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Abstract: Delay differential equations (DDEs) are used to model some realistic systems as they 
provide some information about the past state of the systems in addition to the current state. These 
DDEs are used to analyze the long-time behavior of the system at both present and past state of such 
systems. Due to the oscillatory nature of DDEs their explicit solution is not possible and therefore one 
need to use some numerical approaches. In this article, we developed a higher-order numerical scheme 
for the approximate solution of higher-order functional differential equations of pantograph type with 
vanishing proportional delays. Some linear and functional transformations are used to change the given 
interval ሾ0, Tሿ  into standard interval ሾെ1, 1ሿ  in order to fully use the properties of orthogonal 
polynomials. It is assumed that the solution of the equation is smooth on the entire domain of interval 
of integration. The proposed scheme is employed to the equivalent integrated form of the given 
equation. A Legendre spectral collocation method relative to Gauss-Legendre quadrature formula is 
used to evaluate the integral term efficiently. A detail theoretical convergence analysis in Lஶ norm is 
provided. Several numerical experiments were performed to confirm the theoretical results. 
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1. Introduction 

In nature there are so many physical phenomena where the state of the system not only depends 
on the current state but also depends on the history of the function. In this case it is more natural to 
model such type of phenomena using the delay differential equations (DDEs), where the state of the 
function depends on the current state as well as on the history of the function. Among the many 
available delay differential system, pantograph type delay differential equation is more commonly used 
in mathematical modeling of chemical and pharmaceutical kinetics, control problems and ships aircraft 
where they are used in navigational control electronic systems. It is called pantograph type equation 
because it was first used to investigate that how an electric current is obtained by the electric 
locomotive of a pantograph. Consider the kth-order functional differential equation of pantograph type 
of the form: 

𝑦ሺ௞ሻሺ𝑥ሻ ൌ ∑ λ௟ሺ𝑥ሻ𝑦ሺ௟ሻሺ𝑥ሻ ൅ ∑ 𝜇௟ሺ𝑥ሻ𝑦ሺ௟ሻሺ𝛼௟𝑥ሻ ൅ 𝑔ሺ𝑥ሻ, 𝑥 ∈  ሾ0, 𝑇ሿ௞ିଵ
௟ୀ଴

௞ିଵ
௟ୀ଴    (1) 

subject to  

𝑦ሺ௠ሻሺ0ሻ ൌ 𝑦଴
ሺ௠ሻ, ሺ𝑚 ൌ 0, 1, . . . , 𝑘 െ 1ሻ.     (2) 

For 𝑘 ൒ 2, spectral method will be based on the integrated form of given equation. The functions 
λ௟ሺ𝑥ሻ  and 𝜇௟ሺ𝑥ሻ  are given analytical functions on 𝐼 ∶ൌ ሾ0, 𝑇ሿ  and 𝛼௟ ∈ ሺ0, 1ሻ, 𝑙 ൌ  0, 1  is a fixed 
constant known as proportional delay. For simplicity, we employed and analyzed spectral method for 
the second order functional differential equation, that is 𝑘 ൌ 2. Eq (1) will take the form: 

𝑦′′ሺ𝑥ሻ ൌ ∑ 𝜆௟ሺ𝑥ሻ𝑦ሺ௟ሻሺ𝑥ሻ ൅ ∑ 𝜇௟ሺ𝑥ሻ𝑦ሺ௟ሻሺ𝛼௟𝑥ሻ ൅ 𝑔ሺ𝑥ሻ, 𝑥 ∈  ሾ0, 𝑇ሿଵ
௟ୀ଴

ଵ
௟ୀ଴    (3) 

subject to 

𝑦ሺ0ሻ ൌ 𝑦଴, 𝑦ᇱሺ0ሻ ൌ 𝑦ଵ.        (4) 

Equation (3) plays an important role in modeling of many physical phenomena like, for example in 
electrodynamics and in nonlinear dynamical systems. In practice it is arises in the problems when 
λ௟ሺ𝑥ሻ and 𝜇௟ሺ𝑥ሻ  are real constant and 𝛼௟ ሺ𝑥ሻ  is real valued function. The case λ௟ሺ𝑥ሻ ൌ 0,  is also 
important in the number theory in the context of partitioning [12, 14]. Numerical solution of first order 
pantograph type delay differential equation has been studied extensively in numerous papers such as 
[1–5, 9–15, 17–28]. A spectral collocation method is applied to integro-delay differential equation with 
proportional delay in [6, 29, 30]. A comprehensive list of references for the solution of DDEs can be 
found in [16]. A very limited work is available regarding the approximate solution of higher-order 
pantograph equation, especially using the higher-order schemes. To this end, we will use spectral 
discretization based on Legendre spectral collocation method to solve Eq (3) subject to Eq (4) 
numerically in order to get an accurate solution for a very few numbers of collocation points, as spectral 
methods are well known for their exponential rate of convergence. 

The rest of the paper is organized as follows. In Section 2, we discuss the spectral method for the 
approximate solution of Eq (3). Section 3 includes some useful lemmas and convergence analysis of 
our proposed scheme in 𝐿ஶ norm. In Section 4, we perform some numerical test to confirm the spectral 
accuracy and Section 5 consist of conclusion. 
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2. Spectral collocation method 

In order to fully use the properties of orthogonal polynomials for ease of convergence analysis, 
spectral methods will be employed on the standard intervalሾെ1, 1ሿ . For this reason, we use the 
following transformation 

𝑥 ൌ
𝑇
2

ሺ1 ൅ 𝑡ሻ, 𝑡 ൌ
2𝑥
𝑇

െ 1. 

