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1. Introduction

In this paper, we give a new approach to construct Green’s function for the following Caputo two-
point boundary value problems with a constant convection coefficient

{ —(“DLu)t) + W' () = h(t), a<t<b, 1 <a<2, (1.1)
u(a) = Bou'(@) = yo, u(b) +p1u'(b) =1, (1.2)

where the constants 4, 8, 51, Yo, y1 and the function /& € C[a, b] are given.

In recent years, fractional differential equations are becoming a powerful tool to describe real-world
phenomena, enormous numbers of very interesting and novel applications of fractional differential
equations in physics, chemistry, engineering, finance, and other sciences have been developed. The
Caputo derivative is especially suitable to describe real phenomena since in many ways it behaves like
the usual derivative of integer order. In particular, the Caputo derivative of constant functions is zero,
which is not true for the Riemann-Liouville derivative. However, the study of fractional differential
equations with Caputo derivative is far from enough, there are still many basic problems to be solved,
for example, the research on the expression of Green’s function and its sign in the problem with a
constant convection coefficient has aroused the interest of experts.
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Papers such as [1-3] examine the non-negativity of Green’s functions for Caputo two-point
boundary value problems, but these papers contain no convection terms, Papers [4,5] consider Caputo
two-point boundary value problems with convection, when the convection term is constant, the non-
negative condition for Green’s function is sufficient but not a necessary condition.

As a special case of problems (1.1)—(1.2), X. Meng and M. Stynes [6] consider the following Caputo
two-point boundary value problems with a constant convection coefficient

{ ~ED%u)t) + WD =ht), O0<t<l, l<a<?2, (1.3)

u(0) = Bou'(0) = yo, u(l) +B1u’(1) = y1, (1.4)

an explicit formula for the associated Green’s function is obtained by applying two-parameter Mittag-

Leffler functions, and the necessary and sufficient conditions that ensure non-negativity of the Green’s

function can be deduce. This is the first derivation in the research literature of an explicit Green’s
function for a Caputo two-point boundary value problem with a convection term.

Recently, Z. Bai et al. [7] restudied problem (1.3)—(1.4), they constructed the Green’s function by
use of the Laplace transform.

Motivated by the works [6,7], in this paper, we will give the Green’s function of boundary value
problems (1.1)—(1.2) and generalize the results of [6,7]. Compared with these two articles, this paper
includes the following features. Firstly, the operator theory is used in the process of solving the
problem. By using operator theory, we generalize the conclusions of [6,7], these results cannot be
obtained by using the methods provided in [6,7]. Secondly, the method provided in this paper may be
more straightforward and easy to be generalized to solving other problems.

The paper is organized as follows. Some fundamental concepts and lemmas are described in
Section 2 while Section 3 is devoted to the construction of Green’s function for problem (1.1)—(1.2).
In Section 4, we give the positive property of Green’s function. Finally, the Green’s function for multi-
point boundary value problem is shown in Section 5.

2. Basic definitions and preliminaries

In this section, we will recall some of the necessary definitions and results that will be used in the
main results.

Definition 2.1. [8] Let @« > 0 and f be a real function defined on [a,b]. The Riemann-Liouville
fractional integral of order « is defined by (12+ f) = fand

1 t
.00 = s [ =57 foxds a0, 1€ lab
L) J,
Definition 2.2. [8] The Caputo fractional derivative of order & > 0 is defined by (°D?, ) = f and

1 t
D0 = U D" N0 = Fo—es f (t = )" f"(s)ds,
m— a’) a

for @ > 0, where m is the smallest integer greater or equal to a.

