑢 𝑡 𝑢 𝑢′ 𝑠 𝑑𝑠, 𝑡 ∈ 1, 1        (11) 

for 0 𝑗 𝑁. In order to compute all these integral terms efficiently for the higher-order accuracy, 
we transform the interval of integral from 1, 𝑡  to 1, 1  , as we have a very little information 
available for both 𝑢 𝑠  and 𝑢 𝑠 , we get 

𝑢 𝑡 𝑢 ∑   A 𝑠 𝑡 , 𝜑 𝑢 𝑠 𝑡 , 𝜑 𝑑𝜑

∑   𝐵 𝑠 𝑡 , 𝜑 𝑢 𝛼 𝑠 𝑡 , 𝜑 𝛼 1 𝑑𝜑 𝐺 𝑠 𝑡 , 𝜑 𝑑𝜑 ,   (12) 

𝑢 𝑡 𝑢 𝑢 𝑠 𝑡 , 𝜑 𝑑𝜑,  𝑡 ∈ 1, 1     (13) 

where, we use 𝑠 𝜑 𝑠 𝑡 , 𝜑 . 

Now using the 𝑁 1  Gauss quadrature rule relative to the Legendre weight to approximate the 
integral term, we get 

𝑢 𝑢
𝑡 1

2
 A 𝑠 𝑡 , 𝜑 𝑢 𝑠 𝑡 , 𝜑 𝜔  

𝑡 1
2

 𝐵 𝑠 𝑡 , 𝜑 𝑢 𝛼 𝑠 𝑡 , 𝜑 𝛼 1 𝜔  

∑ 𝐺 𝑠 𝑡 , 𝜑 𝜔 ,            (14) 

𝑢 𝑢 ∑ 𝑢 𝑠 𝑡 , 𝜑 𝜔 .         (15) 

Let  𝑢   𝑢′ 𝑡 , 𝑢 𝑢 𝑡  , 0 𝑗 𝑁.  The set 𝜑   coincide with the collocation points 

𝑡 .  

We expand 𝑢 , 𝑢 and 𝐺 using Lagrange interpolating polynomials, that is 

𝑢 𝑠 ∑ 𝑢 𝐹 𝑠 ,  𝑢 𝑠 ∑ 𝑢 𝐹 𝑠 , 𝐺 𝑠 ∑ 𝐺 𝐹 𝑠 , (16) 

The Legendre spectral collocation method is to seek  𝑢 , 𝑢 , 𝐺 , holds at colocation 

points, then the spectral approximation to Eqs (3) and (4) is given by: 

𝑢 𝑢
𝑡 1

2
 𝑢  A 𝑠 𝑡 , 𝜑 𝐹 𝑠 𝑡 , 𝜑 𝜔  

 
𝑡 1

2
 𝑢  𝐵 𝑠 𝑡 , 𝜑 𝐹 𝛼 𝑠 𝑡 , 𝜑 𝛼 1 𝜔  

∑ 𝐺  ∑ 𝐹 𝑠 𝑡 , 𝜑 𝜔 ,          (17) 
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𝑢 𝑢 ∑ 𝑢  ∑ 𝐹 𝑠 𝑡 , 𝜑 𝜔 .     (18) 

To compute 𝐹 𝑠  efficiently, we express it in terms of the Legendre functions of the form [8]. 

𝐹 𝑠 ∑ 𝑓 𝐿 𝑠 ,         (19) 

where 𝑓  is called the discrete polynomial coefficients of 𝐹 . The inverse relation is 

𝑓 ∑ 𝐹 𝑥 𝐿 𝑥 𝜔 𝐿 𝑥 𝛾⁄ , 𝛾 𝑚 1
2  , 𝑚 𝑁, (20) 

and 𝛾  𝑁 1
2 for the Gauss and Gauss-Radau formulas.  

3. Convergence analysis 

To prove the convergence analysis of our method we first introduce the following useful lemmas. 

3.1. Lemma 1 

Assume that a 𝑁 1 point Gauss, or Gauss-Radau, or Gauss-Lobatto quadrature formula 
relative to the Legendre weight is used to integrate the product 𝑢𝜑,  where 𝑢 ∈  𝐻 𝐼   with 
𝐼 ∶  1, 1  for some 𝑚 1 and 𝜑 ∈ 𝑝 . Then there exist a constant 𝐶 independent of 𝑁 such 
that [7]. 

  𝑢 𝑥 𝜑 𝑥 𝑑𝑥 〈𝑢, 𝜑 〉  𝐶𝑁 |𝑢| , ‖𝜑‖ , 

where 

|𝑢| , ‖𝑢‖ .
 ,

⁄

𝑎𝑛𝑑 〈𝑢, 𝜑〉 𝜔 𝑢 𝑥 𝜑 𝑥 . 

