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1. Introduction

While working on the problem of heat conduction, Joseph Fourier, made a detailed study of
trigonometric series which appeared in his celebrated memoir “Théorie Analytique de la Chaleur”.
Thereafter, Fourier’s work was well received from the research community and gained an admirable
spot in diverse fields of physical, mathematical and engineering sciences [1]. The field of differential
and integral equations, making effective use of Fourier transforms, has gained considerable attention
since its inception because of their widespread applications in numerous disciplines of physical and
engineering sciences [2]. Mathematically, the Fourier transform of any square integrable function f is
defined as:
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F
[
f
]
(ω) =

1
√

2π

∫
R

f (x) e−iωx dx. (1.1)

A much extreme generalization of the classical Fourier transform (1.1) was recently obtained by
Saitoh [3] in the form of quadratic-phase Fourier transform (QPFT), while working on the solution
of heat equation via the theory of reproducing kernels. For a given square integrable function f , the
quadratic-phase Fourier transform is defined by

QΩ

[
f
]
(ω) =

1
√

2π

∫
R

f (x) exp
{
i
(
Ax2 + Bxω + Cω2 + Dx + Eω

)}
dx, (1.2)

where A, B,C,D, E ∈ R, B , 0. The QPFT circumscribes a class of integral transforms ranging
from the classical Fourier to the much recent special affine Fourier transforms [4]. Owing to the
fact that the QPFT is governed by a set of free parameters, it has proved to be a reliable tool for an
efficient treatment of problems demanding several controllable parameters arising in diverse branches
of science and engineering, including harmonic analysis, theory of reproducing kernels, sampling,
image processing, and several other fields [5–7].

On the flip side, it is well known that integral transforms are one of the most reliable mathematical
tools for solving diverse classes of differential equations. Some of the commonly used integral
transforms employed for obtaining the analytic solutions of differential equations include the
Fourier,fractional Fourier, linear canonical and Laplace transforms [8–12]. Several other vital
techniques for determining the solutions of the linear and non-linear differential equations can be
found in recent literature including numerical methods, variational iteration methods and so
on [13–15]. However, to the best of our knowledge, the solution of a generalized differential equation
using the QPFT has not yet been reported in the literature. Keeping in view the fact that the QPFT is a
new addition to the class of integral transforms which enjoys several extra degrees of freedom, we are
deeply motivated to solve different classes of generalized differential equations in the QPFT domain.
Taking this opportunity, our aim is to formulate some fundamental differentiation properties of the
QPFT and employ the same for obtaining the analytical solutions of several well-known differential
equations such as the laplace, wave, and heat equations. The obtained solutions are non-trivial
generalizations of the solutions achieved via the classical tools governed by the Fourier, fractional
Fourier, and linear canonical transforms. Nevertheless, the prolificacy of the obtained results is
demonstrated via graphical simulations in the respective cases. Besides, the tabulated data is also
provided for each of the differential equations at hand which portrays the advantages of QPFT over
the existing transforms in the sense that it offers more degrees of freedom as the parameters in the set
Ω = (A, B,C,D, E) can be customized to meet specific needs.

The remaining part of the paper is structured as follows: Section 2 deals with the recapitulation of
preliminaries on the quadratic-phase Fourier transform, which will be used in subsequent sections.
Section 3 is exclusively concerned with the analytic solutions of some generalized differential
equations using the QPFT. The discourse is wrapped with some concluding remarks.

2. Quadratic-phase Fourier transform

We shall start this section with a brief overview of the quadratic-phase Fourier transform which
serves as a cornerstone for the development of the subsequent sections. With minor modifications
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to (1.2), we have the following definition of quadratic phase Fourier transform:

Definition 2.1. [6] For a given set of parameters Ω = (A, B,C,D, E), the quadratic-phase Fourier
transform of f ∈ L2(R) is denoted as QΩ

[
f
]

and is defined by

QΩ

[
f
]
(ω) =

1
√

2π

∫
R

f (x)KΩ(ω, x) dx, (2.1)

where KΩ(ω, x) denotes the quadratic-phase Fourier kernel and is given by

KΩ(ω, x) = exp
{
− i

(
Ax2 + Bωx + Cω2 + Dx + Eω

)}
, A, B,C,D, E ∈ R, B , 0. (2.2)

The backward transform and the Parseval’s relation corresponding to (2.1) are given below:

f (x) =
|B|
√

2π

∫
R

QΩ

[
f
]
(ω)KΩ(ω, x) dω, (2.3)〈

f , g
〉

=
∣∣∣B∣∣∣ 〈QΩ

[
f
]
, QΩ

[
g
]〉
, ∀ f , g ∈ L2(R). (2.4)

By appropriately choosing parameters in Ω = (A, B,C,D, E), the expression (2.1) reduces to some
of the prominent integral transforms as indicated below:
• For A = C = D = E = 0 and B = 1, the expression (2.1) yields the conventional Fourier transform
defined in (1.1).
• The fractional Fourier transform is obtained by setting D = E = 0, A = − cot θ/2, B = csc θ,
C = − cot θ/2, where θ , nπ, n ∈ Z and then amplifying (2.1) by

√
1 − i cot θ [2]

F α[ f
]
(ω) =

∫
R

f (x)Kα(x, ω) dx, (2.5)

where the kernel Kα(ω, x) is given by

Kα(ω, x) =


√

1−i cotα
2π exp

{
i
2

(
ω2 + x2

)
cotα − iωx cscα

}
, α , kπ,

δ(x − ω), α = 2kπ,

δ(x + ω), α = (2k + 1)π, k ∈ Z.

