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Abstract: Delay differential equations (DDEs) are used to model some realistic systems as they
provide some information about the past state of the systems in addition to the current state. These
DDE:s are used to analyze the long-time behavior of the system at both present and past state of such
systems. Due to the oscillatory nature of DDEs their explicit solution is not possible and therefore one
need to use some numerical approaches. In this article, we developed a higher-order numerical scheme
for the approximate solution of higher-order functional differential equations of pantograph type with
vanishing proportional delays. Some linear and functional transformations are used to change the given
interval [0, T] into standard interval [—1,1] in order to fully use the properties of orthogonal
polynomials. It is assumed that the solution of the equation is smooth on the entire domain of interval
of integration. The proposed scheme is employed to the equivalent integrated form of the given
equation. A Legendre spectral collocation method relative to Gauss-Legendre quadrature formula is
used to evaluate the integral term efficiently. A detail theoretical convergence analysis in L, norm is
provided. Several numerical experiments were performed to confirm the theoretical results.
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1. Introduction

In nature there are so many physical phenomena where the state of the system not only depends
on the current state but also depends on the history of the function. In this case it is more natural to
model such type of phenomena using the delay differential equations (DDEs), where the state of the
function depends on the current state as well as on the history of the function. Among the many
available delay differential system, pantograph type delay differential equation is more commonly used
in mathematical modeling of chemical and pharmaceutical kinetics, control problems and ships aircraft
where they are used in navigational control electronic systems. It is called pantograph type equation
because it was first used to investigate that how an electric current is obtained by the electric
locomotive of a pantograph. Consider the kth-order functional differential equation of pantograph type
of the form:

y® ) = 50 )y P () + TS i ()y @ (ax) + g(x), x € [0,T] (1)
subject to
ym™(©0) = y™, (m=0,1,...,k - 1). )

For k > 2, spectral method will be based on the integrated form of given equation. The functions
A (x) and p;(x) are given analytical functions on [ :=[0,T] and a; € (0,1),l = 0,1 is a fixed
constant known as proportional delay. For simplicity, we employed and analyzed spectral method for
the second order functional differential equation, thatis k = 2. Eq (1) will take the form:

Y"'() = Zlo u()y P () + Tloo (0)y P (ax) + g(x), x € [0,T] 3)

subject to

y(0) =y, ¥'(0) = y;. 4)

Equation (3) plays an important role in modeling of many physical phenomena like, for example in
electrodynamics and in nonlinear dynamical systems. In practice it is arises in the problems when
A (x)and p;(x) are real constant and a; (x) is real valued function. The case A;(x) = 0, is also
important in the number theory in the context of partitioning [12, 14]. Numerical solution of first order
pantograph type delay differential equation has been studied extensively in numerous papers such as
[1-5,9-15, 17-28]. A spectral collocation method is applied to integro-delay differential equation with
proportional delay in [6, 29, 30]. A comprehensive list of references for the solution of DDEs can be
found in [16]. A very limited work is available regarding the approximate solution of higher-order
pantograph equation, especially using the higher-order schemes. To this end, we will use spectral
discretization based on Legendre spectral collocation method to solve Eq (3) subject to Eq (4)
numerically in order to get an accurate solution for a very few numbers of collocation points, as spectral
methods are well known for their exponential rate of convergence.

The rest of the paper is organized as follows. In Section 2, we discuss the spectral method for the
approximate solution of Eq (3). Section 3 includes some useful lemmas and convergence analysis of
our proposed scheme in L., norm. In Section 4, we perform some numerical test to confirm the spectral
accuracy and Section 5 consist of conclusion.

AIMS Mathematics Volume 7, Issue 4, 4946-4959.



