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Abstract: Partial balanced incomplete block designs have a wide range of applications in many areas. 
Such designs provide advantages over fully balanced incomplete block designs as they allow for 
designs with a low number of blocks and different associations. This paper introduces a class of 
partially balanced incomplete designs. We call it partially balanced network designs (PBNDs). The 
fundamentals and properties of PBNDs are studied. We are concerned with modeling PBNDs as 
graph designs. Some direct constructions of small PBNDs and generalized PBNDs are introduced. 
Besides that, we show that our modeling yields an effective utilization of PNBDs in constructing 
graph codes. Here, we are interested in constructing graph codes from bipartite graphs. We have 
proved that these codes have good characteristics for error detection and correction. In the end, the 
paper introduces a novel technique for generating new codes from already constructed codes. This 
technique results in increasing the ability to correct errors. 
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1. Introduction  

Many fundamental problems in combinatorics and related areas can be formulated as 
decomposition problems-where the aim is to decompose a large discrete structure into suitable 
smaller ones. Hence, problems of combinatorial design may be efficiently modeled from viewpoint 
of graph theory. In graph theory, the problems of edge decomposition and graph covering have a 
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great attention as it is of immense importance for numerous applications to a wide range of areas [1–3]. 
Here we are concerned with the problem of detecting and correcting the error that may occur through 
the communication network (system). Despite communication systems may be robust, during the 
long process of transmitting data, external sources can coincide with the system and manipulate the 
data. Such manipulation leads to errors in transmitting data. The data received will be different from 
what was originally transmitted. Consequently, the ability to correct or at least detecting errors is an 
important issue to the system. The objective of the paper is to construct combinatorial designs which 
have efficient properties in detecting and correcting errors from viewpoint of coding theory. We call 
such designs Partially Balanced Network Design (PBNDs). Balanced incomplete block designs 
(BIBDs) were introduced in (1936). A BIBD is an arrangement of v  objects (points) into b  blocks 
each of size δ  such that 

1. Every object occurs at most once in each block.  
2. Every object occurs in exactly α  blocks. (α  is the number of replications)  
3. Every pair of objects occur together in exactly λ  blocks.  
Any BIBD has to satisfy the following conditions [3]: 

b v,≥  vα= bδ,  ( 1) ( 1)λ v = α δ .− −  

v,b,α,δ,λ  are called the parameters of a BIBD. A restriction on using the BIBD is that it is not 
available for all parametric combinations. Moreover, even if a BIBD is available for given v  objects 
and block of size δ, it may require too many replications α.  Another restriction that makes BIBD is 
not desirable for some experiments design is that BIBD is efficiency balanced, i.e., in BIBD every pair 
of distinct objects should occur together in exactly λ  blocks. The partially balanced incomplete 
block designs (PBIBDs) compromise these restrictions up to some extent and help in reducing the 
number of replications. PBIBDs remain connected like BIBDs but no more balanced. Rather they are 
partially balanced in the sense that some pairs of objects have the same number of replications whereas 
some other pairs of objects have the same replications but are different from the replications of earlier 
pairs of objects. According to such enhancement, PBIBDs are applied for the design of experiments in 
many areas such as statistics [4], game theory [5], agriculture [6], cryptographic schemes [7], and 
many others. PBIBD was firstly studied by Bose in 1951. Bose et al., [8−10] introduced a class of binary, 
equireplicate and proper designs, which called PBIBD with m -associate classes. An associate class is a set 
of objects pairs where each pair from the set occur together with the same number of times, iλ .  

A PBIBD with m -associate classes is an arrangement of v  objects in b  blocks such that:  
a) Each object from the set of objects occurs in α  blocks.  
b) Each block has δ objects ( ),δ < v  and no object appears more than once in any block.  
c) If two objects are i -th associates of each other then, they occur together in ( 1 2 )iλ i = , ,…,m  

blocks.  
The number iλ  is independent of the particular pair of i -th associate chosen. iλ  doesn't need to 

all be different and some of iλ ’s may be zero. PBIBD is studied and analyzed from viewpoint of graph 
theory. The relation between PBIBDs and strongly regular graphs is investigated in [8]. Bose and Nair [9] 
introduced the concept of association schemes in PBIBDs. Bose and Shimamoto [10] studied 
association schemes of PBIBDs using the graph-theoretic method. Regular graph design (RGD) is an 
important class of PBIBDs with two association schemes. An RGD ( )v,δ,α  is a collection of blocks 
of size δ  on a v -set (with no restriction on repeated blocks) such that every object occurs in α blocks 
and any pair of objects occur together in either 1λ  or 2λ  blocks, where 1λ  is some constant and 
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2 1 1λ = λ + .There are extensive research for RGDs [11−16]. 
In this paper, we introduce a significant class of PBIBDs with two association classes with no 

repeated blocks. We call such a class a partially balanced network design (PBND). The aim of our 
paper is to show how PBND may be used to construct codes that process a high efficiency in detecting 
and correcting errors that may occur through the transmission process. The rest of the paper is 
organized as follows. Section 2 introduces the fundamentals and properties of PBND and the modeling 
of PBND as a graph design. Section 3 introduces the technique used to construct PBNDs that yield 
effective error detecting and correcting codes. Some direct constructions of PBNDs and general 
designs are constructed in Section 4. Section 5 studies the Cartesian product of designs and how that 
product will lead to codes able to detect and correct more errors. Section 6 shows the advantages of binary 
codes generated by PBNDs. In Section 7 we summarize the results and the conclusion of the paper. 

2. Partially balanced network design 

Network Design (ND) is a pair ( )ω,τ , where 1 2{ }vω= ω ,ω ,…,ω  is the whole network (the 

universal set). The elements of ω  are called points or objectives. 1 2{ }bτ = τ ,τ ,…,τ  is a collection of 
nonempty subsets of ω. Each element from τ  is called a subnetwork. ND is described by five 
parameters ( )v,b,α,δ,λ ,  which are nonnegative integers and represent the following: 

1) v  the size of set ω. 
2) b  the number of subnetworks in τ. 
3) α  the number of subnetworks to which every point from ω  belongs. 
4) δ  the size of each subnetwork. 
5) λ  the number of subnetworks that contain a pair of distinct points. 
A network design (ND) is a complete-ND if δ v,=  whenever δ < v  it refers as incomplete-ND. 