3.2. Lemma 2 

Assume that 𝑢 ∈  𝐻 𝐼   and denote 𝐼 𝑢  the interpolation polynomial associated with 
the 𝑁 1 point Gauss, or Gauss-Radau, or Gauss-Lobatto points 𝑥 . Then 

‖𝑢 𝐼 𝑢‖ 𝐶𝑁 |𝑢| ,         (21) 

‖𝑢 𝐼 𝑢‖ 𝐶𝑁 ⁄ |𝑢| ,        (22) 

Proof. The estimation in Eq (21) is given on p. 289 of [7]. The following estimate is also given in [7]. 
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‖𝑢 𝐼 𝑢‖ 𝐶𝑁 ⁄ |𝑢| , , 1 𝑠 𝑚, 

using the above estimate and the inequality 

‖𝑣‖ ,
1

𝑏 𝑎
 2‖𝑣‖ ,

⁄ ‖𝑣‖ ,
⁄ , ∀ 𝑣 ∈ 𝐻 𝑎, 𝑏 , 

one obtains the estimation given in Eq (22). 

3.3. Lemma 3 

Assume that 𝐹 𝑡  be the 𝑗 𝑡ℎ Lagrange interpolation polynomial with the 𝑁 1 point 
Gauss, or Gauss-Radau, or Gauss-Lobatto points 𝑡 . Then  

𝑚𝑎𝑥 ∈ ∑  𝐹 𝑡 𝐶√𝑁.        (23) 

3.4. Lemma 4 (Gronwall inequality) 

Let 𝑇 0 𝑎𝑛𝑑 𝐶 , 𝐶 0. If a non-negative integrable function 𝐸 𝑡  satisfies 

𝐸 𝑡 𝐶  𝐸 𝛼𝑠 𝑑𝑠 𝐶 𝐸 𝑠 𝑑𝑠 𝐺 𝑡 , ∀ 𝑡 ∈ 0, 𝑇 ,   (24) 

where 0 𝛼 1 is a constant and 𝐺 𝑡  is a nonnegative function, then 

‖𝐸‖ 𝐶‖𝐺‖        (25) 

Proof. It follows from Eq (23) and a simple change of variable that  

𝐸 𝑡 𝐶  𝐸 𝑠 𝑑𝑠 𝐶 𝐸 𝑠 𝑑𝑠 𝐺 𝑡 , ∀ 𝑡 ∈ 0, 𝑇 ,   (26) 

since 0 𝛼 1 and where 𝐺 𝑠 0, we have 

𝐸 𝑡 𝐶𝛼   𝐸 𝑠 𝑑𝑠 𝐺 𝑡 , 

which is a standard Gronwall inequality. This leads to the estimate given in Eq (26). 

3.5. Theorem 1 

Consider the pantograph Eqs (3) and (4) and its spectral approximations Eqs (17) and (18). If 
the functions λ 𝑡  and 𝜇 𝑡  are smooth (which implies that the solution of Eqs (3) and (4) is also 
smooth), then 
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𝑈 𝑢 𝐶𝑁 ⁄ |A 𝑢| , 𝐶𝑁 ⁄ |B 𝑢| ,  

𝐶𝑁 ⁄ ∑ |B | ,, ‖𝑢‖       (27) 

where 𝑈 is the polynomial of degree 𝑁 associated with the spectral approximation Eqs (17) and (18) 
and 𝐶 is a constant independent of 𝑁. 
Proof. Following the notation in Lemma 1, the numerical scheme given in Eqs (17) and (18), can be 
written as 

𝑢 𝑢
𝑡 1

2
 A 𝑠 𝑡 , 𝜑 𝑈 𝑠 𝑡 , 𝜑

,
 

𝑡 1
2

 B 𝑠 𝑡 , 𝜑 𝑈 𝛼 𝑠 𝑡 , 𝜑 𝛼 1
,

 

𝐺 𝑠 𝑑𝑠              (28) 

𝑢 𝑢 𝑈 𝑠 𝑑𝑠.            (29) 

In order to use Lemma 1, we write Eqs (28) and (29) as 

𝑢 𝑢
𝑡 1

2
 A 𝑠 𝑡 , 𝜑 𝑈 𝑠 𝑡 , 𝜑 𝑑𝜑  

𝑡 1
2

 B 𝑠 𝑡 , 𝜑 𝑈 𝛼 𝑠 𝑡 , 𝜑 𝛼 1 𝑑𝜑  

𝐺 𝑠 𝑑𝑠 ∑  𝐼 𝑡 ,       (30) 

where 

𝐼 𝑡 𝑢
𝑡 1

2
A 𝑠 𝑡 , 𝜑 𝑈 𝑠 𝑡 , 𝜑 𝑑𝜑 A 𝑠 𝑡 , 𝜑 𝑈 𝑠 𝑡 , 𝜑

,

B 𝑠 𝑡 , 𝜑 𝑈 𝛼 𝑠 𝑡 , 𝜑 𝛼 1 𝑑𝜑

B 𝑠 𝑡 , 𝜑 𝑈 𝛼 𝑠 𝑡 , 𝜑 𝛼 1
,

. 