Using this transformation, Eqs (3) and (4) will take the form: 

𝑢ᇱᇱሺ𝑡ሻ ൌ ∑ A௟ሺ𝑡ሻ𝑢ሺ௟ሻሺ𝑡ሻ ൅ ∑ 𝐵௟ሺ𝑡ሻ𝑢ሺ௟ሻሺ𝛼௟𝑡 ൅ 𝛼௟ െ 1ሻ ൅ 𝐺ሺ𝑡ሻ, 𝑡 ∈  ሾെ1, 1ሿଵ
௟ୀ଴

ଵ
௟ୀ଴   (5) 

subject to  

𝑢ሺെ1ሻ ൌ 𝑦଴, 𝑢ᇱሺ1ሻ ൌ ቀ்

ଶ
ቁ 𝑦ଵ.        (6) 

Where  

𝑢ሺ𝑡ሻ ൌ 𝑦 ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ , 𝐺ሺ𝑡ሻ ൌ ൬
𝑇
2

൰
ଶ

𝑔 ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ, 

𝐴଴ ൌ ൬
𝑇
2

൰
ଶ

λ଴ ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ , 𝐴ଵ ൌ ൬
𝑇
2

൰ λଵ ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ, 

𝐵଴ ൌ ൬
𝑇
2

൰
ଶ

𝜇଴ ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ , 𝐵ଵ ൌ ൬
𝑇
2

൰ 𝜇ଵ ቆ
𝑇
2

ሺ1 ൅ 𝑡ሻቇ, 

with 

𝑢ሺെ1ሻ ൌ 𝑢ିଵ, 𝑢′ሺെ1ሻ ൌ 𝑢ିଵ
ᇱ , 

where 𝑢ିଵ ൌ 𝑦଴, 𝑢ିଵ
ᇱ ൌ ቀ்

ଶ
ቁ 𝑦ଵ. 

For any given positive integer 𝑁,  we denote the collocation points by ൛𝑡௝ൟ
௝ୀ଴

ே
  , which is the set of 

ሺ𝑁 ൅ 1ሻ,  Legendre Gauss points corresponding to weights 𝜔௜ . Let 𝑃ே  denote the space of all 
polynomials of degree not exceeding𝑁 . For any𝑣 ∈ 𝐶ሾെ1, 1ሿ , we define the Lagrange interpolating 
polynomial 

𝐼ே𝑣ሺ𝑡ሻ ൌ ∑  𝑣൫𝑡௝൯𝐹௝ሺ𝑡ሻ,ே
௝ୀ଴        (7) 

where ൛𝐹ሺ𝑡௝ሻൟ
௝ୀ଴

ே
 is the Lagrange interpolation polynomial associated with the Legendre collocation 

points ൛𝑡௝ൟ
௝ୀ଴

ே
. Spectral method will be employed to the integrated form. For this reason, integrate Eq (5), 

and using 𝑢ିଵ ൌ 𝑦଴, 𝑢ିଵ
ᇱ ൌ ቀ்

ଶ
ቁ 𝑦ଵ, we get, 

𝑢′ሺ𝑡ሻ ൌ 𝑢ିଵ
ᇱ ൅ ∑  ଵ

௟ୀ଴ ׬ A௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝑠ሻ𝑑𝑠
௧

ିଵ ൅ ∑  ଵ
௟ୀ଴ ׬ 𝐵௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠

௧
ିଵ ൅ ׬ 𝐺ሺ𝑠ሻ𝑑𝑠

௧
ିଵ , (8) 

𝑢ሺ𝑡ሻ ൌ 𝑢ିଵ ൅ ׬ 𝑢′ሺ𝑠ሻ𝑑𝑠.
௧

ିଵ         (9) 

We assume that Eqs (8) and (9) holds at collocation points ൛𝑡௝ൟ
௝ୀ଴

ே
, to get 
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𝑢ᇱ൫𝑡௝൯ ൌ 𝑢ିଵ
ᇱ ൅ ∑  ଵ

௟ୀ଴ ׬ A௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝑠ሻ𝑑𝑠
௧ೕ

ିଵ ൅ ∑  ଵ
௟ୀ଴ ׬ 𝐵௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠

௧ೕ

ିଵ ൅ ׬ 𝐺ሺ𝑠ሻ𝑑𝑠
௧ೕ

ିଵ , 
 (10) 

𝑢ሺ𝑡௝ሻ ൌ 𝑢ିଵ ൅ ׬ 𝑢′ሺ𝑠ሻ𝑑𝑠,
௧ೕ

ିଵ 𝑡 ∈ ሾെ1, 1ሿ       (11) 

for 0 ൑ 𝑗 ൑ 𝑁. In order to compute all these integral terms efficiently for the higher-order accuracy, 
we transform the interval of integral from ൣെ1, 𝑡௝൧ to ሾെ1, 1ሿ , as we have a very little information 
available for both 𝑢ሺ𝑠ሻ and 𝑢ᇱሺ𝑠ሻ, we get 