Let 
1 2ω ,ωλ be the number of subnetworks to which two points 1 2ω ,ω  appear together. If 

i jω ,ωλ is 

unique for i, j  with 1≤ < ≤i j v,  we call such design as balanced design. If all 
i jω ,ωλ ’s are not 

identical for i, j with 1≤ < ≤i j v,  then the design is stated as partially balanced-ND. Here, we are 
interested in partially balanced incomplete network designs (PBNDs). For our designs we restrict 

1≤λ . If 
i jω ,ωλ  is a constant for i, j  with 1≤ < ≤i j v,  then the network design coincides with 

balanced incomplete block design (BIBD) and each subnetwork is viewed as a block of size δ. 
Through the paper we use ( )v,b,α,δ,λ -ND for a network design (ND) with parameters ( ).v,b,α,δ,λ  
Another form to express and determine a PBND is the incidence matrix. Let ( )ω,τ  be a PBND with 
parameters ( ).v,b,α,δ,λ  The incidence matrix ( )i, jM = m  of a ( )v,b,α,δ,λ -ND is a b v×  binary 

matrix, where every row corresponds to a subnetwork, and every column corresponds to a point in the 
set ω. 

1;

0;

∈
 ∉

j i
i, j

j i

ω τ ,
m =

ω τ .
 

Theorem 1. Any PBND with parameters ( )v,b,α,δ,λ  should satisfy the following condition vα bδ.=  
Proof. Consider the number of 1’s in the incidence matrix M  of the given PBND. As matrix M  
inherited from its PBND then it has the following certain properties: 
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1) Every row has δ  number of 1’s. 
2) Every column has α  number of 1’s. 
3) Two distinct columns both have 1’s in at most λ  rows. 
Since M  has b  rows and following property 1, then the number of 1’s in the matrix is bδ. 

Now we are analyzing the columns of M.  Property 2 and the number of columns of M  imply that 
M has vα  of 1’s. Hence, vα bδ.=  □ 

We now review the connection between graph codes and PBND. When a PBND is transformed 
into an incidence matrix, the rows and the columns can be both viewed as binary codes. The binary 
code formed from the rows will be denoted as rowC ,  and the binary code formed from the columns 

will be referred as columnC . The minimum distance in binary codes is a significant concept. The role 
of such a concept is to check whether the binary code can detect or correct errors [17−20]. 

Let C  be a binary code where every element (coding word) belongs to C has length n.  Let 
1 2( )nP = p , p ,..., p  and 1 2( )nQ = q ,q ,...,q  be two coding words from C.  The minimum distance 

( )d P,Q  between P  and Q  is calculated from the following relation: 

=1
( ) ( )∑

n
i ii

d P,Q = d p ,q ,
1;

( )
0;

≠
 =

i i
i i

i i

p q ,
d p ,q =

p q .
                      (1) 

According to relation (1), the minimum distance between two coding words P  and Q  defines 
the number of positions where P  and Q  differ i.e. i ip q≠  for 1 i n≤ ≤ .  The minimum distance 
θ  of a code C  is defined as:  

{ }( ) ( ); .∈ ≠θ C = min d P,Q P,Q C,P Q                         (2) 

In the following sections, we show how to use the minimum distance in detecting and correcting 
errors of constructed codes. All graphs described here are finite, undirected, without loops and 
multiple edges. Let ( )V H  and ( )E H  be the vertex set and edge set of the graph H,  respectively. 
The degree of a vertex ( )∈u V H  is the number of vertices from ( )V H  that are adjacent to u. 
The graph is regular if and only if all vertices have a unique degree. 

Hereafter, we illustrate the modeling of PBND in terms of graphs. 
Definition 1. Let H  be a s -regular graph of order .n  An ( )H, F, k, X -graph design is a collection 

0 1 -1{ }bφ= F ,F ,…,F  of b  subgraphs of H  such that: 
1) For every 1≤ ≤0 i b - ; iF F.≅  
2) For every 1≤ ≤0 i b - ; iF  is a spanning subgraph of H. 
3) Every iF  contains at most s  edges. 
4) Every edge of H  exists in exactly k  subgraphs from φ. 
5) For any i, j  such that .,≠ ≅i ji j F F X  
From Definition 1 an ( )H, F, k, X -graph design is a PBDN. There is a correspondence between the 

parameters ( )H, F, k, X  of a graph design and the parameters for the corresponding PBDN. Namely, 
( ) ( )v = E H ,b = φ , α= k, δ = E F  and ( )λ= E X .  According to that correspondence, in the 

following we use ( )H, F, k, X -ND for an ( )H, F, k, X -graph design. Moreover, if the graph H  is a 
complete bipartite graph n,nK , 1,1≅X K  and ( )E F < n  then 

2( )n,nK ,F,k,K -ND is a sub-orthogonal 
double cover (SODC) of n,nK by F.  The construction of SODCs of n,nK  and nK  by F for 
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different classes of F  has been studied in [21–25 ]. The design 
2( )n,nK ,F,k,K -ND is equivalent to 

an orthogonal double cover (ODC) of n,nK  by F  if and only if ( )E F = n,  see [26–35]. If H  is a 
Cayley graph and ( )E F = s < n,then the constructed design 

2( )n,nK ,F,k,K -ND is considered as an 

ODC of Cayley graphs which have been studied in [36]. For the ( )H, F, k, X -ND, if the graph H  is 
a complete bipartite graph 23≥ ≅n,nK ,k ,X K , and ( )E F = n,  then 

2( )n,nK ,F,k,K -ND is a 
mutually orthogonal k  cover (MOkC) of n,nK  by F,  see [37–44]. In [45], the authors have 
constructed the circular intensely ODC design of balanced complete multipartite graphs. Additional 
background material for this field may be found in [46–50]. For many communication systems 
(networks), bipartite graphs are good tools in modeling such systems. In the next section, we are 
concerned with ( )H, F, k, X -ND for a network H  modeled as a bipartite graph and refer to it as a 
bipartite network.  

3. Design of bipartite graph-codes and partially balanced bipartite network 

The complete bipartite network n,nK  consists of two independent sets of nodes. The first set of 
the nodes is labeled by {0,1,..., 1} {0},n − ×  and the second set of the nodes is labeled by 
{0,1,..., 1} {1}.n − ×  Each link 0 1u v  in the network has a weight equals to v - u  (sums and 

differences are calculated modulo ).n  
The network design ( )H, F, k, X -ND is a collection 

{ }; {0,1,..., 1} {0,1,..., 1}0 1 1..., −= ∈ − ∈ − ij ij ij
nG ,G , G i n , j k  of kn  isomorphic subnetworks (each of 

them is isomorphic to the network )F of the complete bipartite network n,nK  such that: 
a) For a certain {0,1,..., 1}j = η, j k∈ − , every link of the complete bipartite network n,nK  is 
found in exactly one subnetwork of 0 1 -1{ }.iη iη iη

nG ,G ,...,G  

b) For any two subnetworks xyaw
c zG ,G  from the collection ,  if a x,w= y,c z,≠ ≠  then there 

are no common links between these two subnetworks. 
c) For any two subnetworks ,

xyaw
c zG G  from the collection ,  if w y,≠  then these two 

subnetworks intersect in a common network which is isomorphic to the subnetwork X. 
In the ( )H, F, k, X -ND, we have 2( ) ,n,nKv = E = n  ( )b = k E F = kn,  α= k,  

( ) 1,1≅ .δ = E F = n,X K  Then, 2 2vα= kn ,bδ = kn vα= bδ⇒ .  