• For D = E = 0 and B , 0, we consider the transformations A → −A/2B, B → 1/B, C → −C/2B.
Upon multiplying (2.1) by 1/

√
iB, we obtain the linear canonical transform [9]

LΩ

[
f
]
(ω) =

1
√

2πiB

∫
R

f (x) exp
{

i
(
Ax2 − 2ωx + Cω2)

2B

}
dx. (2.6)

Next, we shall recall the novel convolution introduced by Shah and Tantary [7] for the quadratic-
phase Fourier transforms. Here, our main motive is to utilize this novel convolution for obtaining the
analytical solutions of some well-known differential equations in the next subsection.

Definition 2.2. [7] If f , g ∈ L2(R), then the quadratic-phase convolution ⊗Ω with respect to the
parameter set Ω = (A, B,C,D, E) is given as:(

f ⊗Ω g
)
(x) =

1
√

2π

∫
R

f (ξ) g(x − ξ) e2iAξ(x−ξ) dξ. (2.7)
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Note that, the quadratic-phase convolution (2.7) obeys the following properties:
• Commutativity: ( f ⊗Ω g)(x) = (g ⊗Ω f )(x)
• Associativity:

(
( f ⊗Ω g) ⊗Ω h

)
(x) =

(
f ⊗Ω (g ⊗Ω h)

)
(x)

• Translation: ( f ⊗Ω g)(x − k) = e−2iAkx(e2iAkξ f (ξ − k) ⊗Ω g(ξ)
)
(x)

• Scaling: ( f ⊗Ω g)(λx) = |λ|
(
f (λξ) ⊗Ω′ g(λξ)

)
(x), where Ω′ = (λ2A, B,C,D, E), λ ∈ R∗

Moreover, the convolution theorem corresponding to (2.7) reads:

QΩ

[(
f ⊗Ω g

)
(x)

]
(ω) = ei(Cω2+Eω)QΩ

[
f
]
(ω)QΩ

[
g
]
(ω). (2.8)

3. Applications of quadratic-phase Fourier transform to generalized partial differential
equations

In this section, our main concern is to express the analytical solutions of a class of generalized partial
differential equations, including the Laplace, wave, and heat equations, by making use of the quadratic-
phase Fourier transform. To facilitate the intention, we shall first define the notion of generalized
Schwartz space and then prove some needful differential properties in the quadratic-phase Fourier
domain.

The generalized Schwartz class SΩ(R) of rapidly decaying functions associated with the quadratic-
phase Fourier transforms is defined as

SΩ(R) =

{
f (x) ∈ C∞(R) : sup

x∈R
xβDγx f (x) < ∞

}
,

with C∞(R) denoting the space of smooth functions, β, γ ∈ Z+ ∪ {0} and Dx = d/dx − i(2Ax + D),
denotes the modified differential operator.

We are now ready to study some differentiable properties of the quadratic-phase Fourier transform
(2.1) and its kernel KΩ(ω, x):

Proposition 3.1. Let f ∈ SΩ(R) andKΩ(ω, x) be the kernel of quadratic-phase Fourier transform (2.1).
Then, we have
(i) D

n
x KΩ(ω, x) = (iBω)nKΩ(ω, x), n ∈ N,

(ii) D
n
ωKΩ(ω, x) = (iBx)nKΩ(ω, x), n ∈ N,

(iii)
∫
R

(
DxK(ω, x)

)
f (x) dx =

∫
R

KΩ(ω, x)Dx f (x) dx

(iv) QΩ

[
Dn

x f (x)
]
(ω) = (iBω)nQΩ

[
f
]
(ω), n ∈ N,

(v) D
n
ωQΩ

[
f
]
(ω) = (iB)nQΩ

[
xn f (x)

]
(ω), n ∈ N,

where Dx = d/dx − i(2Ax + D),Dω = d/dω − i(2Cω + E),Dx = −d/dx − i(2Ax + D) and Dω =

−d/dω − i(2Cω + E).

Proof. (i) Let KΩ(ω, x) be the kernel of quadratic-phase Fourier transform (2.1), then

DxKΩ(ω, x) = −

(
d
dx

+ i(2Ax + D)
)

1
√

2π
exp

{
− i

(
Ax2 + Bxω + Cω2 + Dx + Eω

)}
=

iBω
√

2π
exp

{
− i

(
Ax2 + Bxω + Cω2 + Dx + Eω

)}
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= iBωKΩ(ω, x).

Continuing like-this n-times, we can obtain

D
n
x KΩ(ω, x) = (iBω)nKΩ(ω, x).