𝑢ᇱ൫𝑡௝൯ ൌ 𝑢ିଵ
ᇱ ൅

௧ೕାଵ

ଶ
∑   ଵ

௟ୀ଴ ׬ A௟ ቀ𝑠൫𝑡௝, 𝜑൯ቁ 𝑢ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑൯ቁ 𝑑𝜑
ଵ

ିଵ ൅
௧ೕାଵ

ଶ
∑   ଵ

௟ୀ଴ ׬ 𝐵௟ ቀ𝑠൫𝑡௝, 𝜑൯ቁ 𝑢ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑൯ ൅ 𝛼௟ െ 1൯𝑑𝜑 ൅
௧ೕାଵ

ଶ
׬ 𝐺 ቀ𝑠൫𝑡௝, 𝜑൯ቁ 𝑑𝜑 

ଵ
ିଵ ,

ଵ
ିଵ    (12) 

𝑢൫𝑡௝൯ ൌ 𝑢ିଵ ൅
௧ೕାଵ

ଶ
׬ 𝑢ᇱ ቀ𝑠൫𝑡௝, 𝜑൯ቁ 𝑑𝜑,

ଵ
ିଵ  𝑡 ∈ ሾെ1, 1ሿ    (13) 

where, we use 𝑠 ൌ
ଵା௧ೕ

ଶ
𝜑 ൅

௧ೕିଵ

ଶ
ൎ 𝑠൫𝑡௝, 𝜑൯. 

Now using the ሺ𝑁 ൅ 1ሻ Gauss quadrature rule relative to the Legendre weight to approximate the 
integral term, we get 

𝑢௝
ᇱ ൌ 𝑢ିଵ

ᇱ ൅
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

൭෍ A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑢ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞

ே

௞ୀ଴

൱ 

൅
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

൭෍ 𝐵௟ ቀ𝑠ᇱ൫𝑡௝, 𝜑௞൯ቁ 𝑢ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯𝜔௞

ே

௞ୀ଴

൱ 

൅
௧ೕାଵ

ଶ
∑ 𝐺 ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞,ே

௞ୀ଴             (14) 

𝑢௝ ൌ 𝑢ିଵ ൅
௧ೕାଵ

ଶ
∑ 𝑢ᇱ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞.ே

௞ୀ଴          (15) 

Let  𝑢௝
ᇱ  ൎ 𝑢′൫𝑡௝൯, 𝑢௝ ൎ 𝑢൫𝑡௝൯ , 0 ൑ 𝑗 ൑ 𝑁.  The set ሼ𝜑௞ሽ௞ୀ଴

ே   coincide with the collocation points 

൛𝑡௝ൟ
௝ୀ଴

ே
.  

We expand 𝑢ᇱ, 𝑢 and 𝐺 using Lagrange interpolating polynomials, that is 

𝑢ᇱሺ𝑠ሻ ൎ ∑ 𝑢௣
ᇱ 𝐹௣ሺ𝑠ሻ,ே

௣ୀ଴  𝑢ሺ𝑠ሻ ൌ ∑ 𝑢௣𝐹௣ሺ𝑠ሻ, 𝐺ሺ𝑠ሻ ൎ ∑ 𝐺௣𝐹௣ሺ𝑠ሻ,ே
௣ୀ଴

ே
௣ୀ଴  (16) 

The Legendre spectral collocation method is to seek ൛ 𝑢௝
ᇱൟ

௝ୀ଴

ே
, ൛𝑢௝ൟ

௝ୀ଴

ே
, ൛𝐺௝ൟ

௝ୀ଴

ே
, holds at colocation 

points, then the spectral approximation to Eqs (3) and (4) is given by: 

𝑢௝
ᇱ ൌ 𝑢ିଵ

ᇱ ൅
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

ቌ෍ 𝑢௣
ሺ௟ሻ 

ே

௣ୀ଴

෍ A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝐹௣ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞

ே

௞ୀ଴

ቍ 

൅ 
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

ቌ෍ 𝑢௣
ሺ௟ሻ 

ே

௣ୀ଴

෍ 𝐵௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝐹௣൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯𝜔௞

ே

௞ୀ଴

ቍ 

൅
௧ೕାଵ

ଶ
∑ 𝐺௣ ே

௣ୀ଴ ∑ 𝐹௣ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞,ே
௞ୀ଴           (17) 
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𝑢௝ ൌ 𝑢ିଵ ൅
௧ೕାଵ

ଶ
∑ 𝑢௣

ᇱ  ே
௣ୀ଴ ∑ 𝐹௣ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝜔௞.ே

௞ୀ଴      (18) 

To compute 𝐹௣ሺ𝑠ሻ efficiently, we express it in terms of the Legendre functions of the form [8]. 

𝐹௣ሺ𝑠ሻ ൌ ∑ 𝑓௣௠𝐿௠ሺ𝑠ሻ,ே
௠ୀ଴          (19) 

where 𝑓௣௠ is called the discrete polynomial coefficients of 𝐹௣. The inverse relation is 

𝑓௣௠ ൌ ଵ

ఊ೘
∑ 𝐹௠ሺ𝑥௜ሻ𝐿௠ሺ𝑥௜ሻ𝜔௜ ൌ 𝐿௠ሺ𝑥௜ሻ 𝛾௠⁄ , 𝛾௠ ൌ ൫𝑚 ൅ 1

2ൗ ൯
ିଵ

 , 𝑚 ൏ 𝑁,ே
௠ୀ଴  (20) 

and 𝛾ே ൌ ൫𝑁 ൅ 1
2ൗ ൯

ିଵ
for the Gauss and Gauss-Radau formulas.  