The incidence matrix ( )jI = Ii  for the 1,1( )n,nK ,F,k;K -ND is a kn× 2n  binary matrix showing 

the relation between the links and the subnetworks of the complete bipartite network ,n,nK where every 
row in I  corresponds to a subnetwork iF  in 1,1( )n,nK ,F,k;K -ND and every column in I  

corresponds to a link jl  in the complete bipartite network ,n,nK   

1; ,

0; .

∈
 ∉

j i
ij

j i

l F
I =

l F
 

Any code word from rowC  represents a bipartite graph that is isomorphic to the graph F. In 
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this case, the rowC  is called a F -graph code. The rules of building the incidence matrix ( )jI = Ii  

of ( )H, F, k, X -ND lead to the following lemma. 
Lemma 1. An F -graph code exists if and only if the ( )H, F, k, X -ND is available. 

Moreover, since I  is a binary matrix, then its rows or columns can be used as binary codes. For 
instance, the encoding function of the code columnC  is defined as; with 2 ,= nW  let encoding 

function 2 ,: → 

knE W  be given by ( ) = ( )(+ni jE ij C  (the ( )+ni j th column of the matrix ).(  Section 

4 contains examples explain the methodology of the coding and decoding processes with the help of 
the minimum distance of the considered code. 
Definition 2. ([18]) For ∈ +m, λ Z  and 2 ,ε ∈m  the sphere of radius λ  centered at ε  is defined as 

2{ , }( ) : ( ) .ε γ ∈ ε γ= ≤

mS ,λ d λ  
Theorem 2. ([18]) Suppose E :W C→ is an encoding function where 2⊆ nW  is the set of messages 
and 2( ) = ⊆ mE W C  is the set of code words with n < m. If the minimum distance between code 

words is at least 1 ∈ +λ+ ,λ ,Z  then we can detect all transmission errors of weight λ.≤  
Theorem 3. ([18]) Suppose : →E W C  is an encoding function where 2⊆ nW  is the set of messages 
and 2( ) = ⊆ mE W C  is the set of code words with n < m. If the minimum distance between code 
words is at least 2 1 ∈ +λ+ ,λ ,Z  then we can construct a decoding function 2: →

mD W that corrects 
all transmission errors of weight λ.≤  

The following theorem gives the range of errors that can be detected or corrected when either 
rowC or columnC  is used. 

Theorem 4. Let rowC , columnC  be the binary codes constructed from the rows and columns of the 
incidence matrix of 1,1( )n,nK ,F,k;K -ND, respectively. We have the following: 

1) For the binary code rowC , we can detect up to 2 3n-  errors or correct up to 2 3
2

n − 
  

 errors. 

2) For the binary code columnC , we can detect up to 2 3k-  errors or correct up to 
2 3

2

k − 
  

 errors.  

Proof. From the definition of the 1,1( )n,nK ,F,k;K -ND, in the incidence matrix of 1,1( )n,nK ,F,k;K

-ND, there exists n  number of 1’s in every row. Any two rows have at most 1 position of 1’s in 
common. Then the minimum distance of rowC  is ( ) 2( 1) 2 2rowθ C = n = n .− − Therefore, for rowC , 

we can detect up to ( ) 1 2 3− −rowθ C = n  errors and correct up to 
) 1 2 3

2 2
rowθ C n= .

− −   
     

(
 

Considering columnC  there exists k  number of 1’s in every column. Any two columns have at most 1 
position of 1’s in common, then the minimum distance of columnC  is ( ) 2( 1) 2 2columnθ C = k = k− − .  
Therefore, for columnC we can detect up to ( ) 1 2 3columnC = k− −  and correct up to 

( ) 1 2 3
2 2

columnθ C k= .
− −   

     
□ 
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Method for constructing 1,1( )n,nK ,F,k;K -ND 

In what follows, we are concerned with the links of the network G. Consequently, we will use 
G  for the links set of G. 
Definition 3. If we have a subnetwork ( ) ( ) ( ) ( ){ }1 1 2 2 3 3

0 1 0 1 0 1 0 1
n nu ,v u ,v uG ,v u= , , , ., ,v..  (the weights of these 

links are mutually distinct and equal to {0,1, }…,n−1 ) of the complete bipartite network n,nK , then the 
translated subnetwork ( ) ( ) ( ) ( ){ }1 1 2 2 3 3

0 1 0 1 0 1 0 1
n nG+σ= , ,u ,v u ,v u , .v u v, ,, ..σ σ σ σ σ σ σ σ+ + + + + + + +  is called 

the G -translate of the subnetwork G  where {0,1,..., 1}σ n∈ − . The union of the subnetworks G+σ  
gives the complete bipartite network n,nK .  The subnetwork G  will be called the basis of the 
complete bipartite network n,nK . 

In what follows, the basis G  will be represented by a vector 
0 1 1( ) ( , , , )φ ϕ ϕ ϕ −= … nG  where 

{0,1,..., 1}∈ −xφ n  and 0( )xφ  is the unique node { } { },0 0,1,...,∈ − × 0( ) 1xφ n  that belongs to the 

unique link of weight x  in the basis G  Note that the links of the basis G are { }+0 1( ) ,( ) ,x xφ φ x  
which will be represented by +0 1(( ) ,( ) ).x xφ φ x  

Definition 4. The two bases G  and H  represented by the vectors ( )φ G  and ( )ψ H  are said to be 
intersected if { }( ) ( ) {0,1, , 1} {0,1,..., 1}i iG H i n nφ ψ −− ∈ − = .:  

Definition 5. If the two bases vectors ( )φ G  and ( )ψ H  are intersected and ,≅G H  then the 
translated subnetworks G+σ  and H +σ, {0,1,..., 1}σ n −∈  gives a 

1,1( 2 )n,nK ,G, ;K -ND.  

Definition 6. The subnetwork sH  of the complete bipartite network n,nK  is the symmetric 
subnetwork of the subnetwork H  if ( ) ( ) ( ) ( ){ }1 1 2 2 3 3

0 1 0 1 0 1 0 1 ,n nH = , , ,.u ,v u ,v u ,v u ,v..,

( ) ( ) ( ) ( ){ }1 1 2 2 3 3
0 1 0 1 0 1 0 1

n
s

nvH = , , ,...v ,u v ,,,u ,u v u .  It is clear that if the subnetwork H  is a basis, then the 

subnetwork sH  is also a basis. If the two bases H  and sH  are intersected, then the basis H  
is called a symmetric basis. 
Definition 7. The basis H represented by the vector ( )ψ H  is a symmetric basis if 
{ }( ) ( ) {0,1,..., 1} {0,1, , 1}nH H n nτ τψ ψ τ τ− −− + ∈ − =  .:  

4. Constructions of some small and generalized PBNDs 

In this section, we introduce some small PBNDs based on the direct construction method. Also, 
we introduce some generalized PBNDs.  
Lemma 2. There exists a 4,4 1,2 1,1( , 2 ,3; )K K K -ND. Hence, there is a 1,22K -code. 