4948

2. Spectral collocation method

In order to fully use the properties of orthogonal polynomials for ease of convergence analysis,
spectral methods will be employed on the standard interval[—1,1]. For this reason, we use the
following transformation

x=§(1+t), t=27x—1.
Using this transformation, Eqs (3) and (4) will take the form:
u" (1) = Tl Al®OuP @) + X BiOuP (et + @, — 1) + G(1), t € [-1,1] (5)
subject to
u(=1) =yo, (D) = (3) 3 (6)
Where
T N> (T
u(®) =y (5& + t)),c(t) =(5) ¢ (5(1 + t)>,
™? . (T T T
AO = (5) }\0 <E (1 + t)),Al = (5) )\1 (E (1 + t)),
N> (T T T
By = (E) Ho (E 1+ t)) By = (E) Uy (E 1+ t)>,
with

u(-1) =u_,, u'(-1) =u",,

, T
where u_; =y, u_; = (5) V-
For any given positive integer N, we denote the collocation points by {tj}j=0 , which is the set of

(N + 1), Legendre Gauss points corresponding to weights w; . Let Py denote the space of all
polynomials of degree not exceedingN. For anyv € C[—1, 1], we define the Lagrange interpolating
polynomial

Ivww(t) = X5 v(4)F®), (7)

where {F (t j)} is the Lagrange interpolation polynomial associated with the Legendre collocation

N
j=0
points {tj }?;0. Spectral method will be employed to the integrated form. For this reason, integrate Eq (5),
. , T
and using u_; = y,, u_; = (E) V1, We get,
4 1 t t t

W (t) =uly + Ny [ AUV ()ds + X1, [ Bi()uP (s +ay — ds + [~ G(s)ds, (8)

u(t) =u_y + [ u'(s)ds. 9)

We assume that Eqs (8) and (9) holds at collocation points {tf}?]:o’ to get
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u'(t) =uly + Xl f_t’1 A (HuP(s)ds + Y1, f_tfl B;(s)u®(a;s + a; — 1)ds + f_t’l G(s)ds,
(10)

u(ty) =u_q + [T u'(s)ds, t € [-1,1] (11)

for 0 < j < N. In order to compute all these integral terms efficiently for the higher-order accuracy,
we transform the interval of integral from [—1, tj] to[—1,1] , as we have a very little information
available for both u(s) and u'(s), we get

() =uly + Lok, [ A (s(60))u® (s(60)) do +
tJHZl 0 f B, (s ( (¢, <p)) ul )(als(tj,(p) +a - 1)d<p + t’2—+1f_11 G (s(tj, (p)) do , (12)

u(t) =u_, + U ( (¢ (p)) do, t € [-1,1] (13)

1+t; ti-1
=_J J A .
where, we use s Pt s(t], (p).

Now using the (N + 1) Gauss quadrature rule relative to the Legendre weight to approximate the
integral term, we get

u =+ 2 (ZAL s(t. 1)) u® (st 01) ) )

=0

1 N
t+1
i ; Z (Z B, (s’(t-,(Pk)) u®D(a;s(t;, i) + @, — 1)wk>
=0 k=0

tj+1
+ L2506 (s(t,00)) i (14)
tj+1
U =uU_q +_Zk olU ( (& <Pk)) W (15)
Letuj = u’(tj), u; ~ u(tj), 0<j <N. The set {@}¥-, coincide with the collocation points
N
{t]}]=0-
We expand u’,u and G using Lagrange interpolating polynomials, that is
u’(S) = Zgzoullng(S), u(S) = Zg:oupr(s)l G(S) ~ Zg:o Gpr(S)) (16)

. . AN N N .
The Legendre spectral collocation method is to seek {uj}j=0’ {uf}j=o’ {Gf}j=o’ holds at colocation
points, then the spectral approximation to Eqs (3) and (4) is given by:

uj = tjzlz Zu”ZAl st 0)) By (s(t5,01)) @

=0 \p=0 k=0
t: +1 : al Al
+ 2 > Z Z Z (t,(pk) F (als( <pk)+al —1)wk
1=0 \p=0 k=0
+ LT Gy ZNoFy (5(t 1)) s (17)
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U =u_q+ % D=0 Up Dh=0Fp (s(t-,gok)) Wg- (18)

To compute F,(s) efficiently, we express it in terms of the Legendre functions of the form [8].

