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Abstract: Consistently, influenza has become a major cause of illness and mortality worldwide and
it has posed a serious threat to global public health particularly among the immuno-compromised
people all around the world. The development of medication to control influenza has become a major
challenge now. This work proposes and analyzes a structured model based on two geographical areas,
in order to study the spread of influenza. The overall underlying population is separated into two sub
populations: urban and rural. This geographical distinction is required as the immunity levels are
significantly higher in rural areas as compared to urban areas. Hence, this paper is a novel attempt to
proposes a linear and non-linear mathematical model with adaptive immunity and compare the host
immune response to disease. For both the models, disease-free equilibrium points are obtained which
are locally as well as globally stable if the reproduction number is less than 1 (R01 < 1 & R02 < 1) and
the endemic point is stable if the reproduction number is greater then 1 (R01 > 1 & R02 > 1). Next,
we have incorporated two treatments in the model that constitute the effectiveness of antidots and
vaccination in restraining viral creation and slow down the production of new infections and analyzed
an optimal control problem. Further, we have also proposed a spatial model involving diffusion and
obtained the local stability for both the models. By the use of local stability, we have derived the
Turing instability condition. Finally, all the theoretical results are verified with numerical simulation
using MATLAB.
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1. Introduction

Disease epidemics are the outcomes that occur when microorganism (bacterium, germ, plague etc.)
interact with healthy organism and give rise to infection by drastically altering normal activity of
bodies or encouraging immune system to build defensive comeback that results in disease symptoms.
Epidemics are major considerable causes of death globally. Infections are hard to wipe out and
some times leads into pandemic. Influenza is a profoundly irresistible respiratory infection that can
cause serious health issues. Influenza is classified into four genera (type A, B, C and D), among
which Influenza A(IAV) can infect wide range of animals, birds and humans. These situations can
occur in those places which are overpopulated such as specific slum areas or those areas where the
environmental conditions act as a catalyst in spreading the infection. Influenza A is one of the serious
epidemic infecting which has given rise to several pandemics like swine flu. It specially affects people
of different ages and the symptoms remain in a body for 6–8 days. As mentioned earlier also, growth
of this disease is not very tough and there are several reasons responsible for the spread of it. For
example travelling, coming in contact with the infected person, air, coughing in front of someone,
etc. Breathing of respiratory droplets (which contain virus particles) from infected human usually
commence influenza infection [1]. As per the recent data [2], urban area people are more affected by
this disease in comparison to rural areas. One of the reasons behind it is the immunity of people staying
in these regions due to which the spread of infection in both the regions follow a different pattern [3].
Also, this uncommon spread is due to demographic regions, populace portability, financial levels and
clinical administrations between these metropolitan and provincial regions which might impact flu
scourges, seriousness furthermore, transmission. According to Naba Kumar Goswami [4], influenza
has infected around 5 million individuals and approx. 2–5 million deaths are guessed globally. Four
pandemics have occurred in the last century as a result of the development of a novel influenza strain
for which human population has little or no immunity. These pandemics are (i) Spanish flu resulted
40−100 million deaths in 1918−1920 due to H1N1 strain (ii) Asian flu resulted 1−2 million deaths
in 1957− 1958 due to H2N2 strain (iii) Hong Kong flu 0.5− 2 million deaths in 1968− 1970 due
to H3N2 strain (iv) Swine Flu resulted upto 575,000 million deaths in 2009− 2010 due to H1N1
strain [5–7]. Several researchers have proposed immunological mathematical models for influenza
transmission dynamics [8–11]. As per [12] during contamination, innate immunity resistance gives
principal line of protection and triggers provocative reactions. Adaptive immunity additionally assumes
a basic part in the leeway of viral microbes during the later phases of contamination and it is different
in different age group [13]. The modelling of immune in influenza is further essential because it can
help in prediction of the fact that during the immune response to viral infection how antiviral therapy
would be more effective. In [14–18], it has been shown that how the antiviral therapy is effective to
attack pathogen in presence of immune response to Influenza. Their model advised that prolonged
pathogen restricts immune cells production. So, it is suggested to give treatment within two days
of infection. Vaccination is also a fundamental technique to thwart contamination and reduce death
rate [19]. The World Health Organization delivered a proposal for the arrangement of occasional flu
immunization every year based on strains that are anticipated to course [20, 21]. Despite the fact
that vaccination brings defensive safe reactions against the surface antigens of flu, constant hereditary
transformations permit the infection to ultimately sidestep antibody initiated assurance. The optimal
control hypothesis is a fantastic scientific tool for making decisions in complex dynamical contexts.
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It’s also been linked to infectious disease issues and it’s a good strategy for figuring out how well
we can control a disease [22–25]. Another significant active research which has shown very less
light is the study of spatial models via spatial patterns. Because of the localised transmission or
another form of interaction, many critical epidemiological and immunological phenomena are strongly
influenced by space. As a result, mathematical models with time and space help to investigate the
process of disease spreading. In 1952, Alan Turing was the first researcher who proposed the idea
of pattern formation [26]. According to him, a couple of reaction-diffusion equations can be used to
describe spatial patterns. In the system, a system of an ordinary differential equation is asymptotically
stable without diffusion, but with the addition of diffusion, the system loses its stability and becomes
unstable, which gives rise to the condition of Turing instability. This Turing instability is responsible
for spatial patterns, and this idea was firstly investigated in morphogenesis and then used in other
branches of science. These spatial patterns can identify the exact distribution in both space and time of
the population. The spatial patterns are of two types Turing and Non-Turing. The stationary solution
of the reaction-diffusion system gives rise to Turing patterns such as spots, stripes, labyrinthine, and
mixed. Non-Turing patterns occur when temporal oscillation produced by Hopf-bifurcation collide
with spatio-temporal patterns. The non-Turing patterns contain travelling waves, spiral, and target
patterns. Segal and Jackson firstly applied the Turing instability idea to the prey-predator system for
nonhomogeneous prey-predator interaction [27–31]. Hence, in reference to the above literature, we
have developed two models in context to rural and urban areas focusing exclusively on the immune
response of people in these stratified population. We have assumed that people staying in urban area
have a weak immune response [3] so that the transmission rate of infection follow Holling type-I
functional response in comparison to rural areas the infection rate follow Holling type-II functional
response. We will try to conduct the comparative analysis for both the models which would include
the dynamical analysis, optimal control and spatial dynamics.

1.1. Biological process

The attachment of a virion to a target cell (a susceptible cell) is the first step in viral replication
for influenza. Upon passage, the viral envelope wires with the endosomal film, empowering the viral
ribonucleoproteins to enter the core of the cell, synthesise viral RNAs, and the synthesised RNA is
translated into proteins. At long last, the proteins are collected into new virions at the plasma film
and the new virions are let out of the cell. Innate signalling and adaptive immune responses both
play important roles in protecting against influenza virus infections and achieving viral clearance.
Innate immunity assumes a basic part in proficient and fast constraint of viral contamination and for
adaptive immunity initiation. T-cells and antibodies (B-cells) are two adaptive immune responses that
are certain to all invaders. T cells play a key role for reduction of virion. When someone is infected
with Influenza A, CD8+ cells are activated to attack the infected cells. It differentiates into CTLs that
target the virus by producing cytotoxic granules that are responsible for restricting virus replication.
CD4+ cells contribute towards B cells activation and antibody production. The morbidity is reduced
by B cells and it also helps in recovery upon infection. The antibodies generated by B cells make it
easier to eliminate infection and also speed up the expansion of memory CD8+ cells after infection.
Antibody can inhibit the pathogen causing Influenza and is more important to inhibit transmission [32].
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1.2. Paper structure

The paper is organised as follows : In section 2 we present our mathematical models with adaptive
immune response (T cell and B cell) in context to urban and rural areas and check positivity and
boundedness of the system. In section 3, the summarized results of reproduction number, equilibrium
points and local stability is done and detailed part is shown in Appendix. In subsection 3.1 global
stability is done by graph theoretic approach. Section 4 covers the optimal control problem using two
controls. Finally, section 5 encapsulate the development and analysis of a spatial linear and non-linear
model to visualize the turing effect. Further, in the numerical section 6, all the solutions are validated
and spatial patterns are obtained in validation to section 5 followed by a detailed summarizing of our
results in the conclusion discussed in section 7.