Lemma 2.3. Ifa > 0 and B > 0, then

(1 -1 _ r(ﬁ) _ +a—1
Ia+(t—a)ﬂ _—F(ﬁ+a)(t ayro !,
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Lemma 2.4. [8] Let > 0 and n = [a] + 1, then
(CD ) =u@) +co+ci(t—a)+ et —a)l + -+ c,(t —a)!

forsomec; €R,i=0,1,2,---,n
Definition 2.5. [8] The Mittag-Leffler function is defined by:

s k

X
EQ(X) = ; m, a

The two-parameter Mittag-Lefller function is defined by:

i k

X
Ep ()= —— a>0.
7 ,;‘ Tak+y)

For convenience, we denote Fg(x) = x¥*'E,_; g[Ax*""], the following properties of Fj have been
deduced in [6].
(P]) . [Fﬁ+](.x)]/ = F,g(X) for,B >0,x>0;
(Py): F1(0) =1,F3(0) =0for g > 1;
(P3) : Fi(x) > 0for x > 0, F»(x) is increasing for x > 0;
(Py) : Fouor(x) > O for x > 0, F,(x) is increasing for x > 0.
Now, we prove the important result used in this paper.

Lemma 2.6. For any 1 € R,a > 0, we have the following results.
(1) For any r € C([a,b],R), series Y7, Aklk”‘r(t) is convergent and the sum is

Z/lklk“r(t) =r(t)+ A f (t = ) E, o[A(t — 5)*]r(s)ds.
k=0

(2) The operator I — AI7, : C([a,b],R) — C([a,b],R) is reversible and:

(I - A% r(r) = Z A1 r(r).
k=0

Proof. (1) By the properties of Mittag-Leffler function and two-parameter Mittag-Lefller function, we
have

! ~ ! - b /lk(l _ S)ka
A f (t = )7 Eq ol At = 9)°Ir(s)ds = A f (t— )" Y T r(s)ds
kzz(; I'ka + @)

/1k+1

— ( ka+a lr(s)ds — /lk+llgf+ar(t) — /lklk(lr(t)
F(ka + @) f kz(; kzz;

and

r(r) + Z ALkr() = Z AT (o).
k=
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Thus, (1) is proved.
(2) First, we show that (I — AI°,) (2,‘:’:0 ATk r(t)) = r(?). In fact, it is easy to see

[ [

(I = Alg.) [Z AL r(t)) = 3T - a1z Y )
k=0 k=0 =0

L) = > A ()
k=0

ALer() = > AR = (1),
k=1

DM T

b
Il

0

Similarly, we can easily prove the fact that:

(o8]

Z A1 = A% )r(0) = (o).

k=0

3. The Green’s function of Problem (1.1)—(1.2)

Theorem 3.1. Assume that By > 0,8, > 0. The boundary value problem (1.1)—(1.2) has a unique
solution

b
u(t) = f G(t, )h(s)ds +y,0(1) + yoll = (1],

where
Gt s) = OO[Fo(b—5)+B1Fe1(b—5)] = Fot — ), a<s<t<h,
= T(O[Falb = 5) + B1Fayi(b - )], a<t<s<b,
_ Bo + Fa(t — a)
o(t) =

Bo+BiFi(b—a)+ Fab—a)
Proof. Applying I¢. to the both sides of the equation (1.1), we have:
—I%. (D% u)(t) + A% U (1) = I% (D),

From Lemmas 2.4,

—u(t) + co + 1 (t — a) — %u(u)(r — @) + AL u(t) = 1h(),

let r = a, we obtain u(a) = c¢g, SO

—u(t) + co + c1(t —a) — %a)co(t — @)+ AT @) = 1%k,

or

(I = ATHu)(6) = co + 1t — a) - ico(t —a)*" = I%h(1),
I'(a)
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by Lemma 2.6, we have

M”:U‘ﬂgﬂ)(“*“U‘“*ﬁTﬁ%“‘)al ﬁmm)
:;;anﬁ*”&o+qa—a)—f(3%a— a)*" - Igmn)