3. Convergence analysis 

To prove the convergence analysis of our method we first introduce the following useful lemmas. 

3.1. Lemma 1 

Assume that a ሺ𝑁 ൅ 1ሻ െpoint Gauss, or Gauss-Radau, or Gauss-Lobatto quadrature formula 
relative to the Legendre weight is used to integrate the product 𝑢𝜑,  where 𝑢 ∈  𝐻௠ሺ𝐼ሻ  with 
𝐼 ∶ൌ  ሺെ1, 1ሻ for some 𝑚 ൒ 1 and 𝜑 ∈ 𝑝ே. Then there exist a constant 𝐶 independent of 𝑁 such 
that [7]. 

ቤන   
ଵ

ିଵ
𝑢ሺ𝑥ሻ𝜑ሺ𝑥ሻ𝑑𝑥 െ 〈𝑢, 𝜑 〉ே ቤ ൑ 𝐶𝑁ି௠|𝑢|ு෡,ேሺூሻ‖𝜑‖௅మሺூሻ, 

where 

|𝑢|ு෡,ேሺூሻ ൌ ቌ ෍ ‖𝑢‖௅మሺூሻ.

௠

௞ୀ௠௜௡ ሺ௠,ேሻ

ቍ

ଵ ଶ⁄

𝑎𝑛𝑑 〈𝑢, 𝜑〉ே ൌ ෍ 𝜔௞𝑢ሺ𝑥௞ሻ𝜑ሺ𝑥௞ሻ.

ே

௞ୀ଴

 

3.2. Lemma 2 

Assume that 𝑢 ∈  𝐻௠ሺ𝐼ሻ  and denote 𝐼ே𝑢  the interpolation polynomial associated with 
theሺ𝑁 ൅ 1ሻ െpoint Gauss, or Gauss-Radau, or Gauss-Lobatto points ሼ𝑥௞ሽ௞ୀ଴

ே . Then 

‖𝑢 െ 𝐼ே𝑢‖௅మሺூሻ ൑ 𝐶𝑁ି௠|𝑢|ு෡,ேሺூሻ        (21) 

‖𝑢 െ 𝐼ே𝑢‖௅ಮሺூሻ ൑ 𝐶𝑁ଷ ସ⁄ ି௠|𝑢|ு෡,ேሺூሻ       (22) 

Proof. The estimation in Eq (21) is given on p. 289 of [7]. The following estimate is also given in [7]. 
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‖𝑢 െ 𝐼ே𝑢‖ுೞሺூሻ ൑ 𝐶𝑁ଶ௦ିଵ ଶ⁄ ି௠|𝑢|ு෡,ேሺூሻ, 1 ൑ 𝑠 ൑ 𝑚, 

using the above estimate and the inequality 

‖𝑣‖௅ಮሺ௔,௕ሻ ൑ ඨ
1

𝑏 െ 𝑎
 ൅ 2‖𝑣‖௅మሺ௔,௕ሻ

ଵ ଶ⁄ ‖𝑣‖ுభሺ௔,௕ሻ
ଵ ଶ⁄ , ∀ 𝑣 ∈ 𝐻ଵሺ𝑎, 𝑏ሻ, 

one obtains the estimation given in Eq (22). 

3.3. Lemma 3 

Assume that 𝐹௝ሺ𝑡ሻ be the 𝑗 െ 𝑡ℎ Lagrange interpolation polynomial with the ሺ𝑁 ൅ 1ሻ െpoint 
Gauss, or Gauss-Radau, or Gauss-Lobatto points ሼ𝑡௞ሽ௞ୀ଴

ே . Then  

𝑚𝑎𝑥௧∈ூ ∑ ห 𝐹௝ሺ𝑡ሻห ൑ 𝐶√𝑁.ே
௝ୀ଴         (23) 

3.4. Lemma 4 (Gronwall inequality) 

Let 𝑇 ൐ 0 𝑎𝑛𝑑 𝐶ଵ, 𝐶ଶ ൒ 0. If a non-negative integrable function 𝐸ሺ𝑡ሻ satisfies 

𝐸ሺ𝑡ሻ ൑ 𝐶ଵ ׬  
௧

଴ 𝐸ሺ𝛼𝑠ሻ𝑑𝑠ᇱ ൅ 𝐶ଶ ׬ 𝐸ሺ𝑠ሻ𝑑𝑠 ൅ 𝐺ሺ𝑡ሻ, ∀ 𝑡 ∈ ሾ0, 𝑇ሿ,
௧

଴    (24) 

where 0 ൏ 𝛼 ൏ 1 is a constant and 𝐺ሺ𝑡ሻ is a nonnegative function, then 

‖𝐸‖௅ಮሺூሻ ൑ 𝐶‖𝐺‖௅ಮሺூሻ       (25) 

Proof. It follows from Eq (23) and a simple change of variable that  

𝐸ሺ𝑡ሻ ൑ 𝐶ଵ
ଵ

ఈ
׬  

௧
଴ 𝐸ሺ𝑠ሻ𝑑𝑠ᇱ ൅ 𝐶ଶ ׬ 𝐸ሺ𝑠ሻ𝑑𝑠 ൅ 𝐺ሺ𝑡ሻ, ∀ 𝑡 ∈ ሾ0, 𝑇ሿ,

௧
଴    (26) 

since 0 ൏ 𝛼 ൏ 1 and where 𝐺ሺ𝑠ሻ ൒ 0, we have 

𝐸ሺ𝑡ሻ ൑ 𝐶𝛼ିଵ න   
௧

଴
𝐸ሺ𝑠ሻ𝑑𝑠 ൅ 𝐺ሺ𝑡ሻ, 

which is a standard Gronwall inequality. This leads to the estimate given in Eq (26). 