2. Formulation of model

We have formulated two immune response models. In model 1, we have assumed Holling type-I
functional response for transmission rate of infection whereas Holling type-II functional response is
assumed for model 2. As mentioned earlier, the idea behind suggesting two models with different
functional response is due to the fact that the rate of healthy cells getting infected in rural area is less
in comparison to urban area due to the fact of direct correlation between immunity and infection rate
of population [33], further immune response of ruralite is better then metropolis [2, 3], which is also
evident from Figures 1 and 2 [2].

Figure 1. Monthly percentage of visits for influenza in urban areas in Shenyang(China),
2010–2018.

Figure 2. Monthly percentage of visits for influenza in rural areas in Shenyang(China),
2010–2018.
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(Model 1: Urban Area) The model along with Holling type-I functional response takes the
following form:

dX
dt

= λ−µX−βXV

dY
dt

= βXV −µY − pY Z

dV
dt

= kY −µV −qVW

dW
dt

= gVW −hW

dZ
dt

= cY Z−bZ

(2.1)

(Model 2: Rural Area) The proposed model is defined into following five classes that are density
of distinct populations in time t.

dX
dt

= λ−µX− βXV
V +X

dY
dt

=
βXV

V +X
−µY − pY Z

dV
dt

= kY −µV −qVW

dW
dt

= gVW −hW

dZ
dt

= cY Z−bZ

(2.2)

The description of these five classes and the parameters used are mentioned in Table 1.

Table 1. Description of parameters.

Parameter Description
X(t) Class of susceptible cells
Y (t) Class of infected cells
V (t) Virus particles
Z(t) Quantity of virus specific cytotoxic T lymphocyte
W (t) Virus specific antibodies
λ Growth rate (Susceptible cells)
β Infection rate
µ mortality rate
p Elimination rate (contagious cell by T-cells)
k Virus production rate by infective
q clearance rate( virus by B-cells)
g activation rate of B-cells
h Decay rate (B-cells)
c activation rate of T-cells in the presence of infection
b Decay rate (CT L cells)
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The flow chart showing the interaction between each of the compartment is shown in the Figure 3.

Figure 3. Flow chart.

2.1. Positivity & boundedness of the system

In this section we would be discussing the positive invariance and boundedness of the system (2.1)
∀t > 0.

Theorem 2.1. The system (2.1) is positively invariant.

Proof. Let B(0) = B0 ∈ R5
+, where B = (X ,Y,V,W,Z) ∈ R5

+ than the system (2.1) can be written in
matrix form as Ḃ = E(B) given as

E(B) =


λ−µX−βXV

βXV −µY − pY Z
kY −µV −qVW

gVW −hW
cY Z−bZ

 (2.3)

where, E : D+→ R5 and E ∈ D∞(R5).
Now, we observed that Ei(B)|Bi=0 = λ > 0 for (i = 1,2,3,4,5) where B(0) ∈ R5

+ as a result Bi = λ.
Thus, the system (2.1) is positively invariant in R5

+ ∀t > 0 [34]. �

Theorem 2.2. E = ((X ,Y,V,W,Z) ∈ R5
+ : 0 < X +Y < λ

µ ,0 < V < k λ

µ2 ,0 < W + Z < θ1
θ2
) is the

bounded region for the system.
Proof. From first two equations of system (2.1), we get

dX
dt

+
dY
dt

= λ−µ(X +Y )− pY Z

dX
dt

+
dY
dt
≤ λ−µ(X +Y )

which implies d(X+Y )
dt ≤ λ

µ by theorem of inequality [35].
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On putting the upper bound in third equation we get dV
dt ≤ k λ

µ−µV , resulting in dV
dt ≤

kλ

µ2 by theorem
of inequality [35].

dW
dt

+
dZ
dt

= gVW + cY Z−hW −bZ

d(W +Z)
dt

≤ g
kλ

µ2 W + c
λ

µ
Z−hW −bZ

Let us assume θ1 = max(gk λ

µ2 ,cλ

µ ),θ2 = min(h,b), than

d(W +Z)
dt

≤ θ1(W +Z)−θ2(W +Z)

which implies d(W+Z)
dt ≤ θ1

θ2
by theorem of inequality [35].

�
This proves the boundedness of (2.1). In similar manner, the boundedness and positivity for non-

linear model can be proved.

3. Dynamical analysis

The analytic results which involves basic reproduction number, local stability for both the systems
is summarized in Table 2 and the detailed calculations are mentioned in the Appendix.
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Table 2. Highlights of analytical results of urban area & rural area in the temporal models.

Analytical results of urban area
Reproduction Number R01 =

λkβ

µ3

Existence of equilibrium
points

• E0U(
λ

µ ,0,0,0,0).

• E1U(
µ2

kβ
, µ2(R01−1)

kβ
, µ(R01−1)

β
,0,0) exist if R01 > 1.

• E2U(
λg

gµ+βh ,
b
c ,

h
g ,

gkb−µhc
cqh , λβch−µb(µg+βh)

pb(µg+βh) ) exist if
gkb > µhc and λβch > µb(µg+βh).

Local Stability • E0U is stable if R01 < 1.
• E1U is stable if R01 > 1.
• E2U is stable if gkb > µhc, λβch > µb(µg+ βh)

and R01 > R1, where R1 =
βh(µg+βh)

g2µ2 .
Optimum Controls • T ∗1 = min(1,max(0, 1

B1
(χ2−χ1)

βX∗V ∗
V ∗+X∗ ).

• T ∗2 = min(1,max(0, 1
B2
(χ3kY ∗).

Here B1 and B2 are the benefits and costs of the
introduced treatments.

Analytical results of rural area
Reproduction Number R02 =

kβ

µ2

Existence of equilibrium
points

• E0R(
λ

µ ,0,0,0,0).

• E1R(
1

R02−1 ,
µ
kV1R,

λR02(R02−1)
µ+(µ+β)(R02−1) ,0,0) exists if

R02 > 1.
• E2R(X∗, b

c ,
h
g ,

gkb−cµh
cqh , (cβh−µgb)X∗−µhb

pb(h+gX∗) ),
exists if gkb > cµh,R02 > R2. Here

X∗ =
λg−(µ+βh)±

√
λg−(µ+βh)2+4µgλh
2µg and

R2 =
bk(gX∗+h)

µchX∗ .
Local Stability • E0R is stable if R02 < 1.

• E1R is stable if R02 > 1.
• E2R is stable if gkb > µhc, h2b > X∗2g and R02 >

R2, where R2 =
bk(gX∗+h)

µchX∗ .
Optimum Controls • T ∗1 = min(1,max(0, 1

A1
(χ2−χ1)βX∗V ∗).

• T ∗2 = min(1,max(0, 1
A2
(χ3kY ∗).

Here A1 and A2 are the benefits and costs of the
introduced treatments.
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3.1. Global stability

This section would focus on the global stability of the non-trivial equilibrium point for both the
Models 1 and 2 using graph-theoretic method as in [36, 37] to construct the Lyapunov function we
shall use a directed graph. A directed graph has a set of ordered pair say (i, j) and vertices where
(i, j) is known as arc to terminal vertex j from initial vertex i. For the terminal vertex j, d−( j) is the
in-degree of j which denotes the number of arcs in the digraph and for initial vertex i, d+(i) is the
out-degree of vertex i which denotes the number of arcs in the digraph. Let us consider a weighted
directed graph say χ(N) over a m× n weighted matrix N, where the weights (ai j) of each arc if they
exist are ai j > 0 otherwise ai j = 0. We consider ci as the co-factor of li j of the Laplacian of χ(P) which
is given by:

li j =

{
−ai j i , j

∑k,i ai j i = j

If there is a strongly connected path i.e., directed to and fro path for the arcs in χ(P) then ci > 0∀i =
1,2...,q. We shall also use Theorem 3.3 and Theorem 3.4 from [36, 38], which will help us in the
construction of Lyapunov function. The theorems states:

Theorem 3.1. • If ai j > 0 and d−(i) = 1, for some i, j, then

ciai j =
q

∑
k=1

c ja jk

• If ai j > 0 and d+( j) = 1, for some i, j, then

ciai j =
q

∑
k=1

ckaki

We shall also use the below theorem of [36].