=CoEq_11[A(t — @) '] + c1(t = ) Eq_12[A(t — a)* ']
—A@a—wwwwmma—m”H—jﬂrwf*ﬂmﬂma—meuMs
:%ma—m+qnu—m—awma—@—qua—gmgm
=co+ c1Fr(t—a) - ft F,(t — s)h(s)ds,
and
uﬂ):qurwﬂ—jﬁﬂmﬁ—sMOM&

by the boundary conditions u(a) — Bou’(a) = yo and u(b) + B1u’(b) = y,, we can get

co = BoC1 = Yo, ,
co+ [BIF1(b —a) + Fo(b = a)ler = y1 + [ [Fo(b = 5) + B1Fa-1(b = )lh(s)ds,

thus,
Bovi = ¥0) + Bo [ 1Falb = $) + BiFot (b — $)h(s)ds
=0t Bo+BiFi(b—a) + Fa(b—a) ’
V1= Y0+ [[[Falb— 5) + BiFour(b— 9)h(s)ds
o Bo +BiF1(b—a) + Fa(b — a)
therefore,

u(t) =co + c1Fr(t—a) — f F.,(t— s)h(s)ds

[ TFulb = 5) + BiFor(b— )lh(s)ds [
Bo+ BiFi(b—a)+ Fyb - a) _ja\ Fo(t = $)h(s)ds

ﬁ0(71 ’)/0) + Y1 — Yo

Bo+PBiFi(b—a)+ Fxb—a)  Bo+piFi(b—a)+ Fyb—a)

=(Bo + F2(t — a))

+ Yo + Fy(t—a)

zo'(t)f [Fo(b = 5) + B1Fo-1(b = $)]h(s)ds — f Fo(t = $)h(s)ds + y10(1) + yo[1 = 0(1)]

b
= f G(t, s)h(s)ds + y,0(t) + yo[1 — o(1)].

O
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4. The positive property of the Green’s function

A function A(x) is said to be log-concave if In h(x) is concave, i.e., (Inh(x))" < 0. Similarly, a
function A(x) is said to be log-convex if In h(x) is convex, i.e., (In A(x))" > 0.
Lemma 4.1. [6] Fix T € (0, 1]. Then for x > 0, the functions x"E; ,1(x") and E.,(x") are log-concave.

Lemma 4.2. [6] Fix T € (0,1]. Then for x > O, the functions x"E...1(—x7) is log-concave; E. (—x7)
and xT‘lET,T(—xT) are log-convex.

Theorem 4.3. Fixt € [a,b]. Then fora < s <t,

. F.(t—s)
R R Y
is a decreasing function of s.
Proof. (I). If A = 0, then
B (l _ S)a—l
) e Y NP
it is easy to check that
s a-1 a=-2 1
ft(s)—f,(s)[ t—s " b-s +b—s+(a—1),81
[ a—1 a—2 1
< fi(s) |- + +
b—s+(@-1)8 b-s+@-1)8 b-s+(a-1)s
= 0’

so the conclusion holds.
(D). If 2 # 0. By Lemma 4.1 and 4.2, the function |1|F,(x) is log-concave when x > 0. Thus, one can
infer from the property (P;) that for x > 0,

(Fa_l(x))’ ) (um_l(x)
Fa )~ TIFL()

) = [In(l2|F,(x)]" < 0.

This shows that FF’—&;‘) is a decreasing function for x > 0. Consequently

Fort =) _ Foui(b = 9)

S <s<t,
Fi—s) = F,b-g r4=°

or

Fo,(t—$)Fo1(b—5)—Fou_1(t—8)F,(b—15)<0, fora<s<t. 4.1)

Fo(b—5)
Fo(t—s)

is a decreasing function for x > 0, the function

: . F(b—s) - . ) . P
)1s non-negative. So, F"((l;_;)) is an increasing function of 5. As fe=tt)
@

Fo(x)
Fo_i1(b=5) : . . .
s 18 an increasing function of 5. Consequently,

That is, the numerator of & (
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Foi(b=5) . Folb=5) _ Fai(b=5) : - - i i
P | Foausy) = F.u Is alsoincreasing on s. By considering its derivative with respect to s, we

obtain

Fo(t—s)Foo(b—5)—Fo 1(t—8)F41(b—15)<0. 4.2)
By (4.1) and (4.2), the numerator of f/(s) is

Fo(t = $)[Fo-1(b—5) + B1Fo2(b = 5)] = Foui(t = )[Fo(b = 5) + 1 Fo1(b - 5)]
=Fo(t = 5)Fo_1(b—5)— Fo1(t —5)Fo(b—5)

+BilFo(t = $)Fo2(b—5) = Four(t = $)Fo1(b — )]
<0,

hence f;(s) is a decreasing function of s € [a, t]. O
Lemma 4.4. Fora <t < b, the function

() = BiF(b—a)+ Fy(b—a)— Fy(t—a)
S B Fui(b—a)+ Folb—a) - Folt - a)

is an increasing function of t.