Proof. Let 00 10 20 30 01 11 21 31 02 12 22 32
0 1 2 3 0 1 2 3 0 1 2 3{ , , , , , , , , , , , }G G G G G G G G G G G G= with 

00
0 0 1 0 1 0 1 0 1{0 2 ,2 2 ,1 0 ,3 0 },G = 10

1 0 1 0 1 0 1 0 1{0 1 ,2 1 ,1 3 ,3 3 },G = 20
2 0 1 0 1 0 1 0 1{0 0 , 2 0 ,1 2 ,3 2 },G =

30
3 0 1 0 1 0 1 0 1{0 3 ,2 3 ,1 1 ,3 1 },G = 01

0 0 1 0 1 0 1 0 1{0 0 ,1 0 ,3 3 ,2 3 },G = 11
1 0 1 0 1 0 1 0 1{2 2 ,3 2 ,1 1 ,0 1 },G =  

21
2 0 1 0 1 0 1 0 1{2 1 ,3 1 ,1 2 ,0 2 },G = 31

3 0 1 0 1 0 1 0 1{1 3 ,0 3 ,2 0 ,3 0 },=G 02
0 0 1 0 1 0 1 0 1{0 2 ,3 2 , 2 3 ,1 3 },G =

12
1 0 1 0 1 0 1 0 1{0 1 ,3 1 , 2 0 ,1 0 },=G 22

2 0 1 0 1 0 1 0 1{2 1 ,1 1 ,0 0 ,3 0 },G = 32
2 0 1 0 1 0 1 0 1{2 2 ,1 2 ,0 3 ,3 3 },=G  see Figure 1. 

All the subnetworks are isomorphic to 1,22 .K  Let 0 1i j  be a link from the complete bipartite 
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network 4,4K . The constructed design forces every link 0 1i j  to occur in exactly 3 subnetworks 

from .� Moreover, such design fulfills the following total function : {0,1}→ A , where 

= { , }xyaw
c zA G G  be a set of 2-elements subsets of � and 

1; ,
,

; , ,0 .
  
  
  

≠
=  ≠ = ≠



xyaw
c z

w y
G G

a x w y c z
 

Here, , 1  
  
  

=

xyaw
c zG G  means that the intersection of two subnetworks , xyaw

c zG G  is isomorphic to 

subnetwork 1,1,K  and , 0  
  
  

=

xyaw
c zG G  refers that they have no subnetworks in common. □ 

The incidence matrix I for 4,4 1,2 1,1( , 2 ,3; )K K K -ND is  

0

1

2

3

4

5
4,4 1,2 1,1

6

7

8

9

10

11

0 0 1 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 1 0

(( , 2 ,3; ) )
0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0

-

0 1

F
F
F
F
F
F

I K K K F
F
F

F

D

F

N

F

=

0 0 0
0 0 1
0 1 0
1 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. □ 

21

00 20

01

10 30 00

11 31 01

20 10 30 00 20

21

10 30

31

00 20 10

11

30

01

00 10

31

30 20 20

21 11 11

30 10 00 20 30

21

10 00

31

10 00 20

01

30

21

00
30

31

20 10 00

11 01 11

30 20 10 20 10

01

00 30

21

20 10 00

31

30

00 10

01 11

20 30

21 31

 

Figure 1. 4,4 1,2 1,1( , 2 ,3; )K K K -ND. 

Example 1. From Lemma 2, 
2
4 {0,1,2,3} {0,1,2,3} {00,01,02,03,10,11,12,13,20,21,22,23,30,31,32,33},W = = × =

12
2: ,E W →  4( ) ( ),i jE ij C I+=  hence, 

0 1 2 3(00) ( ) 001010000010, (01) ( ) 010001000100, (02) ( ) 100000101000, (03) ( ) 000100010001,= = = = = = = =E C I E C I E C I E C I

5 74 6(10) ( ) 100010000100, (11) ( ) 000101000010, (12) ( ) 001000100001, (13) ( ) 010000011000,E C I E C I E C I E C I= = = = = = = =
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8 9 10 11(20) ( ) 001000010100, (21) ( ) 010000100010, (22) ( ) 100001000001, (23) ( ) 000110001000,E C I E C I E C I E C I= = = = = = = =

12 13 14 15(30) ( ) 100000010010, (31) ( ) 000100100100, (32) ( ) 001001001000, (33) ( ) 010010000001E C I E C I E C I E C I= = = = = = = = .

The minimum distance between code words is 4, so we can correct all single and double errors. For 
instance, 

0( ( ), 2) {001010000010} {101010000010,011010000010,001110000010,001011000010,001010100010,001010010010,

001010001010,001010000110,001010000011} {111010000010,101110000010,101011000010,101010100010,10

= 



S C I

011010000110, 001110010010, 001110001010, 001110000110, 011010000011, 001111000010, 0011101

1010010010,
101010001010,101010000110,101010000011,011110000010,011011000010,011010100010,011010010010,011010001010,

00010, 001110000011,

001011100010,001011010010,001011001010,001011000110,001011000011,001010110010,001010101010,001010100110,
001010100011,001010011010,001010010110,001010010011,001010001110,001010001011
001010000111}.

, 001010001110,001010001011,

The decoding function 12
2: →D W  gives 0( ) ( ) 001010000010ε = =D C I  for all 0( ( ), 2).ε ∈S C I  

Lemma 3. There exists a 4,4 2,2 1,1, , ;( 3 )K K K -ND. Hence, there is a 2,2K -code. 

Proof. Let 00 10 20 30 01 11 21 31 02 12 22 32
0 1 2 3 0 1 2 3 0 1 2 3{ , , , , , , , , , , , }= G G G G G G G G G G G G  with 

00
0 0 1 0 1 0 1 0 1{2 0 ,2 3 ,1 0 ,1 3 },=G 10

1 0 1 0 1 0 1 0 1{3 1 ,3 2 ,0 1 ,0 2 },=G 20
2 0 1 0 1 0 1 0 1{3 3 ,3 0 ,0 3 ,0 0 },=G

30
3 0 1 0 1 0 1 0 1{1 1 ,1 2 ,2 1 ,2 2 },=G 01

0 0 1 0 1 0 1 0 1{1 2 ,1 0 ,3 2 ,3 0 },=G 11
1 0 1 0 1 0 1 0 1{2 1 ,2 3 ,0 1 ,0 3 },=G

21
2 0 1 0 1 0 1 0 1{2 2 , 2 0 ,0 2 ,0 0 },=G 31

3 0 1 0 1 0 1 0 1{1 1 ,1 3 ,3 1 ,3 3 },=G 02
0 0 1 0 1 0 1 0 1{2 2 ,2 3 ,3 2 ,3 3 },G =

12
1 0 1 0 1 0 1 0 1{1 2 ,1 3 ,0 2 ,0 3 },=G 22

2 0 1 0 1 0 1 0 1{2 1 ,2 0 ,3 1 ,3 0 },=G 32
2 0 1 0 1 0 1 0 1{1 1 ,1 0 ,0 1 ,0 0 }.=G All the 

subnetworks are isomorphic to 2,2.K  Let 0 1i j  be a link from the complete bipartite network 

4,4.K The constructed design forces every link 0 1i j  to occur in exactly 3 subnetworks from .� 

Moreover, such design fulfills the following total function : {0,1}→ A , where = { , }xyaw
c zA G G  be 

a set of 2-elements subsets of � and 
1; ,

,
; , ,0 .