3.5. Theorem 1 

Consider the pantograph Eqs (3) and (4) and its spectral approximations Eqs (17) and (18). If 
the functions λ௟ሺ𝑡ሻ and 𝜇௟ሺ𝑡ሻ are smooth (which implies that the solution of Eqs (3) and (4) is also 
smooth), then 
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ฮ𝑈ሺ௟ሻ െ 𝑢ሺ௟ሻฮ
௅ಮሺூሻ

൑ 𝐶𝑁ଷ ସ⁄ ି௠ ෍|A௟𝑢|ு෡௠ିଵ,ேሺூሻ

ଵ

௟ୀ଴

൅ 𝐶𝑁ଷ ସ⁄ ି௠ ෍|B௟𝑢|ு෡௠ିଵ,ேሺூሻ

ଵ

௟ୀ଴

 

൅𝐶𝑁ଵ ଶ⁄ ି௠ ∑ |B௟|ு෡௠,,ேሺூሻ‖𝑢‖௅మሺூሻ
ଵ
௟ୀ଴       (27) 

where 𝑈 is the polynomial of degree 𝑁 associated with the spectral approximation Eqs (17) and (18) 
and 𝐶 is a constant independent of 𝑁. 
Proof. Following the notation in Lemma 1, the numerical scheme given in Eqs (17) and (18), can be 
written as 

𝑢௝
ᇱ ൌ 𝑢ିଵ

ᇱ ൅
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

൬A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ൰
ே,௧ೕ

 

൅
𝑡௝ ൅ 1

2
෍  

ଵ

௟ୀ଴

൬B௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯൰
ே,௧ೕ

 

൅ ׬ 𝐺ሺ𝑠ሻ𝑑𝑠
௧ೕ

ିଵ               (28) 

𝑢௝ ൌ 𝑢ିଵ ൅ ׬ 𝑈ᇱሺ𝑠ሻ𝑑𝑠.
௧ೕ

ିଵ             (29) 

In order to use Lemma 1, we write Eqs (28) and (29) as 

𝑢௝
ᇱ ൌ 𝑢ିଵ

ᇱ ൅
𝑡௝ ൅ 1

2
෍  න ൬A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ൰ 𝑑𝜑

ଵ

ିଵ
 

ଵ

௟ୀ଴

 

൅
𝑡௝ ൅ 1

2
෍  න ൬B௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯൰ 𝑑𝜑

ଵ

ିଵ
 

ଵ

௟ୀ଴

 

൅ ׬ 𝐺ሺ𝑠ሻ𝑑𝑠 െ
௧ೕାଵ

ଶ
∑  ଵ

௟ୀ଴ 𝐼௟൫𝑡௝൯,
௧ೕ

ିଵ        (30) 

where 

𝐼௟ሺ𝑡ሻ ൌ 𝑢ିଵ
ᇱ ൅

𝑡௝ ൅ 1
2

න ൬A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ൰ 𝑑𝜑
ଵ

ିଵ
െ ൬A௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ൰

ே,௧ᇲ

൅ න ൬B௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯൰ 𝑑𝜑
ଵ

ିଵ

െ ൬B௟ ቀ𝑠൫𝑡௝, 𝜑௞൯ቁ 𝑈ሺ௟ሻ൫𝛼௟𝑠൫𝑡௝, 𝜑௞൯ ൅ 𝛼௟ െ 1൯൰
ே,௧ᇲ

. 

Using the estimation given in Lemma 2, we get 

‖𝐼௟‖௅ಮሺூሻ ൑ 𝐶𝑁ଷ ସ⁄ ି௠|𝐴௟|ு෡௠,ேሺூሻ ൅ 𝐶𝑁ଷ ସ⁄ ି௠|𝐵௟|ு෡௠,ேሺூሻฮ𝑈ሺ௟ሻฮ
௅మሺூሻ

 

Multiplying 𝐹௝ሺ𝑡ሻ on both sides of Eqs (30) and (31) summing up from 0 to 𝑁 yield 

𝑈ᇱሺ𝑡ሻ ൌ 𝑢ିଵ
ᇱ ൅ ∑ 𝐼ே ׬ A௟ሺ𝑠ሻ𝑈ሺ௟ሻሺ𝑠ሻ𝑑𝑠

௧
ିଵ ൅ ∑ 𝐼ே ׬ B௟ሺ𝑠ሻ𝑈ሺ௟ሻሺ𝛼௟𝑠 ൅ 𝛼௟ െ

௧
ିଵ

ଵ
௟ୀ଴

ଵ
௟ୀ଴

1ሻ𝑑𝑠
  

൅𝐼ே ׬ 𝐺ሺ𝑠ሻ𝑑𝑠,
௧

ିଵ
         (31) 
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𝑈ሺ𝑡ሻ ൌ 𝑢ିଵ ൅ 𝐼ே ׬ 𝑈ᇱሺ𝑠ሻ𝑑𝑠.
௧ೕ