Proof. (I).1f A = 0, then for 8 > 0, F5(x) = x5!, thus

pr+b-a)-(t-a
Pi(b — a2 e

pi+b-all -
Brlb —ay=2 + U1 - (]

g0 =T(a-1)

=I(a-1)

it is easy to check that

t—a\re 1 t—a\« t—a\*! t—a
Goa) < oo G <
b—a a—1\b-a b—a b—a

we have

-1 1
+
B+ -all =217 B(ESe + H (e[l - ()]

Mo 1)g'(t) = g(t)[

> 0,

hence g(7) is an increasing function of ¢.
(ID). If A > 0, then by Lemma 4.1 the function F|(x) = AF,(x) + 1 = x*'E,_| ,(Ax*™") + 1 is log-
concave when x > 0, so

((/lFa(x) + 1)

<0, f 0,
AF, (1) + 1 ) =5, forx >
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which imply

( Fi(x) ) _ (/IF(,(x)+ 1)’ _ﬂ( AF,(x) + 1

Fo1(x) (F,(x)y | m) >0, for x > 0.

(III). If 2 < 0, we can similarly prove that (FFi—i’a))’ > 0.

Suppose ¢ € (a, b), By the Cauchy mean value theorem, there exists &€ € (t — a, b — a) such that

Bb-a-Khi-a  FE _ Fil-a
Folb—a)=Folt—a)  For(§) ~ Fou(t—a)

Equivalently,
[F2(b —a) = Fa(t = a)]F -1 (t — a) = F1(t = @)[Fo(b—a) — Fo(t —a)] 2 0. (4.3)
Furthermore, ( FZ’_E’&))’ > 0 implies that

Fi(b-a) S Fi(t—a)
Fa—l(b_a) B F(r—l(t_a)’

or
Fl(b—a)Fa_l(t—a)—Fl(t—a)Fa_l(b—a) > 0. (44)
By (4.3) and (4.4), the sign of the numerator of g’(¢) is

[Bi1F1(b—a)+ Fy(b—a) — Fy(t — a)|Fy-i(t — a)
~Fi(t = a@)[BiFo-1(b—a) + Fo(b — a) — Fo(t — a)]

=[Fy(b—a) — Fy(t — a)|Fo1(t —a) — F(t — a)[Fo(b — a) — Fo(t — a)]
+BilF1(b—a)F o (t—a)— Fi(t —a)Fo_1(b - a)]

>0.

Hence g(7) is an increasing function of 7 € [a, b]. O
The main result of this paper is as follow.
Theorem 4.5. Assume 31 > 0. Then the Green’s function G(t, s) is nonnegative if and only if

Fo(b—-a)

ﬁo > —Fz(b —(1) + Fl(b—a)m,

Proof. The Green’s function G(z, s) is nonnegative on [a, b] X [a, b] if and only if
o[ Fo(b—5)+B1Fe1(b—5)]—F,(t—s) >0, fora<s<t<b.

Equivalently,

BiFi(b—a)+ Fy(b—-a)-F(1-a)

1 _ Fa(t_-v)
Fo(b=s)+p1 Fo-1(b-5)

Bo = —L1Fi(b—a)— Fyb—-a)+ ,fora<s<t<b. 4.5
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by Theorem 4.3 and Lemma 4.4, inequality (4.5) is equivalent to

Fo= £ni‘,§b[‘ﬁ1Fl<b—a>—F2<b—a>+/31Fl<b-a>+Fz<b—a>—Fz<t—a>]

1 = fi(s)
BiF(b—a)+ Fy(b—a)— F(t - a)]
1 - fi(a)
= max [-B1F1(b—a) = Fy(b—a) + [Fo(b — a) + B1Fo-1(b — a)]g(1)]

Fi(b-a)
Fo,_1(b-a)

s=a

= ma)}g [_ﬁlFl(b —a)—Fy)(b—-a)+
ast<

2 BiFi(b—a) = Fa(b— @) + [Fo(b = @) + B1Forr (b — @)]

F(y(b_a)

=-Fb-a)+ Fb-ap——.