  
  
  

≠
=  ≠ = ≠



xyaw
c z

w y
G G

a x w y c z
 

Here, , 1  
  
  

=

xyaw
c zG G  means that the intersection of two subnetworks , xyaw

c zG G  is isomorphic to 

subnetwork 1,1K  and , 0  
  
  

=

xyaw
c zG G  refers that they have no subnetworks in common. □  

Theorem 5. There exists a , 1 1,1, , ;( )n n nK P n K+ -ND where n  is a prime number.  

Proof. We define ( ) ( )τψ τ τ= −xH x  where , {0,1, , 1}.τ ∈ −x n Assume that 
{0,1, , 1},≠ ∈ −p q n then ( ) ( ) ( ); {0,1, , 1}.τ τψ ψ τ τ− = − ∈ −p qH H p q n  It is easy to check that 

the differences ( ) ( )τ τψ ψ−p qH H  give the group {0,1, , 1}− n  since n  is a prime and −p q  is 
not equal to zero. Hence, pH  and qH  are intersected. Now, we will prove that all the bases 

, {0,1, , 1}∈ −pH p n  are paths. The basis 0 1{( ( )) , ( ( ) ) : , {0,1, , 1}},τ τ τ τ τ τ= − − + ∈ −pH p p p n  

it is trivial to show that pH  is a path at 2,=n for 2,>n assume that / 2,=r s  then for each 

0 1{0,1, , 1}, (( )( )) ,(( )( ) ) ),n l r s r r s r rll l l l l l∈ − = + − − + − − + +  where ll  is the link of weight 
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.l + r  Consider the two links ll  and µl  with ,l µ≠  these two links are adjacent and incident in 

the node with zero subscript if ( )( ) ( )( ).r s r r s rl l µ µ+ − − = + − −  Putting 2=s r gives 
( )( ) 0.l µ l µ+ − =  This means that 0l µ+ =  since .l µ≠  Now, we can conclude that 

.nl l lµ µl − −= =  Hence, there is only value of µ  verifies the previous claim provided that 0.l ≠  

Similarly, the two links ll  and µl  with l µ≠  are adjacent and incident in the node with one 

subscript if ( )( ) ( ) ( )( ) ( ).r s r r r s r rl l l µ µ µ+ − − + + = + − − + +  This gives ( 1)( ) 0.l µ l µ+ − − =  
Hence, 1l lµ l−=  and there is only value of µ  verifies the previous claim provided that 1/ 2.l ≠  
Finally, the sequence 0 1 1 2 2 ( 1)/2 ( 1)/2, , , , , , ,l − − − − −…n n n n nl l l l l l represents a path. □  

Lemma 4. There exists a 3,3 4 1,1( , ,3; )K P K -ND. Hence, there is a 4P -code, where 4P  is a path 

graph with four vertices and three edges. 
Proof. Let 00 10 20 01 11 21 02 12 22

0 1 2 0 1 2 0 1 2{ , , , , , , , , }= G G G G G G G G G with 00
0 0 1 0 1 0 1{0 0 ,0 1 ,1 0 },=G

10
1 0 1 0 1 0 1{2 0 ,2 2 ,0 2 },=G 20

2 0 1 0 1 0 1{1 2 ,1 1 ,2 1 },=G 01
0 0 1 0 1 0 1{0 0 ,0 2 ,1 2 },=G 11

1 0 1 0 1 0 1{0 1 ,2 1 ,2 2 },=G
21
2 0 1 0 1 0 1{1 0 ,2 0 ,1 1 },=G 02

0 0 1 0 1 0 1{0 0 , 2 0 ,2 1 },=G 12
1 0 1 0 1 0 1{0 1 ,0 2 ,1 1 },=G 22

2 0 1 0 1 0 1{1 0 ,1 2 ,2 2 }.=G  All 

the subnetworks are isomorphic to 4
.P  Let 0 1i j  be a link from the complete bipartite network 

3,3.K The constructed design forces every link 0 1i j  to occur in exactly 3 subnetworks from .� 

Moreover, such design fulfills the following total function : {0,1}→ A , where = { , }xyaw
c zA G G  be 

a set of 2-elements subsets of � and 
1; ,

,
; , ,0 .

  
  
  

≠
=  ≠ = ≠



xyaw
c z

w y
G G

a x w y c z
 

Here, , 1  
  
  

=

xyaw
c zG G  means that the intersection of two subnetworks , xyaw

c zG G  is 

isomorphic to subnetwork 1,1,K  and , 0  
  
  

=

xyaw
c zG G  refers that they have no subnetworks in 

common. □ 
In what follows, the link 0 1( , )a b  will be written as ( , )a b  for simplification. 

Theorem 6. There exists a 1
, 3 1,1 1,12

, , ;( )−


n
n nK P K n K -ND where 2>n  is a prime number. Hence, 

there is a 1
3 1,12

( )−


n P K -code.  

Proof. Define all subnetworks of a 1
, 3 1,1 1,12

, , ;( )−


n
n nK P K n K -ND by the following table where 

{0,1, , 1}.∈ −x n  

From Table 1, we have a collection { }; {0,1,..., 1}0 1 1..., −= ∈ − ij ij ij
nG ,G , G i, j n  of 2n  

subnetworks. Now, we want to prove the isomorphism of all subnetworks in Table 1. Suppose 
{0,1,..., 1}ε ∈ −n is a fixed number and {0,1,..., 1}ξ ∈ −n is an arbitrary number. By taking the 

subnetworks in the first column of Table 1, we have to prove that 2 ε ξ+ =x x  has a unique 

solution for exactly one ,ξ  two solutions for 1
2
−n  ξ ‘s, and no solution for the remaining 1

2
−n  

ξ ‘s. There is a number {0,1,..., 1}∈ −h n  with 2ε=h  since 2>n  is a prime. Hence, 
2 2( ) ξ+ = +x h h  from the equation 2 .ε ξ+ =x x  Now, we have a unique solution = −x h  if 
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2 0.ξ+ =h For any other 2 ,ξ+h  the desired property is verified. Similarly, the isomorphism for the 
remaining subnetworks in Table 1 can be proved. Hence, all subnetworks in Table 1 are isomorphic 
to 1

3 1,12
−



n P K . It is clear that the subnetworks in the same row in Table 1 have no common links 

and any two subnetworks from two different rows have only one common link. □ 

Table 1. All subnetworks of a 1
, 3 1,1 1,12

, , ;( )−


n
n nK P K n K -ND. 