F,(s) = =0 fymLm(s), (19)

where f,,m, is called the discrete polynomial coefficients of F,. The inverse relation is

1 yvn 1/3\7!
fpm = %Zm=o Fm(xi)Lm(xi)wi = Lm(xi)/ym: Ym = (m + /2) ,m<N, (20)
-1
andyy = (N + 1/2) for the Gauss and Gauss-Radau formulas.

3. Convergence analysis

To prove the convergence analysis of our method we first introduce the following useful lemmas.
3.1. Lemma 1

Assume that a (N + 1) —point Gauss, or Gauss-Radau, or Gauss-Lobatto quadrature formula
relative to the Legendre weight is used to integrate the product u¢@, where u € H™(I) with

[:= (—1,1) forsome m =1 and ¢ € py. Then there exist a constant C independent of N such
that [7].

< CN™™[ulgnpllellzay,

| utopedr = wen

where
m 1/2 N
|u|ﬁ,N(1) = Z ”u”LZ(I)' and (u, @)y = Z wpu(x) @ (xy).
k=min (m,N) k=0
3.2. Lemma 2

Assume that u € H™(I) and denote Iyu the interpolation polynomial associated with
the(N + 1) —point Gauss, or Gauss-Radau, or Gauss-Lobatto points {x;}¥_,. Then

lu — Iyull 2y < CN"™|ulg neny (2D

llu = Iyullioqy < CN3*™ul gy (22)

Proof. The estimation in Eq (21) is given on p. 289 of [7]. The following estimate is also given in [7].
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e — Iyullysy < CNZ V2 Mg vy, 1<s<m,

using the above estimate and the inequality

1
Wllio@iy < g + 2lIVl12G ) IV, Vv € HY(a D),

one obtains the estimation given in Eq (22).

3.3. Lemma 3

Assume that Fj(t) bethe j — th Lagrange interpolation polynomial with the (N + 1) —point

Gauss, or Gauss-Radau, or Gauss-Lobatto points {t,}¥_,. Then

maxieg Z?:ol F}(t)| < CVN.

3.4. Lemma 4 (Gronwall inequality)
Let T > 0 and C;,C, = 0. If a non-negative integrable function E(t) satisfies
E(t) < C [, E(as)ds'+C, [, E(s)ds + G(t), vt €[0,T],

where 0 < @ < 1 isaconstantand G(t) is a nonnegative function, then
IE oy < CIG ooy

Proof. It follows from Eq (23) and a simple change of variable that
1t , t
E(t) < Clzfo E(s)ds' +C, [ E(s)ds + G(t), vVt €[0,T],

since 0 < a <1 and where G(s) = 0, we have

E(t) < Ca‘lft E(s)ds + G(t),
0

which is a standard Gronwall inequality. This leads to the estimate given in Eq (26).

3.5. Theorem 1

(23)

(24)

(25)

(26)

Consider the pantograph Eqs (3) and (4) and its spectral approximations Eqs (17) and (18). If
the functions A;(t) and y;(t) are smooth (which implies that the solution of Eqs (3) and (4) is also

smooth), then
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1 1
[U® =4 ® ||me < CN3/4—m z |Ajulgm_1nqy + CN3/4™ Z 1Biul gm-1.n0)

1=0 =0

+CNY2 Ty Bl amva 1l 2o .

where U is the polynomial of degree N associated with the spectral approximation Eqs (17) and (18)
and C is a constant independent of N.