Theorem 3.2. Let us consider an open set L⊂ Rm and a function f : L→ Rm for a system

ż = f (z) (3.1)

and assuming:
a) ∃ Ai : L→ R, Gi j : L→ R and ai j ≥ 0 such that

A′i = A′i|3.1 ≤ ∑
m
j=1 ai jHi j(z), with z ∈ L, i = 1, . . . ,m

b) For N = [ai j], of (H,N) each directed cycle Dc satisfies:

∑(i, j)∈ε(Dc)Hi j(z)≤ 0 , z ∈ L

where ε(Dc) is set of arcs in Dc
Then for ci ≥ 0, i = 1, . . . ,m the function is:

A(z) =
m

∑
i=1

ciAi(z)

satisfies A′|3.1 ≤ 0, that is, A(z) is a Lyapunov function for 3.1.
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Proof. Construction of Lyapunov function : Let us assume that A1 =
(X−X∗)2

2 , A2 = Y −Y ∗−Y ∗ ln Y
Y ∗ ,

A3 =
(V−V ∗)2

2 , A4 =
(W−W ∗)2

2 , and A5 = Z−Z∗−Z∗ ln Z
Z∗ . Now by differentiation, we get A′1 = (X −

X∗)X ′ ≤ (λ+ µX∗)(X +Y ) + βXV X∗ = a12H12 + a13H13, where a12 = (λ+ µX∗),a13 = X∗. A′2 =
Y−Y ∗

Y Y ′ ≤ βXVV ∗+(µ+ pZ)(1+Y )Y ∗ = a31H31 + a25H25, where a31 = βV ∗,a23 = βY ∗. A′3 = (V −
V ∗)V ′ ≤ kVY + (µ+ qW )VV ∗ = a32H32 + a34H34, where a32 = k,a34 = V ∗. A′4 = (W −W ∗)W ′ ≤
g(W −W ∗)(V −V ∗) = a43H43, where a43 = g and A′5 = (Z−Z∗

Z )Z′ ≤ c(Z − Z∗)(Y −Y ∗) = a52H52,
where a52 = c. Thus, we get an associated weighted directed graph as shown in Figure 4. Then by
Theorem 3.5 [36] ∃c′is,1 ≤ i ≤ 5 such that A = ∑

q
i=1 ciAi is a Lyapunov function. Using Theorem 3.3

and 3.4 we get the relation between ci. For a14 > 0 and d+(4) = 1, we get c4a43 = c3a34 and for
a25 > 0, and d−(2) = 1, we get c2a25 = c1a12 + c3a32 + c5a52. Hence, c1 = c3 = c5 = 1, c4 = V ∗

g

and c2 =
λ+µX∗+k+c

Y ∗ . Thus, the Lyapunov function is A = A1 +
λ+µX∗+k+c

Y ∗ +A3 +
V ∗
g +A5 and for A′:

A′ = (X−X∗)X ′+ λ+µX∗+k+c
Y ∗ (Y−Y ∗

Y )Y ′+(V −V ∗)V ′+ V ∗
g (W −W ∗)W ′+(Z−Z∗)Z′. �

Global stability for non-linear model follow the same line.

Figure 4. Directed graph for linear model.

4. Optimal control

This section would focus on the optimal control problem. Our main objective is to control the
growth of infection, virus and interaction with new infected cells. The objective is to limit the mass of
clinically unhealthy cells over a finite time interval [0,T ] at a minimal cost of efforts during influenza
epidemic outbreak. For both the models, we have put two controls T1,T2, which gives the controlled
equations : 

dX
dt = λ−µX− (1−T1)

βXV
V+X

dY
dt = (1−T1)

βXV
V+X −µY − pY Z

dV
dt = (1−T2)kY −µV −qVW
dW
dt = gVW −hW

dZ
dt = cY Z−bZ

(4.1)

T1 = Efficacy of Vaccination to restrict new infection, T2= The effectiveness of antidote treatment to
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prevent production of virus. (1−T1) is the infection rate during vaccination and (1−T2) is the virion
production rate under antidote treatment.
The aim of optimization is to maximize the following objective function

J(T1,T2) =
∫ te

0
X +W +Z−

[
B1

2
T 2

1 +
B2

2
T 2

2

]
dt (4.2)

where, te is the time period of treatment and the positive constants B1 and B2 are the benefits and
costs of the introduced treatments. The controls T1(t) and T2(t) are assumed as bounded and Lebesgue
integrable.

J(T ∗1 ,T
∗

2 ) = max{J(T1,T2) : T ∗k ∈ T} (4.3)

controls set is defined below as

T = {T1(t),T2(t) : is measurable,0≤ Tk(t)≤ 1, t ∈ [0, te],k = 1,2}

Now we move further for Existence Theorem. For performing existence of control system we use
result from Lukes [39, 40].

Theorem 4.1. There exist a function used for control pair as (T ∗1 ,T
∗

2 ) such that

J(T ∗1 ,T
∗

2 ) = max(J(T1,T2)),(T1,T2) ∈ T.

Proof. For the proof following properties are needed [41]:
(1) Control set and state variable set correlating with it are not empty.
(2) T is convex and closed.
(3) RHS of state system is bounded by linear function in the state and control variable.
(4) Integrand of objective functional is concave on T .
(5) There exist constants m1,m2 > 0 and f > 1 such that the integrand I(X ,W,Z,T1,T2) of the objective
function satisfies

I(X ,W,Z,T1,T2)≤ m2−m1(|T1|+ |T2|)
f
2 . (4.4)

To prove these requirements, we have used Lukes’findings [39] to provide the existence of
solutions of system (4.1), which produces condition (1). By definition, the control set is convex and
closed, resulting in condition (2). As our system is bilinear in T1 and T2, the RHS of the system is
also bilinear. Using the boundedness of the solutions, (4.1) satisfies condition (3). Our objective
functional’s integrand is concave, so we also have the condition that is now required

I(X ,W,Z,T1,T2)≤ m2−m1(|T1|+ |T2|). (4.5)

where m2 is determined by the upper bound on X ,W and Z because B1 > 0 and B2 > 0. We conclude
that there is an optimal control pair (T ∗1 ,T

∗
2 )∈ T such that J(T ∗1 ,T

∗
2 ) =max(J(T1,T2)),(T1,T2)∈ T. �

The maximum principle proposed by Pontryagin [42] establishes the necessary conditions for an
optimal control problem. The Hamiltonian is defined as

H(t,X ,W,Z,T1,T2,χ) =

[
B1

2
T 2

1 +
B2

2
T 2

2

]
−X−W −Z +

5

∑
i=1

χi fi (4.6)
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where f1 = λ− µX − (1− T1)
βXV
X+V , f2 = (1− T1)

βXV
X+V − µY − pY Z, f3 = (1− T2)kY − µV − qVW ,

f4 = gVW −hW , f5 = cY Z−bZ.
For further solution Pontryagin’s maximum principle is applied and we have the following theorem.

Theorem 4.2. With the optimal condition T = (T1,T2), solutions G = (X∗,Y ∗,V ∗,W ∗,Z∗) for
corresponding state system (4.1), there exist adjoint variable χ1,χ2,χ3,χ4,χ5, which satisfies

χ′1 = 1+χ1µ+(1−T1)
βV 2

(V+X)2 (χ1−χ2),

χ′2 = (µ+ pZ)χ2− k(1−T2)χ3− cZχ5,

χ′3 = (1−T1)
βX2

(V+X)2 (χ1−χ2)+(µ+qW )χ3−gWχ4,

χ′4 = 1+qV χ3− (gV −h)χ4,

χ′5 = 1+ pY χ2− (cY −b)χ5
with transversality conditions χ j = 0, j = 1, ....,5. Further more, the best control for optimality is
given as T ∗1 = min(1,max(0, 1

B1
(χ2−χ1)

βX∗V ∗
V ∗+X∗ )),T

∗
2 = min(1,max(0, 1

B2
(kY ∗χ3)))

Proof. With the help of Pontryagin’s Maximum Principal the above equations can be acquired as

χ
′
1 =−

∂H
∂X (t), χ1(te) = 0

χ
′
2 =−

∂H
∂Y (t), χ2(te) = 0

χ
′
3 =−

∂H
∂V (t), χ3(te) = 0

χ
′
4 =−

∂H
∂Z (t), χ1(te) = 0

χ
′
5 =−

∂H
∂W (t), χ1(te) = 0

(4.7)

For solving T ∗1 ,T ∗2 , optimality conditions used are ∂H
∂T1

= 0, ∂H
∂T2

= 0.