Using the estimation given in Lemma 2, we get 

‖𝐼 ‖ 𝐶𝑁 ⁄ |𝐴 | , 𝐶𝑁 ⁄ |𝐵 | , 𝑈  

Multiplying 𝐹 𝑡  on both sides of Eqs (30) and (31) summing up from 0 to 𝑁 yield 

𝑈 𝑡 𝑢 ∑ 𝐼 A 𝑠 𝑈 𝑠 𝑑𝑠 ∑ 𝐼 B 𝑠 𝑈 𝛼 𝑠 𝛼

1 𝑑𝑠
  

𝐼 𝐺 𝑠 𝑑𝑠,         (31) 
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𝑈 𝑡 𝑢 𝐼 𝑈 𝑠 𝑑𝑠.        (32) 

Similarly, multiplying 𝐹 𝑡  on both sides of Eqs (10) and (11) summing up from 0 to 𝑁 yield 

𝐼  𝑢 𝑡 𝑢 ∑ 𝐼 A 𝑠 𝑢 𝑠 𝑑𝑠 ∑ 𝐼 B 𝑠 𝑢 𝛼 𝑠 𝛼

1 𝑑𝑠
  

𝐼 𝐺 𝑠 𝑑𝑠,        (33) 

𝐼 𝑢 𝑡 𝑢 𝐼 𝑢 𝑠 𝑑𝑠.      (34) 

It follows from Eqs (31)–(34) that 

𝑒 𝑡 𝐼 𝑢 𝑡 𝑢 𝑡

𝐼 A 𝑠 𝑒 𝑠 𝑑𝑠

𝐼 B 𝑠 𝑒 𝛼 𝑠 𝛼 1 𝑑𝑠

  

𝐼 𝑒 𝑠 𝑑𝑠   𝐽 𝑡 ,  

𝑒 𝐼 𝑢 𝑡 𝑢 𝑡 𝐼 𝑒 𝑠 𝑑𝑠, 

where 

𝑒 𝑡 𝑢 𝑡 𝑈 𝑡 , 𝑒 𝑡 𝑢 𝑡 𝑈 𝑡 , 

Consequently,  

𝑒 𝑡 𝑒 𝑠 𝑑𝑠  A 𝑠 𝑒 𝑠 𝑑𝑠  B 𝑠 𝑒 𝛼 𝑠 𝛼 1 𝑑𝑠  

  𝐽 𝑡 𝑓 𝑡 𝑓 𝑡   𝐻 𝑡  

𝑒 𝑡 𝑒 𝑠 𝑑𝑠 𝑓 𝑡 𝑓 𝑡 , 

where 𝑓 𝑡 𝑢 𝑡 𝐼 𝑈 𝑡 , 𝑓 𝑡 𝑢 𝑡 𝐼 𝑢 𝑡  

𝑓 𝑡  𝐼 𝑒 𝑠 𝑑𝑠 𝑒 𝑠 𝑑𝑠,  𝑓 𝑡  𝐼 𝑒 𝑠 𝑑𝑠 𝑒 𝑠 𝑑𝑠, 

𝐻 𝑡 𝐼 A 𝑠 𝑒 𝑠 𝑑𝑠 A 𝑠 𝑒 𝑠 𝑑𝑠 𝐼 B 𝑠 𝑒 𝛼 𝑠 𝛼 1 𝑑𝑠

B 𝑠 𝑒 𝛼 𝑠 𝛼 1 𝑑𝑠 

Using Lemma 2, 

‖𝑓 𝑡 ‖ 𝐶𝑁 ⁄ |𝑢 | , , ‖𝑓 𝑡 ‖ 𝐶𝑁 ⁄ |𝑢 | ,   
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Using Lemma 2, with 𝑚 1, 

‖𝑓 𝑡 ‖ 𝐶𝑁 ⁄ |𝑒 𝑡 | , ‖𝑓 𝑡 ‖ 𝐶𝑁 ⁄ |𝑒 𝑡 |  

‖𝐻 𝑡 ‖ 𝐶𝑁 ⁄ |𝑒 𝑡 | . 