ିଵ         (32) 

Similarly, multiplying 𝐹௝ሺ𝑡ሻ on both sides of Eqs (10) and (11) summing up from 0 to 𝑁 yield 

𝐼ே 𝑢ᇱሺ𝑡ሻ ൌ 𝑢ିଵ
ᇱ ൅ ∑ 𝐼ே ׬ A௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝑠ሻ𝑑𝑠

௧
ିଵ ൅ ∑ 𝐼ே ׬ B௟ሺ𝑠ሻ𝑢ሺ௟ሻሺ𝛼௟𝑠 ൅ 𝛼௟ െ

௧
ିଵ

ଵ
௟ୀ଴

ଵ
௟ୀ଴

1ሻ𝑑𝑠
  

൅𝐼ே ׬ 𝐺ሺ𝑠ሻ𝑑𝑠,
௧

ିଵ
        (33) 

𝐼ே𝑢ሺ𝑡ሻ ൌ 𝑢ିଵ ൅ 𝐼ே ׬ 𝑢ᇱሺ𝑠ሻ𝑑𝑠.
௧ೕ

ିଵ       (34) 

It follows from Eqs (31)–(34) that 

𝑒௨ᇲሺ𝑡ሻ ൅ 𝐼ே𝑢ᇱሺ𝑡ሻ െ 𝑢ᇱሺ𝑡ሻ

ൌ ෍ 𝐼ே න A௟ሺ𝑠ሻ𝑒௨ᇲሺ𝑠ሻ𝑑𝑠
௧

ିଵ

ଵ

௟ୀ଴

൅ ෍ 𝐼ே න B௟ሺ𝑠ሻ𝑒௨ᇲሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠
௧

ିଵ

  

൅𝐼ே න 𝑒௩ሺ𝑠ሻ𝑑𝑠 ൅ ෍   

ଵ

௟ୀ଴

𝐽௟ሺ𝑡ሻ,
௧

ିଵ

ଵ

௟ୀ଴

  

𝑒௨ሺ௧ሻ ൅ 𝐼ே𝑢ሺ𝑡ሻ െ 𝑢ሺ𝑡ሻ ൌ 𝐼ே න 𝑒௨ᇲሺ𝑠ሻ𝑑𝑠,
௧

ିଵ
 

where 

𝑒௨ᇲሺ𝑡ሻ ൌ 𝑢ᇱሺ𝑡ሻ െ 𝑈ᇱሺ𝑡ሻ, 𝑒௨ሺ𝑡ሻ ൌ 𝑢ሺ𝑡ሻ െ 𝑈ሺ𝑡ሻ, 

Consequently,  

𝑒௨ᇲሺ𝑡ሻ ൌ න 𝑒௩ሺ𝑠ሻ𝑑𝑠 ൅ ෍  න A௟ሺ𝑠ሻ𝑒௨ᇲሺ𝑠ሻ𝑑𝑠
௧

ିଵ
൅ ෍  න B௟ሺ𝑠ሻ𝑒௨ᇲሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠

௧

ିଵ
 

ଵ

௟ୀ଴

ଵ

௟ୀ଴

௧

ିଵ
 

൅ ෍   

ଵ

௟ୀ଴

𝐽௟ሺ𝑡ሻ ൅ 𝑓ଵሺ𝑡ሻ ൅ 𝑓ଶሺ𝑡ሻ ൅ ෍   

ଵ

௟ୀ଴

𝐻௟ሺ𝑡ሻ 

𝑒௨ሺ𝑡ሻ ൌ න 𝑒௨ᇲሺ𝑠ሻ𝑑𝑠 ൅ 𝑓ଷሺ𝑡ሻ ൅ 𝑓ସሺ𝑡ሻ,
௧

ିଵ
 

where 𝑓ଵሺ𝑡ሻ ൌ 𝑢ᇱሺ𝑡ሻ െ 𝐼ே𝑈ᇱሺ𝑡ሻ, 𝑓ଷሺ𝑡ሻ ൌ 𝑢ሺ𝑡ሻ െ 𝐼ே𝑢ሺ𝑡ሻ 

𝑓ଶሺ𝑡ሻ  ൌ 𝐼ே න 𝑒௩ሺ𝑠ሻ𝑑𝑠 െ න 𝑒௩ሺ𝑠ሻ𝑑𝑠,
௧

ିଵ

௧

ିଵ
 𝑓ସሺ𝑡ሻ  ൌ 𝐼ே න 𝑒௨ᇲሺ𝑠ሻ𝑑𝑠 െ න 𝑒௨ᇲሺ𝑠ሻ𝑑𝑠,

௧

ିଵ

௧

ିଵ
 

𝐻௟ሺ𝑡ሻ ൌ 𝐼ே න A௟ሺ𝑠ሻ𝑒௨ᇲሺ𝑠ሻ𝑑𝑠 െ
௧

ିଵ
න A௟ሺ𝑠ሻ𝑒௨ᇲሺ𝑠ሻ𝑑𝑠 ൅ 𝐼ே න B௟ሺ𝑠ሻ𝑒௨ᇲሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠

௧

ିଵ

௧

ିଵ

െ න B௟ሺ𝑠ሻ𝑒௨ᇲሺ𝛼௟𝑠 ൅ 𝛼௟ െ 1ሻ𝑑𝑠
௧

ିଵ
 

Using Lemma 2, 

‖𝑓ଵሺ𝑡ሻ‖௅ಮሺூሻ ൑ 𝐶𝑁ଷ ସ⁄ ି௠|𝑢ᇱ|ு෡௠,ேሺூሻ, ‖𝑓ଷሺ𝑡ሻ‖௅ಮሺூሻ ൑ 𝐶𝑁ଷ ସ⁄ ି௠|𝑢ᇱ|ு෡௠,ேሺூሻ  
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Using Lemma 2, with 𝑚 ൌ 1, 

‖𝑓ଶሺ𝑡ሻ‖௅ಮሺூሻ ൑ 𝐶𝑁ିଵ ସ⁄ |𝑒௩ሺ𝑡ሻ|௅ಮሺூሻ, ‖𝑓ସሺ𝑡ሻ‖௅ಮሺூሻ ൑ 𝐶𝑁ିଵ ସ⁄ |𝑒௨ᇲሺ𝑡ሻ|௅ಮሺூሻ 

‖𝐻௟ሺ𝑡ሻ‖௅ಮሺூሻ ൑ 𝐶𝑁ିଵ ସ⁄ |𝑒௨ᇲሺ𝑡ሻ|௅ಮሺூሻ. 

It follows from the Gronwall inequality presented in Lemma 4, to get 

ฮ𝑒௨ሺభሻฮ
௅ಮሺூሻ

൑ 𝐶൫‖𝐽ଵ‖௅ಮሺூሻ ൅ ‖𝐽ଶ‖௅ಮሺூሻ൯ 

Our next concern is the estimation of ‖𝐽ଵ‖௅ಮሺூሻ 𝑎𝑛𝑑 ‖𝐽ଶ‖௅ಮሺூሻ. First  

‖𝐽ଵ‖௅ಮሺூሻ ൑ 𝐶ฮ𝐼௜,ଵฮ
௅ಮሺூሻ

൅ ฮ𝐼௜,ଶฮ
௅ಮሺூሻ

𝑚𝑎𝑥௧∈ூ ෍ 𝐹௝ሺ𝑡ሻ ൑ 𝐶𝑁ଵ ଶ⁄ ି௠‖𝑈‖௅ಮሺூሻ

ே

௝ୀ଴

 

൑ 𝐶𝑁ଵ ଶ⁄ ି௠ ቀฮ𝑒௨ሺభሻฮ
௅ಮሺூሻ

൅ ‖𝑢‖௅ಮሺூሻቁ.      (35) 

‖𝐽ଶ‖௅ಮሺூሻ ൑ 𝐶𝑁ଷ ସ⁄ ି௠|A௟𝑢|ு෡௠,ேሺூሻ ൅ 𝐶𝑁ଷ ସ⁄ ି௠|B௟𝑢ሺ𝛼௟𝑡ሻ|ு෡௠,ேሺூሻ 

The above two estimates, together with Eq (35), yields: 

ฮ𝑒௨ሺభሻฮ
௅ಮሺூሻ

൑ 𝐶𝑁ଵ ଶ⁄ ି௠൫‖𝐽ଵ‖௅ಮሺூሻ ൅ ‖𝐽ଶ‖௅ಮሺூሻ൯ ൅ 𝐶𝑁ଷ ସ⁄ ି௠|A௟𝑢|ு෡௠,ேሺூሻ

൅ 𝐶𝑁ଷ ସ⁄ ି௠|B௟𝑢ሺ𝛼௟𝑡ሻ|ு෡௠,ேሺூሻ, 

which leads to the result of Theorem 1. 

4. Numerical examples 

In order to confirm the theoretical results, we perform some numerical test to illustrate the 
accuracy and efficiency of the proposed scheme. 

4.1. Example 1 

Consider the following constructed example [1] 

ቐ𝑦ᇱᇱሺ𝑥ሻ ൌ
3
4

𝑦ሺ𝑥ሻ ൅ 𝑦 ቀ
𝑥
2

ቁ െ 𝑥ଶ ൅ 2, 0 ൑ 𝑥 ൑ 1

𝑦ሺ0ሻ ൌ 𝑦ᇱሺ0ሻ ൌ 0.
 

The exact solution is given by 𝑦ሺ𝑥ሻ ൌ 𝑥ଶ. The maximum point-wise error between numerical 
solution and exact solution for different value of 𝑁 is shown in Figure 1, Table 1. 



4955 

AIMS Mathematics  Volume 7, Issue 4, 4946–4959. 

 

Figure 1. Example 1: The error behavior in different norm. 

Table 1. Example 1: The point-wise error in different norms. 