Thus, ∂H
∂T1

= B1T1+(χ1−χ2)
βX∗V ∗
V ∗+X∗ = 0 and ∂H

∂T2
= B2T2−kY ∗χ3 = 0. Hence by T bound fact T1,T2

can be obtained. Further substitution of T1,T2 in defined control system (4.1) following optimality
system is acquired.

dX∗
dt = λ−µX∗− (1−T ∗1 )

βX∗V ∗
V ∗+X∗

dY ∗
dt = (1−T ∗1 )

βX∗V ∗
V ∗+X∗ −µY ∗− pY ∗Z∗

dV ∗
dt = (1−T ∗2 )kY ∗−µV ∗−qV ∗W ∗

dW ∗
dt = gV ∗W ∗−hW ∗

dZ∗
dt = cY ∗Z∗−bZ∗

χ′1 = 1+χ1µ+(χ1−χ2)(1−T ∗1 )
βV 2∗

(V ∗+X∗)2

χ′2 = (µ+ pZ)χ2−χ3k(1−T ∗2 )−χ5cZ∗

χ′3 = (1−u1)(χ1−χ2)
βX2∗

(V ∗+X∗)2 +χ3(µ+qW ∗)−χ4gW ∗

χ′4 = 1+χ3qV ∗−χ4(gV ∗−h)

χ′5 = 1+ pY ∗χ2−χ5(cY ∗−b)

T ∗1 = min(1,max(0, 1
B1
(χ2−χ1)

βX∗V ∗
V ∗+X∗ )))

T ∗2 = min(1,max(0, 1
B2
(kY ∗χ3)))

χ j(te) = 0, j = 1, .....,5
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The outcomes of both the controls that include vaccination & antiviral drug therapy are also
represented graphically. Optimal control for linear model can be calculated in the same manner and is
given by T ∗1 = min(1,max(0, 1

A1
(χ2−χ1)βX∗V ∗)) and T ∗2 = min(1,max(0, 1

A2
(χ3kY ∗))), where A1 and

A2 are the benefits and expenses of the applied treatments. �

5. Spatial model for the models

This section would explicitly focus on the formulation of spatial model and its linear analysis. The
model is formulated with Holling type-I functional response between healthy cells and virus cells. For,
spatial dynamics of the models, we add diffusion to the system
Linear model

∂X
∂t

= λ−µX−βXV +d1∇
2X

∂Y
∂t

= βXV −µY − pY Z +d2∇
2Y

∂V
∂t

= Y −µV −qVW +d3∇
3V

∂W
∂t

= gVW −hW +d4∇
4W

∂Z
∂t

= cY Z−bZ +d5∇
5Z

(5.1)

Non-linear model
∂X
∂t

= λ−µX− βXV
V +X

+d′1∇
2X

∂Y
∂t

=
βXV

V +X
−µY − pY Z +d′2∇

2Y

∂V
∂t

= Y −µV −qVW +d′3∇
3V

∂W
∂t

= gVW −hW +d′4∇
4W

∂Z
∂t

= cY Z−bZ +d′5∇
5Z

(5.2)

with the following initial conditions and zero-flux boundary conditions:

X(0,r)> 0, Y (0,r)> 0, V (0,r)> 0, W (0,r)> 0,Z(0,r)> 0 for r ∈Ω

∂X
∂η

=
∂Y
∂η

=
∂V
∂η

=
∂W
∂η

=
∂Z
∂η

= 0, r ∈ ∂Ω, t ≥ 0,
(5.3)

where r represents the position in (x,y), (x,y) ∈ Ω = [0,L]× [0,L] and ∂

∂η
is the normal derivative

along unit outward normal vector to ∂Ω. d1, d2, d3, d4, d5 and d′1, d′2, d′3, d′4, d′5 are the non-negative
diffusion coefficient for linear and non-linear models corresponding to X(t), Y (t), V (t), W (t), and Z(t)
respectively. Here ∇2 is the Laplacian operator in two-dimensional space. The description of the rest
parameters used in model (2.1) are already described in Table 1.
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5.1. Linear stability analysis and Turing instability

In this subsection, we have studied the local stability of system (5.1). For getting the equilibrium
points and their stability, substituting R.H.S of Eq (2.1) is equal to zero, we get

λ−µX−βXV =0,
βXV −µY − pY Z =0,

kY −µV −qVW =0,
gVW −hW =0,

cY Z−bZ =0.

(5.4)

Solving Eq (5.4), gives five set of equilibrium points i.e., (X1,0,0,0,0), (X2,Y2,V2,0,0),
(X3,Y3,V3,0,Z3), (X4,Y4,V4,W4,0), and (X∗,Y ∗,V ∗,W ∗,Z∗). Since we are only interested in
coexistence equilibrium point where X(t), Y (t), V (t), W (t), and Z(t) are presents. Hence we have
used E∗ = (X∗,Y ∗,V ∗,W ∗,Z∗) in our analysis.

The variational matrix of the system (2.1) about E∗ is rendered as:

V(E∗) =


a11 0 a13 0 0
a21 a22 a23 0 a25
0 a32 a33 a34 0
0 0 a43 a44 0
0 a52 0 0 a55

 (5.5)

where

a11 =−βV ∗−µ, a13 =−βX∗, a21 = βV ∗, a22 =−µ− pZ∗, a23 = X∗β,

a25 =−pY ∗, a32 = k, a33 =−qW ∗−µ, a34 =−qV ∗, a43 = gW ∗,

a44 =−h+gV ∗,a52 = cZ∗, a55 =−b+ cY ∗

Then, the characteristic equation of (5.5):

σ
5 +A1σ

4 +A2σ
3 +A3σ

2 +A4σ+A5 = 0, (5.6)
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where

A1 =− (a11 +a22 +a33 +a44 +a55),

A2 =(−a11a22−a33a22−a44a22−a55a22 +a23a32−a11a33 +a34a43

−a11a44−a33a44 +a25a52−a11a55−a33a55−a44a55)

A3 =(a13a21a32−a11a23a32−a23a44a32−a23a55a32 +a11a22a33

−a11a34a43−a22a34a43 +a11a22a44 +a11a33a44 +a22a33a44−a11

a25a52−a25a33a52−a25a44a52 +a11a22a55 +a11a33a55 +a22a33

a55−a34a43a55 +a11a44a55 +a22a44a55 +a33a44a55)

A4 =(a11a22a34a43−a25a34a52a43 +a11a34a55a43 +a22a34

a55a43−a13a21a32a44 +a11a23a32a44−a11a22a33a44 +a11

a25a33a52 +a11a25a44a52 +a25a33a44a52−a13a21a32a55

+a11a23a32a55−a11a22a33a55−a11a22a44a55 +a23a32a44

a55−a11a33a44a55−a22a33a44a55)

A5 =(a11a25a34a43a52−a11a25a33a44a52−a11a22a34a43

a55 +a13a21a32a44a55−a11a23a32a44a55 +a11a22a33

a44a55)

For the stability of system (2.1), the eigenvalues of Eq (5.6) must have negative real part. As the
local stability at E∗ are very complex to show analytically. So we check the stability by numerical
calculation in Numerical section.

Now, we study the effect of diffusion for the spatially homogeneous equilibrium point E∗ for system
(5.1).