The proof is complete.

5. The Green’s function for multi-point boundary condition

In this section, we present the Green’s function for the following multi-point boundary value
problem

~ED%u)t) + AW (D) =h(t), a<t<b, l<a<2, (5.1)
m-2
u(a) — Pou’(a) = 0, u(b) + pu'(b) = Z yiu(€), (5.2)
i=1
where the constants A,8,81,y; > 0@ = 1,2,--- ,m—2),a < & < --- < &,.» < b and the function

h € Cla, b] are given.

Theorem 5.1. Assume that By > 0,81 > 0. The boundary value problem (5.1)—(5.2) has a unique
solution

u(r) = fb [G(t, s) + a(f) mz_zyl-G(fi, $)| h(s)ds,
a 1= 3 yioé) S
where
Gt ) = {O'(I)[Fa(b — )+ B Fai(b— )] = Falt—s), a<s<t<b,
O'(t)[Fa(b—S)+,31Fa_l(b—s)], a<t< Sﬁb,
o (f) Bo + Fa(t —a)

C Bo+BiFi(b—a)+ Fy(b—a)
Proof. For convenience, we denote p = By + 81 F1(b — a) + F»>(b — a), then we have the relations

Bo + Fa(t — a) = po(1),

m—2

I- Z Yio (&)
i=1
m-2

m—2
Bo(l= Y ¥y +BiFi(b—a)+ Fa(b—a) = > yiFa& —a) = p
i=1 i=1

m—2
BiF\(b—a)+ Fx(b—a)— ) yiFs&—a)=p
i=1

2
—Bo (1 - Z 71’] ,
i=1
m—2

1- Z%‘O'(fi) .

i=
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According to the proof of Theorem 3.1, u(f) and u’(t) satisfy
!
u(t) = co + c1 Fo(t —a) — f F,(t — s)h(s)ds,
t
w(t) =c F(t-a)- f Fo1(t = $)h(s)ds,

by the boundary conditions u(a)—Bu’(a) = 0 and u(b)+8,u’(b) = Y77 yiu(&;), we can get co—Boc; = 0
and

m—2 m—2
[1 - Z%) co+ (p(l = > i) - Bol - Z 7 ]cl
1

i=1

m-2
= f [Fo(b =)+ B1Fa-1(b— $)]h(s)ds — Z% f Fo(&i — s)h(s)ds,

i=1

thus,
. _Bo [P 1Fo(b = 5) + BiF ot (b — 9)h(s)ds — Bo X232y [ Faléi — $)h(s)ds
p(1 = 3152 i ()
Bo [[1Fulb — 5) + BiFour(b — $)IA(s)ds
) p
S22y [ G ENFalb — $) + BiFaci (b — )h(s)ds — X252y, [* Ful& — $)h(s)ds
’ p(l - 2’";2 7€)
Bo [[TFalb = ) + BiFas(b = $)h()ds Y17y, [ G&, )h(s)ds
) p e o= S @)
[UFu(b = ) + BiFuci(b = $1h(s)ds = S5 y; [ Fal& = 9h(s)ds
oo o1 - 25 76
LU= 9) + BFuab = 9hsds SRy [ G Dhis)ds
B p p(l = 3157 yio (&)
therefore,

u(t) =co+c1Fr(t—a) — f F.,(t— s)h(s)ds

= fb G(t, H)h(s)ds + () ”’2‘27. bG(§~ Sh(s)ds
a ’ I_Zz 1 %O'(sz i=1 l a N

- f b [G(t 9+ —T0 ZVG(f- $)| h(s)ds.
P R B Y e () R =

i=1

O
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6. Conclusions

In this paper, by use of the operator theory, the Green’s function for a class of Sturm-Liouville
fractional boundary value problems is obtained. Compare with other literature, our method provide
some new ideas for the study of this kind of problems and easy to be generalized to solving other
related problems.
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