𝑁  𝐿ଵ 𝑒𝑟𝑟𝑜𝑟  𝐿ଶ 𝑒𝑟𝑟𝑜𝑟  𝐿ஶ 𝑒𝑟𝑟𝑜𝑟 
6  2.588𝑒ି଴ସ  3.730𝑒ି଴ସ  2.630𝑒ି଴ସ 

8  5.850𝑒ି଴଺  4.881𝑒ି଴଺  4.373𝑒ି଴଺ 

10  6.988𝑒ି଴଼  4.736𝑒ି଴଼  4.926𝑒ି଴଼ 

12  7.704𝑒ିଵ଴  5.233𝑒ିଵ଴  2.701𝑒ିଵ଴ 

14  3.842𝑒ିଵଶ  3.101𝑒ିଵଶ  1.362𝑒ିଵଶ 

16  1.688𝑒ିଵସ  1.609𝑒ିଵସ  1.688𝑒ିଵସ 

18  1.665𝑒ିଵହ  1.305𝑒ିଵହ  1.108𝑒ିଵହ 

20  6.661𝑒ିଵ଺  6.186𝑒ିଵ଺  4.856𝑒ିଵ଺ 

4.2. Example 2 

Consider the following nonlinear second-order equation of pantograph type 

൝
𝑦ᇱᇱሺ𝑥ሻ ൌ െ𝑦ሺ𝑥ሻ ൅ 5𝑦ଶ ቀ

𝑥
2

ቁ , 𝑥 ൒ 0

𝑦ሺ0ሻ ൌ 1, 𝑦ሺ0ሻ ൌ െ2.
 

The exact solution is given by 𝑦ሺ𝑥ሻ ൌ 𝑒ିଶ௫.  The maximum point-wise error between numerical 
solution and exact solution for with respect to different 𝑁 is shown in Figure 2, Table 2. 
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Figure 2. Example 2: The error behavior in different norm. 

Table 2. Example 2: The point-wise error in different norms. 

𝑁  𝐿ଵ 𝑒𝑟𝑟𝑜𝑟  𝐿ଶ 𝑒𝑟𝑟𝑜𝑟  𝐿ஶ 𝑒𝑟𝑟𝑜𝑟 
6  1.901𝑒ା଴଴  4.650𝑒ି଴ଵ  7.400𝑒ି଴ଵ 

8  5.850𝑒ି଴ଵ  7.255𝑒ି଴ଶ  1.009𝑒ି଴ଵ 

10  2.218𝑒ି଴ଶ  4.024𝑒ି଴ଷ  6.456𝑒ି଴ଷ 

12  1.093𝑒ି଴ଷ  3.674𝑒଴ସ  5.585𝑒ି଴ସ 

14  7.824𝑒ି଴ହ  1.537𝑒ି଴ହ  2.584𝑒ି଴ହ 

16  3.480𝑒ି଴଺  8.481𝑒ି଴଻  1.295𝑒ି଴଺ 

18  1.039𝑒ି଴଻  2.590𝑒ି଴଼  3.863𝑒ି଴଼ 

20  6.763𝑒ି଴଼  8.806𝑒ି଴ଽ  1.602𝑒ି଴ଽ 

4.3. Example 3 

Consider the following second-order equation  

൝
𝑦ᇱᇱሺ𝑥ሻ ൌ െ𝑦 ቀ

𝑥
2

ቁ െ 𝑦ଶሺ𝑡ሻ ൅ 𝑠𝑖𝑛ସሺ𝑥ሻ൅𝑠𝑖𝑛ଶ ቀ
𝑥
2

ቁ ൅ 8, 𝑥 ൒ 0

𝑦ሺ0ሻ ൌ 2, 𝑦ᇱሺ0ሻ ൌ 0.
 

The exact solution is given by 𝑦ሺ𝑥ሻ ൌ ହି௖௢௦ଶ௫

ଶ
. The error behavior relative to 𝑁 is displayed in 

Figure 3, Table 3. 
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Figure 3. Example 3: The error behavior in different norms. 

Table 3. Example 3: The point-wise error in different norms. 

𝑁  𝐿ଵ 𝑒𝑟𝑟𝑜𝑟  𝐿ଶ 𝑒𝑟𝑟𝑜𝑟  𝐿ஶ 𝑒𝑟𝑟𝑜𝑟 
6  1.081𝑒ି଴ଶ  8.895𝑒ି଴ଷ  8.615𝑒ି଴ଷ 

8  2.474𝑒ି଴ସ  1.734𝑒ି଴ସ  1.324𝑒ି଴ସ 

10  8.401𝑒ି଴଺  4.221𝑒ି଴଺  4.782𝑒ି଴଺ 

12  1.809𝑒ି଴଻  8.732𝑒ି଴଼  1.002𝑒ି଴଻ 

14  2.396𝑒ି଴ଽ  1.368𝑒ି଴ଽ  1.480𝑒ି଴ଽ 

16  2.776𝑒ିଵଵ  1.361𝑒ିଵଵ  1.463𝑒ିଵଵ 

18  2.223𝑒ିଵଷ  1.201𝑒ିଵଷ  1.339𝑒ିଵଷ 

20  2.442𝑒ିଵହ  1.098𝑒ିଵହ  1.245𝑒ିଵହ 

5. Conclusions 

A spectral method was introduced for the numerical solution of higher-order delay differential 
equation of pantograph equation to achieve the high order accuracy. A detail analysis of the proposed 
scheme is provided in 𝐿ஶ  norm. By solving some numerical examples, it is shown that the error 
between the exact and numerical solution decays exponentially, which further authenticates our 
theoretical results.  
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