Linearizing the system (5.1) about E∗, gives

u̇ =V(E∗)u+D′∆u, (5.7)

where

u =


X− x∗

Y − y∗

V − v∗

W −w∗

Z− z∗

 , D′ =


d1 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d4 0
0 0 0 0 d5

 (5.8)

and VE∗ is the variational matrix defined in Eq (5.5).
Next, we assume that (5.7) has the solution of the form

z = εck exp(σkt)cos(kxx)cos(kyy)+ c.c. (5.9)

where σ and k are the growth rate of perturbation and the wave number along r in time t, and c.c.
represents the complex conjugate. Substituting Eq (5.1) into Eq (5.7), and obtaining characteristic
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equation:

∣∣∣∣∣∣∣∣∣∣
a11− k2d1 0 a13 0 0

a21 a22− k2d2 a23 0 a25
0 a32 a33− k2d3 a34 0
0 0 a43 a44− k2d4 0
0 a52 0 0 a55− k2d5

∣∣∣∣∣∣∣∣∣∣
= 0. (5.10)

Solving (5.10), yields the characteristics equation

σ
5 +Γ1(k2)σ4 +Γ2(k2)σ3 +Γ3(k2)σ2 +Γ4(k2)σ1 +Γ5(k2) = 0. (5.11)

where

Γ1(k2) =−a11−a22−a33−a44−a55 +(d1 +d2 +d3 +d4 +d5)k2,

Γ2(k2) =− k2(a44d1 +a55d1 +a44d2 +a55d2 +a44d3 +a55d3 +a55d4 +a44d5 +a33(d1 +d2 +d4 +d5)

+a22(d1 +d3 +d4 +d5)+a11(d2 +d3 +d4 +d5))+a11a22−a23a32 +a11a33 +a22a33

−a34a43 +a11a44 +a22a44 +a33a44−a25a52 +a11a55 +a22a55 +a33a55 +a44a55

+(d3d4 +(d3 +d4)d5 +d2(d3 +d4 +d5)+d1(d2 +d3 +d4 +d5))k4,

Γ3(k2) =(d3d4d5 +d2(d3d4 +(d3 +d4)d5)+d1(d3d4 +(d3 +d4)d5 +d2(d3 +d4 +d5)))k6−
(a55d1d2 +a11d3d2 +a55d3d2 +a11d4d2 +a55d4d2 +a22d1d3 +a55d1d3 +a22d1d4 +a55d1d4+

a11d3d4 +a22d3d4 +a55d3d4 +(a22(d1 +d3 +d4)+a11(d2 +d3 +d4))d5 +a44(d2d3+

(d2 +d3)d5 +d1(d2 +d3 +d5))+a33(d2d4 +(d2 +d4)d5 +d1(d2 +d4 +d5)))k4+

(−a34a43d1 +a33a44d1−a25a52d1 +a33a55d1 +a44a55d1 +a11a33d2−a34a43d2 +a11a44d2+

a33a44d2 +a11a55d2 +a33a55d2 +a44a55d2 +a11a44d3−a25a52d3 +a11a55d3 +a44a55d3+

a11a33d4−a25a52d4 +a11a55d4 +a33a55d4 +a11a33d5−a34a43d5 +a11a44d5 +a33a44d5−
a23a32(d1 +d4 +d5)+a22(a55(d1 +d3 +d4)+a44(d1 +d3 +d5)+a33(d1 +d4 +d5)+

a11(d3 +d4 +d5)))k2−a13a21a32 +a11a23a32−a11a22a33 +a11a34a43 +a22a34a43−
a11a22a44 +a23a32a44−a11a33a44−a22a33a44 +a11a25a52 +a25a33a52 +a25a44a52−
a11a22a55 +a23a32a55−a11a33a55−a22a33a55 +a34a43a55−a11a44a55−a22a44a55−
a33a44a55,
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Γ4(k2) =(d2d3d4d5 +d1(d3d4d5 +d2(d3d4 +(d3 +d4)d5)))k8− ((a33d1d2 +(a22d1 +a11d2)d3)d4+

a55(d2d3d4 +d1(d3d4 +d2(d3 +d4)))+(a22(d1d3 +(d1 +d3)d4)+a11(d2d3 +(d2 +d3)d4)+

a33(d2d4 +d1(d2 +d4)))d5 +a44(d2d3d5 +d1(d3d5 +d2(d3 +d5))))k6 +(a44a55d1d2+

a11a44d3d2 +a11a55d3d2 +a44a55d3d2 +a11a55d4d2 +a22a44d1d3−a25a52d1d3 +a22a55d1d3+

a44a55d1d3−a23a32d1d4−a25a52d1d4 +a22a55d1d4 +a11a22d3d4−a25a52d3d4 +a11a55d3d4+

a22a55d3d4 +(a11a44(d2 +d3)−a23a32(d1 +d4)+a22(a44(d1 +d3)+a11(d3 +d4)))d5

−a34a43(d2d5 +d1(d2 +d5))+a33((a22d1 +a11d2)d4 +a55(d1d2 +(d1 +d2)d4)+

(a22(d1 +d4)+a11(d2 +d4))d5 +a44(d2d5 +d1(d2 +d5))))k4 +(a25a33a52d1 +a25a44a52d1+

a34a43a55d1−a33a44a55d1 +a11a34a43d2−a11a33a44d2−a11a33a55d2 +a34a43a55d2−
a11a44a55d2−a33a44a55d2 +a11a25a52d3 +a25a44a52d3−a11a44a55d3−a13a21a32d4+

a11a25a52d4 +a25a33a52d4−a11a33a55d4−a13a21a32d5 +a11a34a43d5−a11a33a44d5+

a23a32(a55(d1 +d4)+a44(d1 +d5)+a11(d4 +d5))−a22(a44a55d1 +a11a44d3 +a11a55d3+

a44a55d3 +a11a55d4 +a11a44d5−a34a43(d1 +d5)+a33(a55(d1 +d4)+a44(d1 +d5)+

a11(d4 +d5))))k2−a11a22a34a43 +a13a21a32a44−a11a23a32a44 +a11a22a33a44−
a11a25a33a52 +a25a34a43a52−a11a25a44a52−a25a33a44a52 +a13a21a32a55−a11a23a32a55+

a11a22a33a55−a11a34a43a55−a22a34a43a55 +a11a22a44a55−a23a32a44a55 +a11a33a44a55+

a22a33a44a55,

Γ5(k2) =(d1d2d3d4d5)k10 +(−a55d1d2d3d4− (a44d1d2d3 +(a33d1d2 +(a22d1 +a11d2)d3)d4)d5)k8+

(−a25a52d1d3d4 +a22a55d1d3d4 +a11a55d2d3d4−a23a32d1d5d4 +a11a22d3d5d4+

a33(a55d1d2 +(a22d1 +a11d2)d5)d4−a34a43d1d2d5 +a44(a55d1d2d3+

(a33d1d2 +(a22d1 +a11d2)d3)d5))k6 +a25a44a52d1d3−a22a44a55d1d3−a11a44a55d2d3+

a11a25a52d4d3−a11a22a55d4d3−a11a22a44d5d3 +a23a32a55d1d4 +a23a32a44d1d5−
a13a21a32d4d5 +a11a23a32d4d5 +a34a43(a55d1d2 +(a22d1 +a11d2)d5)−a33(a44(a55d1d2+

(a22d1 +a11d2)d5)+d4(−a25a52d1 +a11a55d2 +a22(a55d1 +a11d5))))k4+

(−a23a32a44a55d1−a11a34a43a55d2 +a11a33a44a55d2 +a13a21a32a55d4−a11a23a32a55d4+

a25a52(a34a43d1−a11a44d3−a33(a44d1 +a11d4))+a13a21a32a44d5−a11a23a32a44d5+

a22(a11a44a55d3−a34a43(a55d1 +a11d5)+a33(a11a55d4 +a44(a55d1 +a11d5))))k2+

a11(a25(a33a44−a34a43)a52 +(a23a32a44 +a22(a34a43−a33a44))a55)−a13a21a32a44a55.