Proof. Following the notation in Lemma 1, the numerical scheme given in Eqs (17) and (18), can be

written as
1
ti+1
wi=ul, + Z > Z (Al (s(tj, (pk)) u® (s(tj, <pk))) t
1=0 "
t+1v
+-2 z (Bl (s(tj, (pk)) U(D(als(tj,fpk) +a; — 1))
2 =0 Nit;
.
+ [ G(s)ds (28)
w=u_y + [TU'(s)ds. (29)
In order to use Lemma 1, we write Eqs (28) and (29) as
1
ti+1 1
w =ul, +- > Z j (Al (s(tj, (pk)) 40 (s(tj,gok))) de
1=0 "1
b+l (!
] > Z f <Bl (s(t‘,gok)) UO(a;s(tj, ox) + o — 1)) do
=0 "1
+1Y6(s)ds = L=3L, 1(ty), (30)
where
ti+1 (*
L) =u_,+-2 f (Al (s(tj, <pk)) u® (s(tj, (pk))> do — (Al (s(tj, <pk)) u® (S(tj,(pk))>
—1

Nt'

+ f_ll (Bl (s(t., <pk)) UD(ays(t;, or) + a, — 1)) do
~ (B (505, 0) U (@s(ty ) + @~ 1))

Using the estimation given in Lemma 2, we get

N,t’

L llioqy < CN3/*™| Al gy + CN3/4_m|Bl|ﬁm,N(I)||U(l)”L2(I)

Multiplying F;(t) on both sides of Eqs (30) and (31) summing up from 0 to N yield

U'(t) =uly + oo Iy [, AU (8)ds + Thoo Iy [-, BiSHUP (a5 + o —
Dds 41, f_tl G(s)ds, 31
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U) =u_y +Iy [ U'(s)ds. (32)
Similarly, multiplying F;(t) on both sides of Eqs (10) and (11) summing up from 0 to N yield

Ivu' () =uly + Sholy 1, A)u®@(s)ds + Thoo Iy [* Bi(s)u® (a;s + o —
Dds 1, f_tl G(s)ds, (33)

Iyu(t) =u_q + Iy f_tjl u'(s)ds. (34)
It follows from Eqs (31)—(34) that

ey () + Iyu'(t) — u'(t)
1 t
= I A(s)e,(s)ds

1
t ¢ 1
+ Z INf Bi(s)ey (s + a; — 1)ds +1Nf ey(s)ds + Z Ji(®),
=0 "1 -1 1=0

t

ey + Iyu(t) —u(t) = IN] e, (s)ds,
1

where

ey (1) =u'(t) —U'(1), e,(t) = u(t) - U(),

Consequently,

e (t) = f e,(s)ds + Z j Ai(s)ey(s)ds + z j B,(s)ey (a;s + a; — 1)ds
1 1=0 "1 1=0 "1

1 1
O +AO+LO+ ) H®)
1=0 =0

t
e, (t) = f e, (s)ds + f3(t) + f,(t),

where fi(t) = u'(t) — IyU'(8), f3(8) = u(t) — Iyu(t)

t t t t

e, (s)ds — j e, (s)ds,

-1

f(t) = INf

-1

e,(s)ds — j

-1

eu(s)ds, £ = Iy |

-1

t t t

A(s)e,(s)ds + INf B,(s)e, (a;s + a; — 1)ds

-1

Hy(t) = INf

-1

A(s)e,(s)ds — f

-1

t
— f B;(s)ey (a;s + a; — 1)ds

-1

Using Lemma 2,

||f1(t)||L°°(I) < CN3/4_m|u'|gm,N(1), “f3(t)”L°°(I) < CN3/4_m|u’|FIm,N(I)
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Using Lemma 2, with m =1,
12Ol oy < CNTY*e, (D)o, 1fa(Olliwogy < CNTV4 ey (8)]100q)
IH (Ol oy < CN7Y* ey ()=
It follows from the Gronwall inequality presented in Lemma 4, to get

||eu(1)||Loo(,) < C(IWllgeo ey + W2llieoery)