The elements of the collection   in Theorem 6 
00 2
0 {( , )}G x x=  10 2

1 {( , 1)}= +G x x  … ( -1)0 2
-1 {( , -1)}n

nG x x n= +  
01 2
0 {( , )}G x x x= +  11 2

1 {( , 1)}= + +G x x x  … ( -1)1 2
-1 {( , -1)}n

nG x x x n= + +  
02 2
0 {( , 2 )}G x x x= +  12 2

1 {( , 2 1)}= + +G x x x  … ( -1)2 2
-1 {( , 2 -1)}n

nG x x x n= + +  

 


 


 

 

0( -1) 2
0 {( , ( -1) )}= +nG x x n x  1( -1) 2

1 {( , ( -1) 1)}nG x x n x= + +  … ( -1)( -1) 2
-1 {( , ( -1) -1)}= + +n n

nG x x n x n  
Lemma 5. There exists a 3,3 3 1,1 1,1( , ,3; )K P K K -ND. Hence, there is a 3 1,1P K -code. 

Proof. Let 00 10 20 01 11 21 02 12 22
0 1 2 0 1 2 0 1 2{ , , , , , , , , }= G G G G G G G G G with 00

0 0 1 0 1 0 1{0 0 ,0 1 , 2 2 },=G
10
1 0 1 0 1 0 1{1 0 ,1 1 ,0 2 },=G 20

2 0 1 0 1 0 1{2 0 ,2 1 ,1 2 },=G 01
0 0 1 0 1 0 1{0 0 ,0 2 , 2 1 },=G 11

1 0 1 0 1 0 1{1 0 ,1 2 ,0 1 },=G
21
2 0 1 0 1 0 1{2 0 ,2 2 ,1 1 },=G 02

0 0 1 0 1 0 1{1 1 ,1 2 ,0 0 },=G 12
1 0 1 0 1 0 1{2 1 ,2 2 ,1 0 },=G 22

2 0 1 0 1 0 1{0 1 ,0 2 ,2 0 }.=G  All 
the subnetworks are isomorphic to 3 1,1.P K  Let 0 1i j  be a link from the complete bipartite 

network 3,3.K The constructed design forces every link 0 1i j  to occur in exactly 3 subnetworks 

from .� Moreover, such design fulfills the following total function : {0,1},→ A  where 

= { , }xyaw
c zA G G  be a set of 2-elements subsets of � and 

1; ,
,

; , ,0 .
  
  
  

≠
=  ≠ = ≠



xyaw
c z

w y
G G

a x w y c z
 

Here, , 1  
  
  

=

xyaw
c zG G  means that the intersection of two subnetworks , xyaw

c zG G  is 

isomorphic to subnetwork 1,1,K  and , 0  
  
  

=

xyaw
c zG G  refers that they have no subnetworks in 

common. □ 
Theorem 7. There exists a , 1,1 1,1, , ;( 1 )−n nK nK n K -ND where n  is a prime number. Hence, there is 
a 1,1( )nK -code.  
Proof. Define all subnetworks of a , 1,1 1,1, , ;( 1 )−n nK nK n K -ND by the following table where

{0,1, , 1}.∈ −x n  

From Table 2, the collection { }; {0,1,..., 1},0 1 1..., −= ∈ − ij ij ij
nG ,G , G i n {0,1,..., 2}∈ −j n  of 

1)( −n n  subnetworks. Now, we want to prove the isomorphism of all subnetworks in Table 2. By 
taking the subnetworks in the first column of Table 2, for all {0,1,..., 1},ε ∈ −n  we have 
gcd , = 1.( )ε n  Hence, the nodes ε x  are mutually distinct in {1,2,..., 1}−n  and all the 
subnetworks in the first column of Table 2 are isomorphic to 1,1.nK  Similarly, the isomorphism for 

the remaining subnetworks in Table 2 can be proved. Hence, all subnetworks in Table 2 are 
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isomorphic to 1,1( ).nK  It is clear that the subnetworks in the same row in Table 2 have no common 

links and any two subnetworks from two different rows have only one common link. □ 

Table 2. All subnetworks of a , 1,1 1,1, , ;( 1 )−n nK nK n K -ND. 

The elements of the collection   in Theorem 7 
00
0 {( , )}G x x=  10

1 {( , 1)}= +G x x  … ( -1)0
-1 {( , -1)}n

nG x x n= +  
01
0 {( , 2 )}G x x=  11

1 {( , 2 1)}= +G x x  … ( -1)1
-1 {( , 2 -1)}n

nG x x n= +  
02
0 {( ,3 )}G x x=  12

1 {( ,3 1)}= +G x x  … ( -1)2
-1 {( ,3 -1)}n

nG x x n= +  

 


 


 

 

0( -2)
0 {( , ( -1) )}nG x n x=  1( -2)

1 {( , ( -1) 1)}= +nG x n x  … ( -1)( -2)
-1 {( , ( -1) -1)}n n

nG x n x n= +  
Theorem 8. There exists a , 1,1 1,2 1,1, ( , ;( 2) 1 )− −n nK n K K n K -ND where n  is a prime number. 
Hence, there is a 1,1 1,2( 2)− n K K -code.  
Proof. Define all subnetworks of a , 1,1 1,2 1,1, ( , ;( 2) 1 )− −n nK n K K n K -ND by the following table 

where {0,1, , 1}.∈ −x n   

From Table 3, the collection { }; {0,1,..., 1},0 1 1..., −= ∈ − ij ij ij
nG ,G , G i n {0,1,..., 2}∈ −j n  of 

1)( −n n subnetworks. Now, we want to prove the isomorphism of all subnetworks in Table 3. By 
taking the subnetworks in the first column of Table 3, for all {0,1,..., 1},ε ∈ −n  we have 
gcd , = 1.( )ε n  Hence, the nodes ε x  are mutually distinct in {1,2,..., 1}−n  and the nodes 1ε +x  
are mutually distinct in {1,2,..., 1}.−n  Together with the link (0,0)  we conclude that every 
subnetwork in the first column of Table 3 is isomorphic to 1,1 1,2(( 2) ).− n K K Similarly, the 

isomorphism for the remaining subnetworks in Table 3 can be proved. Hence, all subnetworks in 
Table 3 are isomorphic to 1,1 1,2(( 2) ).− n K K  It is clear that the subnetworks in the same row in 

Table 3 have no common links and any two subnetworks from two different rows have only one 
common link. □ 

Table 3. All subnetworks of a , 1,1 1,2 1,1, ( , ;( 2) 1 )− −n nK n K K n K -ND. 