Since, the system (2.1) is stable, therefore the system (5.1) is also stable. For Turing patterns
system (5.1) breaks its stability and becomes unstable for some values of diffusion coefficients. Now,
we discuss the Turing instability condition of the diffusive model (5.1). Mathematically, Turing
instability for (5.1) occurs if at least one root of Eq (5.11) has a positive real part for some k ≥ 0.
Therefore, diffusion-driven instability occurs when Γ5(k2) ≤ 0 holds for at least one k. Hence, the
condition for diffusion instability is given by

Γ5(k2) = Ψ1(k2)5 +Ψ2(k2)4 +Ψ3(k2)3 +Ψ4(k2)2 +Ψ5(k2)+Ψ6, (5.12)
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Ψ1 =(d1d2d3d4d5)

Ψ2 =(−a55d1d2d3d4− (a44d1d2d3 +(a33d1d2 +(a22d1 +a11d2)d3)d4)d5)

Ψ3 =(−a25a52d1d3d4 +a22a55d1d3d4 +a11a55d2d3d4−a23

a32d1d5d4 +a11a22d3d5d4 +a33(a55d1d2 +(a22d1 +a11d2)d5)d4

−a34a43d1d2d5 +a44(a55d1d2d3 +(a33d1d2 +(a22d1

+a11d2)d3)d5))

Ψ4 =(a25a44a52d1d3−a22a44a55d1d3−a11a44a55d2d3 +a11a25a52d4d3

−a11a22a55d4d3−a11a22a44d5d3 +a23a32a55d1d4 +a23a32a44d1d5

−a13a21a32d4d5 +a11a23a32d4d5 +a34a43(a55d1d2 +(a22d1

+a11d2)d5)−a33(a44(a55d1d2 +(a22d1 +a11d2)d5)+d4(−a25a52d1

+a11a55d2 +a22(a55d1 +a11d5))))

Ψ5 =(−a23a32a44a55d1−a11a34a43a55d2 +a11a33a44a55d2 +a13a21

a32a55d4−a11a23a32a55d4 +a25a52(a34a43d1−a11a44d3−a33(a44

d1 +a11d4))+a13a21a32a44d5−a11a23a32a44d5 +a22(a11a44a55d3

−a34a43(a55d1 +a11d5)+a33(a11a55d4 +a44(a55d1 +a11d5))))

Ψ6 =a11(a25(a33a44−a34a43)a52 +(a23a32a44 +a22(a34a43−a33a44))a55)

−a13a21a32a44a55.

where Ψ1 > 0 and Ψ6 > 0.
The minimum value of Γ6(k2) occurs at k = kT , where kT is the critical wave number.

(
d(Γ5(k2))

d(k2)

)
k=kT

= 0, and
(

d2(Γ5(k2))
(d(k2))2

)
k=kT

> 0

5Ψ1(k2)4 +4Ψ2(k2)3 +3Ψ3(k2)2 +2Ψ4(k2)+Ψ5 = 0 (5.13)

Solving the above Eq (5.13), gives the positive value of kT . From all the above analytical study, we
conclude that for obtaining the Turing patterns Γ5(k2)≤ 0 for some positive k.

After the spatial study of linear model (Urban Area), the same analysis can be carried out for non-
linear model (Rural Area) and the results have been discussed in numerical section.

6. Numerical section

In this section, we would compare the results of both the models numerically and visualize the
interpretations. The hypothetical values for parameters used are given in Table 3. Since the density of
population in urban area is high as people are now migrating in these areas. Hence, infection rate β is
assumed more in urban areas in comparison to rural areas assuming same viral load in both the areas.
Further, since rural area people have good immune response against the disease due to healthy diet,
less population and pollution. Therefore, decay rate of CTl cells (b) is assumed to be lower in rural
areas in comparison to urban areas.
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Table 3. Parameter values.

Parameter Value(per day) Reference
λ 5 Assumed
β 0.005–2 Assumed
µ 0.5 Assumed
k 1–5 Assumed
p 0.001 Assumed
q 0.05 Assumed
g 0.001 Assumed
h 0.01 Assumed
c 0.03 Assumed
b 0.01–0.3 Assumed

Table 4. Numerically stability of endemic equilibrium point.

Endemic equilibrium numerical value
Model 1(Urban Area) Model 2 (Rural Area)

Parametric values
λ = 5, β = 2, µ = 0.5, k = 3, p = 0.001,
q= 0.005, g= 0.001, h= 0.01, c= 0.03,
b = 0.2

λ = 5, β = 0.1, µ = 0.5, k = 3, p =
0.001, q = 0.005, g = 0.001, h = 0.01,
c = 0.03, b = 0.02

Equilibrium points value
E2U E2R

X = 0.241, Y = 6.664, V = 10.1198,
W = 29.5269, Z = 231

X = 9.7511, Y = 0.2489, V = 1.4537,
W = 0.0768, Z = 0.0012

Eigen Values
−20.8173, −1.8763, −0.7442,
−0.0077, −0.0023

−0.8795, −0.5, −0.1257, −0.0088,
−0.4983, −0.0125

Comparative study in Urban and Rural area
From Figure 5 and Table 4, we have observed that the greater part of population is getting infected,

viral load is increasing and healthy cells are less in the people of urban areas in long run on account of
diversely living population and more physical contacts while in rural area, the number of infective are
much lesser and healthy cells are increasing. This may be due to less or scattered population in rural
areas. Figures 1 and 2 also support our theory. Also Figure 5 and Table 4 depict that the antibodies due
to natural body mechanism is higher in urban areas as due to infection the natural body mechanism
get activated and CTL cells start protecting the body against infected cells and in case of rural areas
since the infection spread is less, the natural body mechanism is not that much activated [43]. Figure 6
shows that because of vaccine and anti viral drug administration, the viral load in urban areas decreases
resulting in better condition and hence reducing the infective and gradually increasing healthy cells.
The same is happening in rural area also but with a very less rate. Also, we have observed that with
control the CTL cells and antibody response in rural areas have improved but it is still less than that
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of urban areas. CTL cells & antibodies play a key role in diminishing viral load and infective and
increasing healthy cells. This may be due to no or poor access of medical facilities in rural areas and
social stigma is also a reason for lesser impact of control variables [44]. From Figures 7 and 8, it is
clear that the β is directly proportional to R0 as when the value of β increases R0 approaches to brightest
colour Yellow. Also it is clearly visible that reproduction number in urban area is greater as compare
to rural area.

Figure 5. Endemic equilibrium points graphs of linear & non-linear model.
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Figure 6. Control graphs of linear & non-linear model.
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Figure 8. Contour plot of R0 for rural area.

6.1. Spatial dynamics of linear model

In this section, we perform the numerical simulations to validate our findings for spatial models for
the same set of parameters as mentioned in Table 3. For the fixed values of parameters, we plotted
a disperse curve between Turing function (Γ5(k2)) Vs wave number k for different values of d1, d2
and d3 (see Figure 9) for linear model, which clearly shows that after spatial perturbation the spatio
temporal dynamics remains stable. Hence Turing instability condition does not hold here. The same
analysis has been done for non-linear system there is also no emergence of Turing instability. So there
is no possibility of occurring the Turing patterns for both linear and non-linear model.

Next we see the spatial distribution of system (5.1) in two dimensional plane on solving systems
(5.1) and (5.2) by Finite Difference Method and Euler method approximation with time step (∆t = 0.01)
and space step (∆x= 0.5=∆y). For fixed value of parameters with fixed d1 = d2 = d3 = d4 = d5 = 0.01,
the system (5.1) and system (5.2) gives interesting non-Turing patterns (see Figures 10 and 11) for
linear model and Figures 12 and 13 for non-linear model. The chosen initial conditions for spatial
patterns are:
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For Figures 10 and 13

X(r,0) =X∗+0.01(cos
X
2
+2sin

X
2
+ sin

X
2
),

Y (r,0) =Y ∗+0.01(sin
X
2

sin
X
2
),

V (r,0) =V ∗+0.01(cos
X
2
+ cos

Y
2
),

W (r,0) =W ∗+0.01(sin
X
2
+ cos

X
2
),

Z(r,0) =Z∗+0.01(cos
Y
2
+2sin

Y
2
+ sin

X
2
)

For Figures 11 and 14

X(r,0) = X∗+0.01(cos
X
2

sin
Y
2
+ cos

X
2
),

Y (r,0) = Y ∗+0.01(sin
X
2
+ cos

X
2

sin
X
2
),

V (r,0) =V ∗+0.01(cos
Y
2

sin
Y
2

cos
Y
2
),

W (r,0) =W ∗+0.01(cos
Y
2

sin
Y
2

cos
Y
2
),

Z(r,0) = Z∗+0.01(cos
Y
2

sin
Y
2

cos
Y
2
)