It follows from the Gronwall inequality presented in Lemma 4, to get 

𝑒 𝐶 ‖𝐽 ‖ ‖𝐽 ‖  

Our next concern is the estimation of ‖𝐽 ‖  𝑎𝑛𝑑 ‖𝐽 ‖ . First  

‖𝐽 ‖ 𝐶 𝐼 , 𝐼 , 𝑚𝑎𝑥 ∈ 𝐹 𝑡 𝐶𝑁 ⁄ ‖𝑈‖  

𝐶𝑁 ⁄ 𝑒 ‖𝑢‖ .      (35) 

‖𝐽 ‖ 𝐶𝑁 ⁄ |A 𝑢| , 𝐶𝑁 ⁄ |B 𝑢 𝛼 𝑡 | ,  

The above two estimates, together with Eq (35), yields: 

𝑒 𝐶𝑁 ⁄ ‖𝐽 ‖ ‖𝐽 ‖ 𝐶𝑁 ⁄ |A 𝑢| ,

𝐶𝑁 ⁄ |B 𝑢 𝛼 𝑡 | , , 

which leads to the result of Theorem 1. 

4. Numerical examples 

In order to confirm the theoretical results, we perform some numerical test to illustrate the 
accuracy and efficiency of the proposed scheme. 

4.1. Example 1 

Consider the following constructed example [1] 

𝑦 𝑥
3
4

𝑦 𝑥 𝑦
𝑥
2

𝑥 2, 0 𝑥 1

𝑦 0 𝑦 0 0.
 

The exact solution is given by 𝑦 𝑥 𝑥 . The maximum point-wise error between numerical 
solution and exact solution for different value of 𝑁 is shown in Figure 1, Table 1. 
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Figure 1. Example 1: The error behavior in different norm. 

Table 1. Example 1: The point-wise error in different norms. 

𝑁  𝐿  𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟 
6  2.588𝑒   3.730𝑒   2.630𝑒  

8  5.850𝑒   4.881𝑒   4.373𝑒  

10  6.988𝑒   4.736𝑒   4.926𝑒  

12  7.704𝑒   5.233𝑒   2.701𝑒  

14  3.842𝑒   3.101𝑒   1.362𝑒  

16  1.688𝑒   1.609𝑒   1.688𝑒  

18  1.665𝑒   1.305𝑒   1.108𝑒  

20  6.661𝑒   6.186𝑒   4.856𝑒  

4.2. Example 2 

Consider the following nonlinear second-order equation of pantograph type 

𝑦 𝑥 𝑦 𝑥 5𝑦
𝑥
2

, 𝑥 0

𝑦 0 1, 𝑦 0 2.
 

The exact solution is given by 𝑦 𝑥 𝑒 .  The maximum point-wise error between numerical 
solution and exact solution for with respect to different 𝑁 is shown in Figure 2, Table 2. 
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Figure 2. Example 2: The error behavior in different norm. 

Table 2. Example 2: The point-wise error in different norms. 

𝑁  𝐿  𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟 
6  1.901𝑒   4.650𝑒   7.400𝑒  

8  5.850𝑒   7.255𝑒   1.009𝑒  

10  2.218𝑒   4.024𝑒   6.456𝑒  

12  1.093𝑒   3.674𝑒   5.585𝑒  

14  7.824𝑒   1.537𝑒   2.584𝑒  

16  3.480𝑒   8.481𝑒   1.295𝑒  

18  1.039𝑒   2.590𝑒   3.863𝑒  

20  6.763𝑒   8.806𝑒   1.602𝑒  

4.3. Example 3 

Consider the following second-order equation  

𝑦 𝑥 𝑦
𝑥
2

𝑦 𝑡 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛
𝑥
2

8, 𝑥 0

𝑦 0 2, 𝑦 0 0.
 

The exact solution is given by 𝑦 𝑥 . The error behavior relative to 𝑁 is displayed in 

Figure 3, Table 3. 
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Figure 3. Example 3: The error behavior in different norms. 

Table 3. Example 3: The point-wise error in different norms. 

𝑁  𝐿  𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟  𝐿 𝑒𝑟𝑟𝑜𝑟 
6  1.081𝑒   8.895𝑒   8.615𝑒  

8  2.474𝑒   1.734𝑒   1.324𝑒  

10  8.401𝑒   4.221𝑒   4.782𝑒  

12  1.809𝑒   8.732𝑒   1.002𝑒  

14  2.396𝑒   1.368𝑒   1.480𝑒  

16  2.776𝑒   1.361𝑒   1.463𝑒  

18  2.223𝑒   1.201𝑒   1.339𝑒  

20  2.442𝑒   1.098𝑒   1.245𝑒  

5. Conclusions 

A spectral method was introduced for the numerical solution of higher-order delay differential 
equation of pantograph equation to achieve the high order accuracy. A detail analysis of the proposed 
scheme is provided in 𝐿   norm. By solving some numerical examples, it is shown that the error 
between the exact and numerical solution decays exponentially, which further authenticates our 
theoretical results.  
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