Our next concern is the estimation of ||/ ||z () and ||/ eo(py. First

N
Wnllioy < Clliall oy + Mizll oy maxees D F() < CNY2 U lgmgy
j=0

< CNV/2Z—m (”eu(l)”LooU) + ”u”L°°(I))- (35)
/210y < CN3/4_m|Alu|ﬁm,N(1) + CN3/4_m|Blu(alt)|ﬁm,N(l)
The above two estimates, together with Eq (35), yields:

lew [l mgy < ENYVE(Wallioqy + Wallieny) + CN47™ A gy
+ CN**™Bu(a,) | gmna),

which leads to the result of Theorem 1.
4. Numerical examples

In order to confirm the theoretical results, we perform some numerical test to illustrate the
accuracy and efficiency of the proposed scheme.

4.1. Example 1

Consider the following constructed example [1]

3 X
n —— Y 2
y(x)—4y(x)+y(2) x*+2, 0<x<1

y(0) =y'(0) = 0.

The exact solution is given by y(x) = x2. The maximum point-wise error between numerical
solution and exact solution for different value of N is shown in Figure 1, Table 1.

AIMS Mathematics Volume 7, Issue 4, 4946-4959.
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Figure 1. Example 1: The error behavior in different norm.

Table 1. Example 1: The point-wise error in different norms.

N L, error L, error L, error
6 2.588e794 3.730e794 2.630e794
8 5.850e796 4.881e796 4373706
10 6.988¢798 4736798 4926798
12 7.704¢710 5.233¢710 2.701e710
14 3.842¢712 3.101e712 1.362¢712
16 1.688e~ 14 1.609¢~ 14 1.688e~ 14
18 1.665¢71° 1.305¢715 1.108e71°
20 6.661e716 6.186e¢716 4.856¢ 16

4.2. Example 2

Consider the following nonlinear second-order equation of pantograph type

y"(x) = =y() + 592 (3),

y©) =1 y(0)=-2

x=0

The exact solution is given by y(x) = e~?*. The maximum point-wise error between numerical
solution and exact solution for with respect to different N is shown in Figure 2, Table 2.

AIMS Mathematics
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Figure 2. Example 2: The error behavior in different norm.

Table 2. Example 2: The point-wise error in different norms.

N L, error L, error L, error
6 1.901e%0° 4.650e 701 7.400e7 01
8 5.850e7 01 7.255e792 1.009¢7°1
10 2.218e72 4024703 6.456¢793
12 1.093¢7%3 3.674¢%* 5.585¢7%4
14 7.824e705 1.537¢795 2.584¢705
16 3.480e796 8.481e797 1.295¢70¢
18 1.039¢7%7 2.590e798 3.863¢78
20 6.763e¢798 8.806e 99 1.602¢7%?

4.3. Example 3

Consider the following second-order equation

x x
y'(x) = -y (E) — y2(t) + sin*(x)+sin? (E) + 8, x>0
y©© =2 y'(0)=0.

5—cos2x

The exact solution is given by y(x) = . The error behavior relative to N is displayed in

Figure 3, Table 3.
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Figure 3. Example 3: The error behavior in different norms.

Table 3. Example 3: The point-wise error in different norms.

N L, error L, error Ly, error
6 1.081e792 8.895¢793 8.615e793
8 2.474e7%4 1.734e7%4 1.324e7%4
10 8.401e70¢ 4.221e70 4.782e70¢
12 1.809¢7°7 8.732¢708 1.002¢7Y7
14 2.396e7% 1.368e799 1.480e79°
16 2.776e11 1.361e711 1.463e711
18 2.223e713 1.201e713 1.339¢713
20 2.442e715 1.098e~ 15 1.245e~1°

5. Conclusions

A spectral method was introduced for the numerical solution of higher-order delay differential
equation of pantograph equation to achieve the high order accuracy. A detail analysis of the proposed
scheme is provided in L, norm. By solving some numerical examples, it is shown that the error
between the exact and numerical solution decays exponentially, which further authenticates our

theoretical results.
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