For Figures 12 and 15

X(r,0) =X∗(((X−50)2 +(Y −50)2 < 100)+

0.00001((X−50)2 +(Y −50)2 ≥ 100)),

Y (r,0) =Y ∗(((X−50)2 +(Y −50)2 < 100)+

0.00001((X−50)2 +(Y −50)2 ≥ 100)),

V (r,0) =V ∗((X−50)2 +(Y −50)2 < 100)+

0.00001((X−50)2 +(Y −50)2 ≥ 100)),

W (r,0) =W ∗(((X−50)2 +(Y −50)2 < 100)+

0.00001((X−50)2 +(Y −50)2 ≥ 100)),

Z(r,0) =Z∗(((X−50)2 +(Y −50)2 < 100)+

0.00001((X−50)2 +(Y −50)2 ≥ 100))

For linear system
In Figures 12, the spatial distribution of species for fixed value of diffusion and variation in the value

of h (decay rate of B-cells) has been studied. As the value of h decreases 0.1→ 0.05→ 0.01, population
of healthy cells are increasing (Figure 12: A1→ B1→C1), virus load is decreasing (Figure 12: A3→
B3→ C3), antibodies are increasing (Figure 12: A4→ B4→ C4) and CT l cells are also increasing
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(Figure 12: A5→ B5→ C5). In the spatial distribution the red colour represents high population
density and blue colour represents low population density in circular region.
For non-linear system

In Figure 15, the spatial distribution of species for fixed value of diffusion and variation in the value
of b (decay rate of CT L-cells) has been studied. As as the value of b decreases 0.2→ 0.11→ 0.02,
healthy cells are increasing (Figure 15: A1→ B1→C1) where as viral load is decreasing (Figure 15:
A3→ B3→C3) and no change take’s place in antibodies and CT L cells.
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Figure 9. The plot between Turing function (Γ5(k2)) Vs wave number (k). For fixed
parameters in Table 3.
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Figure 12. Two-dimensional spatial distribution of system (5.1). For fixed parameters in
Table 3 with d1 = d2 = d3 = d4 = d5 = 0.01 at t = 100. A: for h = 0.1 (left column), B: for
h = 0.05 (center column), and C: for h = 0.01 (right column).
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Figure 13. Two-dimensional spatial distribution of system (5.2). For fixed parameters in
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Figure 14. Two-dimensional spatial distribution of system (5.2). For fixed parameters in
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Figure 15. Two-dimensional spatial distribution of system (5.2). For fixed parameters in
Table 3 with d′1 = d′2 = d′3 = d′4 = d′5 = 0.01 at t = 100. A: for b = 0.2 (left column), B: for
b = 0.11 (center column), and C: for b = 0.02 (right column).
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7. Conclusions and future work

In this paper, we have done a comparative analysis for model 1 (urban area) and 2 (rural area)
which involves the dynamical analysis of temporal as well as spatial model. We have observed that the
rate of infection (β) between virus cell and uninfected host, decay rate of CT L cells (b) are the most
sensitive parameters in case of temporal models as they have shown significant impact on influenza
in both the areas. From the spatial analysis we have concluded that in urban area the parameter h
plays a vital role to cure the viral infections whereas the parameter b plays an important role in rural
area. Hence, it can be concluded that in urban area, since the immunity is less, the decay rate of B
cells (h) and CT L cells (b) are the most sensitive parameters in spatial as well as temporal models.
In addition, our simulation results also show that availability of treatments like antiviral drugs as well
as vaccines play a very important role in curbing influenza in both the areas. Antiviral drug diffuses
infected cells in the body, thereby bringing some relief and making the body immune from the infection
for a very short span. However, this may not be suitable for massively spread epidemic or pandemic
situation. On the other hand, vaccine develops antibodies helps in breaking chain of infection. If,
administrated to a population, a vaccine has a tendency to create group immunity or herd immunity
leading to major control of an infection. Although, it continues to be difficult to eradicate influenza
entirely from a community due to the virus’s rapid evolution and ability to shift from one season to the
next. Therefore, along with both control mechanisms, it is also important to keep in consideration the
areas which are affected majorly due to the infection so that the availability of the antidots and vaccines
should be sufficient enough for the people dwelling there.

We would enhance the model by considering different age groups in specific stratified population.
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A. Appendix

Basic reproduction number

It is calculated by using the next-generation method. Let F denotes the matrix for the infection
terms and V denotes for the terms related to viral production.

(Urban area): F =

[
F1
F2

]
=

[
βXV

0

]
and V =

[
V1
V2

]
=

[
µY

µV − kY

]
at disease free stage E0U = (X0,0,0,0) = (λ

µ ,0,0,0,0) ,

F =

[
0 β

λ

µ
0 0

]
,V =

[
µ 0
−k µ

]
,

V−1 =

[
1
µ 0
k
µ2

1
µ

]
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FV−1 =

[
kβ

λ

µ2 β
λ

µ2

0 0

]
R01 = ρ(FV−1) = λkβ

µ3

Similarly, the above approach is implemented for determining reproduction number R02 for rural
area as R02 =

kβ

µ2 .

Existence of equilibrium points

The existence of equilibrium points for both the models with and without immune response are
discussed in this subsection.
Urban Area: Equilibrium point without immunity is E1U = (X1U ,Y1U ,V1U ,0,0).
Where X1U = µ2

kβ
> 0,Y1U = µ2(R01−1)

kβ
> 0,V1U = µ(R01−1)

β
> 0. Here, Y1U ,V1U are positive if R01 > 1.

The endemic equilibrium point with immunity is E2U = (X2U ,Y2U ,V2U ,Z2U ,W2U), where, X2U =
λg

gµ+βh > 0,Y2U = b
c > 0,V2U = h

g > 0,W2U = gkb−µhc
cqh > 0 if gkb > µhc and Z2U = λβch−µb(µg+βh)

pb(µg+βh) > 0.

and Z2U is positive if λβch > µb(µg+βh) which is equivalent to λkβ

µ3 > bk(gµ+βh)
µ2ch . Let R1 =

bk(gµ+βh)
µ2ch

then the inequality can be written as R01 > R1.
Rural Area: The two equilibria for Model 2 are E1R = (X1R,Y1R,V1R,0,0) where X1R = 1

R02−1 ,Y1R =
µ
kV1,V1 = λR02(R02−1)

µ+(µ+β)(R02−1) . So E1R exist, if R02 > 1. Endemic equilibrium point with immunity is

E2R(X2R,Y2R,V2R,W2R,Z2R). Where, X2R = [λg−(µ+β)h]+
√

D
2µg > 0, where D = [λg− (µ+β)h]2 +4µgλh

and X2R is positive if λg > (µ+β)h,Y2R = b
c > 0,V2R = h

g > 0,W2R = gkb−cµh
cqh > 0 if gkb > cµh and

Z2R = (cβh−µgb)X2−µhb
pb(h+gX2)

> 0. if R02 > R2, where R2 =
bk(gX4+h)

µchX4
.

Local stabilty analysis

The jacobian corresponding to Model 1 is

J1 =


−(H1 +φ) 0 −H2 0 0

H3 −(H4 +φ) H2 0 −H5
0 k −(H6 +φ) −H7 0
0 0 H8 H9−φ 0
0 H10 0 0 H11−φ


and the characteristic equation corresponding to it is
−(H1+φ)(H4+φ)(H6+φ)(H9−φ)(H11−φ)+(H1+φ)(H4+φ)(H11−φ)H7H8+H2K(H1+φ)(H9−
φ)(H11−φ)+(H1+φ)(H6+φ)(H9−φ)H5H10− (H1+φ)H5H7H8H10−H2H3K(H9−φ)(H11−φ) = 0
Where, H1 = µ+βV,H2 = βX ,H3 = βV,H4 = µ+ pZ,H5 = pY,H6 = µ+qW,H7 = qV,H8 = gW,H9 =
gV −h,H10 = cZ,H11 = cY −b.

Theorem A.1. Local asymptotic stability at E0U holds if R01 < 1, but for R01 > 1 system is unstable.

Proof. Characteristic equation for disease free stage (E0U ) is

(λ+µ)(−h−λ)(−b−λ)(a0λ
2 +a1λ+a3) = 0

a0 = 1,a1 = 2µ,a3 = µ2(1−R01)

AIMS Mathematics Volume 7, Issue 4, 4898–4935.
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The roots corresponding to W,V,Z are stable. Remaining two roots are stable by Routh Hurwitz
condition a0 > 0,a1 > 0,a2 > 0, which exist when R01 < 1.