The elements of the collection   in Theorem 8 
00
0 {(0, 0), ( , 1)}G x x= +  10

1 {(0,1),( , 2)}G x x= +  … ( -1)0
-1 {(0, 1), ( , )}n

nG n x x n= − +  
01
0 {(0, 0), ( , 2 1)}G x x= +  11

1 {(0,1), ( , 2 2)}G x x= +  … ( -1)1
-1 {(0, 1), ( , 2 )}n

nG n x x n= − +  
02
0 {(0, 0), ( , 3 1)}G x x= +  12

1 {(0,1), ( ,3 2)}G x x= +  … ( -1)2
-1 {(0, 1), ( , 3 )}n

nG n x x n= − +  

 


 


 

 

0( -2)
0 {(0, 0), ( , ( -1) 1)}nG x n x= +  1( -2)

1 {(0,1), ( , ( -1) 2)}nG x n x= +  … ( -1)( -2)
-1 {(0, 1), ( , ( -1) )}n n

nG n x n x n= − +  
Theorem 9. There exists a 9,9 1,2 1,3 1,1, , ;( 3 3 )K K K K -ND. Hence, there is a 1,2 1,33 K K -code.  
Proof. Define all subnetworks of a 9,9 1,2 1,3 1,1, , ;( 3 3 )K K K K -ND by the following table where

{0,1, ,8}.∈ x  

From Table 4, the collection { }; {0,1,..., },80 1 ..., 8= ∈ ij ij ijG ,G , G i {0,1,2}∈j  of 24  
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subnetworks. It is clear that all the subnetworks in the first column of Table 4 are isomorphic to the 
network 1,2 1,3(3 ).K K  Similarly, the isomorphism for the remaining subnetworks in Table 4 can 
be proved. Hence, all subnetworks in Table 4 are isomorphic to 1,2 1,3(3 ).K K  It is clear that the 

subnetworks in the same row in Table 4 have no common links and any two subnetworks from two 
different rows have only one common link. □ 

Table 4. All subnetworks of a 9,9 1,2 1,3 1,1, , ;( 3 3 )K K K K -ND. 

The elements of the collection   in Theorem 9 
200

0 {( , )}G x x=  210
1 {( , 1)}= +G x x  … 280

8 {( , 8)}G x x= +  
201

0 {( , )}G x x x= +  211
1 {( , 1)}= + +G x x x  … 281

8 {( , 8)}G x x x= + +  
202

0 {( , 2 )}G x x x= +  212
1 {( , 2 1)}= + +G x x x  … 2

8
82 {( , 2 8)}= + +G x x x  

Theorem 10. There exists a 12,12 1,2 1,4 1,1, , ;( 2 2 2 )K K K K -ND. Hence, there is a 1,2 1,42 2K K

-code.  
Proof. Define all subnetworks of a 12,12 1,2 1,4 1,1, , ;( 2 2 2 )K K K K -ND by the following table where

{0,1, ,11}.∈ x  

From Table 5, the collection { }; {0,1,..., },110 1 ..., 11= ∈ ij ij ijG ,G , G i {0,1}∈j  of 24  subnetworks. 
It is clear that all the subnetworks in the first column of Table 5 are isomorphic to the network 

1,2 1,4(2 2 ).K K  Similarly, the isomorphism for the remaining subnetworks in Table 4 can be proved. 
Hence, all subnetworks in Table 5 are isomorphic to 1,2 1,4(2 2 ).K K  It is clear that the 

subnetworks in the same row in Table 5 have no common links and any two subnetworks from two 
different rows have only one common link. □ 

Table 5. All subnetworks of a 12,12 1,2 1,4 1,1, , ;( 2 2 2 )K K K K -ND. 

The elements of the collection   in Theorem 10 
200

0 {( , )}G x x=  210
1 {( , 1)}= +G x x  … 211,0

11 {( , 11)}= +G x x  
201

0 {( , )}G x x x= +  211
1 {( , 1)}= + +G x x x  … 211,1

11 {( , 11)}= + +G x x x  

5. Constructions of generalized PBNDs based on Cartesian products 

Theorem 11. Let 
0 1 1( ) ( , , , )φ ϕ ϕ ϕ −= … nG  be a symmetric basis of , 1,1, , ;( 2 )n nK G K -ND and 

0 1 1( ) ( , , , )ψ ψ ψ ψ −= … mH  be a symmetric basis of , 1,1, , ;( 2 )m mK H K -ND, then the Cartesian product

0 1 1 0 1 1 0 0 0 1 1 1( ) ( ) ( , , , ) ( , , , ) ( , , , , , )ρ υφ ψ ϕ ϕ ϕ ψ ψ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ− − − −× = … × … = … …n m n mG H  

where {0,1,..., 1}, {0,1,..., 1}ρ ∈ − ∈ −n v m  is a symmetric basis of , 1,1, , ;( 2 )×mn mnK G H K -ND. 
Proof. Since 

0 1 1( ) ( , , , )φ ϕ ϕ ϕ −= … nG  is a symmetric basis of , 1,1, , ;( 2 )n nK G K -ND, then 

{ ( ) ( ) : {0,1,..., 1}} {0,1,..., 1}.ρ ρφ φ ρ ρ−− + ∈ − = −nG G n n                 (3) 

Since 
0 1 1( ) ( , , , )ψ ψ ψ ψ −= … mH is a symmetric basis of , 1,1, , ;( 2 )m mK H K -ND, then 
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{ ( ) ( ) : {0,1,..., 1}} {0,1,..., 1}.ψ ψ −− + ∈ − = −v m vH H v v m m                (4) 

Then, 
0 1 1 0 1 1 0 0 0 1 1 1( ) ( ) ( , , , ) ( , , , ) ( , , , , , )ρ υφ ψ ϕ ϕ ϕ ψ ψ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ− − − −× = … × … = … …n m n mG H  

where {0,1,..., 1}, {0,1,..., 1}.ρ ∈ − ∈ −n v m From (3) and (4), we can conclude 
{ : {0,1,..., 1} {0,1,..., 1}} {( ( ) ( ) )( ( ) ( ) )ρ ρ ρ ρφ ψ φ ψ ρ ρ φ φ ρ ψ ψ− −− −− −− + ∈ × = − + − +v m v v m vn nv v n m G G H H v
: {0,1,..., 1}, {0,1,..., 1}} {0,1,..., 1} {0,1,..., 1}.ρ∈ − ∈ − = − × −n v m n m Then, ( ) ( )φ ψ×G H  is a 
symmetric basis of , 1,1, , ;( 2 )×mn mnK G H K -ND. The incidence matrix of , 1,1, , ;( 2 )n nK G K -ND has 

2n  rows and 2n  columns and the incidence matrix of , 1,1, , ;( 2 )m mK H K -ND has 2m  rows and 
2m  columns. The incidence matrix of , 1,1, , ;( 2 )×mn mnK G H K -ND has 2mn  rows and 2 2×n m

columns. Hence, 2 2= ×columnC n m  and 2 .=rowC mn  When rowC  is used for coding, we can 

detect up to ( ) 1 2 -3θ − =rowC mn  errors and correct up to .
( ) 1 2 -3

2 2
θ

=
−   

     
rowC mn  □ 

Example 2. Let 
3( ) (0,0)φ =P  be a symmetric basis of 2,2 3 1,1( , , 2; )K P K -ND and 

4( ) (0,1,1)ψ =P  
be a symmetric basis of 3,3 4 1,1( , , 2; )K P K -ND, then the Cartesian product 

3 4( ) ( ) (0,0) (0,1,1) (00,01,01,00,01,01)φ ψ× = × =P P  is a symmetric basis of 6,6 3 4 1,1( , , 2; )×K P P K -ND. 
Note that if 

3 4( ) ( ),φ ψ×∈ij P P then ( ) 3= +f ij i j  gives a compact representation for the vector 

3 4( ) ( )φ ψ×P P  which is (0,1,1,0,1,1). 