Therefore, E0U is stable if R01 < 1 and unstable if R01 > 1. �

Theorem A.2. Local asymptotic stability at E1U , will hold if R01 > 1.

Proof. Characteristic equation corresponding to E1U is

(gV −h−λ)(cY −b−λ)(a0λ
3 +a1φ

2 +a2λ+a3) = 0

Where, a0 = 1,a1 = µ(2+R01),a2 = 2µ2R01 and a3= µ3(R01−1).
Roots corresponding to W and Z are stable if λ > max(b/c,h/g) and rest three roots are stable by

Routh-Hurwitz conditions. a1 > 0,a2 > 0,a3 > 0 and a1a2 > a3 are satisfied when R01 > 1.
Therefore, E1 is locally asymptotically stable if R01 > 1 and unstable if R01 < 1. �

Theorem A.3. If R01 > R1, local asymptotic stability holds for E2U if it satisfy R01 <
βh(µg+βh)

g2µ2 .

Proof. The characteristic equation at endemic equilibrium E2U is

a0λ
5 +a1λ

4 +a2λ
3 +a3λ

2 +a4λ+a5 = 0

where a0 = 1,a1 = (H1 + H4 + H6),a2 = (H1 + H4)H6 + H1H4 + H7H8 − H2K + H5H10,a3 =
H1H4H6 +(H1 +H4)H7H8−H1H2K +H2H3K +(H1 +H6)H5H10,a4 = H1H4H7H8 +H5H7H8H10+
H1H6H5H10,a5 = H1H5H7H8H10.
a0 = 1,
a1 =

gb
gbch(µg+βh) [(µg+βh)((3µg+βh)ch+(gkb−µch))+(λβch−µb(µg+βh))ch],

a2 = 3µ2 + 1
gbch(µg+βh)(b(µg+βh)

[
µβch2 +(gkb−µch)(2µg+βh+gh)

]
+ µ3ch

k (R01−R1) [2µgch+g(gkb−µch)+(βh+gb)ch]+βbch(µh(µg+βh)−λg2k)),
a3 = µ3 + 1

gbch(µg+βh)(b(µg+βh) [(gkb−µch)(µg+βh)µ+(2µg+βh)]

+ µ3ch
k (R01 − R1) [(µg+βh)gkb+g(gkb−µch)(h+b)+bch(2µg+βh)] + µβbch(µh(µg + βh) −

λg2k)),

a4 =
(µg+βh)[λβch2(gkb−µch)]+(λβch−µb(µg+βh))[(µg+βh)gkb2+(gkb−µch)gbh]

gbch(µg+βh) ,

a5 =
(µg+βh)[λβch−µb(µg+βh)]bh

gbch(µg+βh) .
Thus, equilibrium point with immunity E2U is locally asymptotically stable as the Routh Hurwitz
criterion ai > 0(i = 0,1,2,3,4,5), a1a2a3 > a2

3 + a2
1a4 and (a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4) >

a5(a1a2 − a3)
2 + a1a2

5 are satisfied, when R01 > R1,µh(µg + βh) > λg2k,R01 < βh(µg+βh)
g2µ2 and

gkb > µch. �

Model 2. The jacobian corresponding to Model 2 is

J2 =


−(A1 +φ) 0 −A2 0 0

A3 −(A4 +φ) A2 0 −A5
0 k −(A+7+φ) −A+8 0
0 0 A8 A9−φ 0
0 A10 0 0 A11−φ


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and the characteristic equation is
−(A1 + φ)(A4 + φ)(A6 + φ)(A9− φ)(A11− φ)+ (A1 + φ)(A4 + φ)(A11− φ)A7A8 +A2K(A1 + φ)(A9−
φ)(A11−φ)+(A1 +φ)(A6 +φ)(A9−φ)A5A10− (A1 +φ)A5A7A8A10−A2A3K(A9−φ)(A11−φ) = 0
Where, A1 = µ+ βV 2

(V+X)2 ,A2 =
βX2

(V+X)2 ,A3 =
βV 2

(V+X)2 ,A4 = µ+ pZ,A5 = pY,A6 = µ+qW,A7 = qV,A8 =

gW,A9 = gV −h,A10 = cZ,A11 = cY −b.

Theorem A.4. For non-liner model (Model 2), E0R is local asymptotically stable ifs R02 < 1 but
unstable if R02 > 1.

Proof. Characteristic equation for disease free stage (E0R) is:

(φ+µ)(φ+h)(φ+b)(φ2 +a1φ+a2) = 0

a1 = 2µ,a2 = µ2(1−R02)

Roots bearing to the direction W,V,Z are always captivating. The rest two roots are captivating by
Routh Hurwitz condition a1 > 0,a2 > 0, which exist when R02 < 1. Therefore, E0R is locally stable if
R02 < 1 and unstable if R02 > 1. �

Theorem A.5. Local Asymptotic stability at E1R holds if R02 > 1.

Proof. The Characteristic equation at E1R is

(gV −h−φ)(cY −b−φ)(a0φ
3 +a1φ

2 +a2φ+a4) = 0

where, a0 = 1, a1 = 3µ+ β(R02−1)2

R2
02

,a2 = 2µ2 + 2µβ(R02−1)2

R2
02

,a3 =
µ2β(R02−1)2

R2
02

.

The roots towards to the direction W and Z are attracting if φ > max(b/c,h/g) and the rest roots
are attracting by Routh-Hurwitz conditions a1 > 0,a2 > 0,a3 > 0 and a1a2 > a3 are satisfied when
R02 > 1.Hence, the boundary equilibrium point E1R(X1R,Y1R,V1R,0,0) without immune response is
locally asymptotically stable if φ > max(b/c,h/g), R02 > 1. �

Remark 1: Thus for Model 2 local stability of E0R and E1R presumes that both E0R and E1R can not
happen simultaneously as the stability of E1R violates the existence condition of E2R i.e., R2 < 1.

Theorem A.6. If R02 > R2, gkb > µch and h2b > X∗2g the local asymptotic stability stable for E2R.

Proof. Characteristic polynomial of E2R is

d0φ
5 +d1φ

4 +d2φ
3 +d3φ

2 +d4φ+d5 = 0

where
d0 = 1,
d1 = 3µ+

[
ch(βbh2 +µ2 chX∗

k (R02−R2)(h+gX∗)+b(gkb−µch)(h+gX∗)
]

1
bch(h+gX∗)2 ,

d2 = µ2 +2µgkb+
µ2chX∗(R02−R2)[(gkb+b+µ)(h+gX∗)2+βh2]

kb(h+gX∗)3 + (gkb−µch)
c + βgk(h2b−X∗

2
g)

(h+gX∗)2 ,

d3 = µ2gkb+
µ2chX∗(R02−R2)[(µ(h+gX∗)2+βh2)gkbc+(gkb−µch)(h+gX∗)2+bc((µ+gkb)(h+gX∗)2+βh2)]

ckb(h+gX∗)3

+ (gkb−µch)(2µ(h+gX∗)2+βh2)
c(h+gX∗)2 + µβgk(h2b−X∗

2
g)

(h+gX∗)2 ,

AIMS Mathematics Volume 7, Issue 4, 4898–4935.
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d4 =
µ2hX∗(R02−R2)[((µ+b)(h+gX∗)2+βh2)(gkb−µch)+(µ(h+gX∗)2+βh2)gbc]

bk(h+gX∗)3 +

(µ2(h+gX∗)2+µβh2)(gkb−µch)
c(h+gX∗)2 ,

d5 =
µ2hX∗[(µ(h+gX∗)2+βh2)(gkb−µch)(R02−R2)]

k(h+gX∗)3 .
Thus, endemic equilibrium point with immunity E2R is locally asymptotically stable as the Routh-
Hurwitz conditions di > 0(i = 0,1,2,3,4,5), d1d2d3 > d2

3 + d2
1d4 and (d1d4 − d5)(d1d2d3 − d2

3 −
d2

1d4)> d5(d1d2−d3)
2 +d1d2

5 are satisfied, if R02 > R2, gkb > µch, and h2b > X∗
2
g. �
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