6. Characteristics of binary codes based on PBNDs 

Combinatorial designs and several related structures can be used to generate codes based on the 
incidence matrix. Many interesting and useful results have been provided as a result of the interplay 
between designs and codes. For an excellent survey on the topic, see [51]. Recently there is more 
attention of codes generating from graphs. The connection of codes and graphs has been explored 
from different aspects in the literature. The main objective in these works is to take a special class of 
graphs and construct codes from the adjacency matrix of the graph. Nice codes can be generated by 
some strongly regular graphs [52,53]. Binary codes can be generated by different graphs such as Paley 
graphs, the block graphs of Steiner 2-designs, and the Latin square graphs [54]. Non-isomorphic codes 
have been produced by non-isomorphic graphs, see [54]. The structure of the graph may lead to 
different types of codes as a result, such as self-dual codes, self-orthogonal codes, etc. We refer the 
reader to [55–61] for some of these works. Higazy et al. [62] studied the group-generated graph 
designs for certain circulant graphs and the generation of codes from such designs. Here, we examine 
binary codes obtained from the row or column span of the incidence matrices of some graphs that 
occur as induced subgraphs of the complete bipartite graphs. In this paper, we introduce a method 
from which we can generate a special type of orthogonal codes. These codes are depending on the 
orthogonality of graphs found in the design , 1,1, , ;( ).n nK F k K  Two graphs are orthogonal if they 

intersect in at most one edge. Our method constructs binary codes satisfying that the inner product of 
any two codewords ≤ 1. We introduce PBNDs that lead to efficient error detection and correction 
codes. In order to increase the dimension of code and keeping efficient properties for error detection 
and correction, we introduce a technique that generates codes based on the Cartesian product of 
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earlier designs. We should notify the reader that our method for such a product differs from those 
studied in [63]. 

In this paper, we studied binary codes based on PBNDs, , 1,1, , ;( ).n nK F k K  For instances, the 
advantages of binary codes generated by , 1,1, , ;( 2 )n nK F K  are as follows: From the binary codeword 

generator of length 2,n  we can get 2 -1n  new binary codewords of length 2,n  this can be shown as 
follows, where these codewords represent the rows of the incidence matrix of , 1,1, , ;( 2 ).n nK F K   

Definition 8. For the binary codeword with length 2,n ijv  is called a binary codeword generator, if 

( )j - i  gives {0,1,..., 1}n−  for ij  with which 1.=ijv   

Definition 9. If 1,0 =ijv  then = 1, {0,1,..., -1}( )( ) ∈x
i+x j+xv x n  is called x - translate of 0.v  

Example 3. Let ,nx∈  2
; { } ,

0; .
1

\
x ∈ = ×= 

∈





nx
ij

n

ij A
v

ij A
 and 2

; { },
0;
1

\
x ∈ = ×= 

∈





nx
ij

n

ij B
u

ij B,
 the rows of the 

following matrix M  represent 2n  binary codewords of length 2,n  
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Put 4,n =  then ,4x∈  4
2
4

; { } ,

0; .

1
\

x ∈ = ×= 
∈





x
ij

ij A
v

ij A
 and 4

2
4

; { },

0;

1
\

x ∈ = ×= 
∈





x
ij

ij B
u

ij B,
 the rows of the 

following matrix M  represent 8  binary codewords of length 16.  Also, if 1,x =ijv  then there is 

a graph corresponding to this vector with the edge set 4= {( , ) : , },0 1( )x ∈E G i j i j  see Figure 2. 
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21 31 0111

20

31 01 1121

30

01 11 2131

11 21 3101

00 10 20 30

01

10 2010003000300030201030201000 20

11 21 31

[1111000000000000] [0000111100000000] [0000000011110000] [0000000000001111]

[1000100010001000] [0100010001000100] [0010001000100010] [0001000100010001]  

Figure 2. The graphs and the corresponding binary codewords of 4,4 1,4 1,1, , ;( 2 )K K K  for 

Example 3. 

Also we can add the following to the advantages of PBNDs: For the generalized binary codes 
generated by the Cartesian products of PBNDs. The Cartesian products of PBNDs is an easier 
method than the previously defined methods for constructing new binary codes from the old ones [64]. 

7. Conclusions 

In the paper, we propose a novel technique for constructing a partially balanced network design 
(PBND). These networks are used to model the information transmission represented by strings of 
the signals zero and one. Certain problems appear in the transmission of information in digital 
communications when this information is transmitted in the form of strings of zeros and ones. The 
noise in the transmission channel changes the original transmitted signal to a different signal. 
Therefore, the receiver takes a wrong decision. The PBND is a helping tool that manages us to detect 
and correct the errors in the coded messages. A graphical model is introduced for the PBND. Also, 
the PBNDs are represented by their corresponding incidence matrices. These matrices compromise 
new and several codes. The nodes of these networks are labeled by the Cartesian product of additive 
abelian groups. Some direct constructions of small and generalized PBND are introduced. Finally, 
we prove that the Cartesian product of two small symmetric bases gives a larger symmetric basis that 
generates new codes with larger lengths. The Cartesian products of PBNDs is an easier method than 
the previously defined methods for constructing new binary codes from the old ones . The following 
table presents the summary of the results in the paper. It should be noted that p is a prime number in 
Table 6. 
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Table 6. Summary of the results. 

,n nK  F  k  X  
3,3K  4P  3  1,1K  

3,3K  3 1,1P K  3  1,1K  

4,4K  1,22K  3  1,1K  

4,4K  2,2K  3  1,1K  

,p pK  1+pP  p  1,1K  

,p pK  3 1,1
1

2
−



p P K  p  1,1K  

,p pK  1,1pK  1−p  1,1K  

,p pK  1,1 1,2( 2)− p K K  1−p  1,1K  

9,9K  1,2 1,33 K K  3  1,1K  

12,12K  1,2 1,42 2K K  2  1,1K  
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