(ii) The proof of (ii) is quite straightforward.
(iii) For any f ∈ SΩ(R), we observe that∫

R

(
DxKΩ(ω, x)

)
f (x) dx =

∫
R

(
d
dx
− i(2Ax + D)

)
KΩ(ω, x) f (x) dx

=

∫
R

d
dx
KΩ(ω, x) f (x) dx −

∫
R

i(2Ax + D)K(ω, x) f (x) dx

= −

∫
R

KΩ(ω, x)
d
dx

f (x) dx −
∫
R

i(2Ax + D)K(ω, x) f (x) dx

= −

∫
R

KΩ(ω, x)
(

d
dx

+ i(2Ax + D)
)

f (x) dx

=

∫
R

KΩ(ω, x)Dx f (x) dx.

(iv) By virtue of quadratic-phase Fourier transform (2.1), we have

QΩ

[
Dn

x f (x)
]
(ω) =

∫
R

KΩ(ω, x)Dn
x f (x) dx

=

∫
R

D
n
x KΩ(ω, x) f (x) dx

= (iBω)n
∫
R

KΩ(ω, x) f (x) dx

= (iBω)nQΩ

[
f
]
(ω).

(v) Finally, we have

D
n
ωQΩ

[
f
]
(ω) =

∫
R

D
n
ωKΩ(ω, x) f (x) dx

=

∫
R

(iBx)nKΩ(ω, x) f (x) dx

= (iB)n
∫
R

KΩ(ω, x) xn f (x) dx

= (iB)nQΩ

[
xn f (x)

]
(ω).

The proof of Proposition 3.1 is thus completed. �

We are now in a position to derive the solution of generalized Laplace, wave, and heat equations
by employing the quadratic-phase Fourier transform method. We shall also provide an example for a
lucid illustration of the method.
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3.1. The generalized Laplace equation

Here, we shall obtain an analytic solution of the Laplace equation in the quadratic-phase Fourier
domain subjected to appropriate boundary conditions. Consider,

∇2U := D2
x U + Utt = 0, −∞ < x < ∞, t > 0, (3.1)

U(x, 0) = f (x), −∞ < x < ∞, (3.2)
U(x, t)→ 0 as |x| → ∞ and t → ∞. (3.3)

For fixed t, applying quadratic-phase Fourier transform (2.1) on the above system of equations
yields:

d2

dt2 QΩ

[
U

]
(ω, t) − B2ω2QΩ

[
U

]
(ω, t) = 0, t > 0, (3.4)

QΩ

[
U

]
(ω, 0) = QΩ

[
f
]
(ω) (3.5)

QΩ

[
U

]
(ω, t)→ 0 as t → ∞. (3.6)

Then, the solution of the transformed system of Eqs (3.4)–(3.6) is given by

QΩ

[
U

]
(ω, t) = ei(Cω2+Eω)QΩ

[
f
]
(ω)QΩ

[
g
]
(ω), (3.7)

where QΩ

[
g
]
(ω) = e−B|ω|t−i(Cω2+Eω).

Invoking the inversion formula of the quadratic-phase Fourier transform (2.3) for (3.7), we obtain

U(x, t) = Q−1
Ω

[
ei(Cω2+Eω)QΩ

[
f
]
(ω)QΩ

[
g
]
(ω)

]
(x). (3.8)

For obtaining an explicit form of the expression U(x, t) appearing in (3.8), we shall use the
convolution theorem for the quadratic-phase Fourier transform (2.8) as

U(x, t) =
(
f ⊗Ω g

)
(x) =

1
√

2π

∫
R

f (ξ) g(x − ξ) e2iAξ(x−ξ) dξ, (3.9)

where

g(x) =
|B|
√

2π

∫
R

e−B|ω|t−i(Cω2+Eω) exp
{
i
(
Ax2 + Bxω + Cω2 + Dx + Eω

)}
dω

=
|B|
√

2π
· ei(Ax2+Dx)

∫
R

e−B|ω|t+iBxω dω

=
sgn(B)
π

·
ei(Ax2+Dx) t

x2 + t2 . (3.10)

After plugging (3.10) in (3.9), we get

U(x, t) =
t sgn(B)

π
· ei(Ax2+Dx)

∫
R

f (ξ)
(x − ξ)2 + t2 e2iAξ(x−ξ) dξ, t > 0. (3.11)

Expression (3.11) is the required integral solution of the generalized Laplace Eq (3.1) under the
given boundary conditions in the quadratic-phase Fourier domain.
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• For the parametric set Ω = (−A/2B, 1/B,−C/2B, 0, 0), solution (3.11) reduces to the solution of the
Laplace equation in linear canonical domain as

U(x, t) =
t sgn

(
1
B

)
π

· e−iAx2/2B
∫
R

f (ξ)
(x − ξ)2 + t2 e−iAξ(x−ξ)/B dξ.

• For the parametric set Ω = (− cot θ/2, csc θ,− cot θ/2, 0, 0), θ , nπ, one can obtain the solution of the
Laplace equation via fractional Fourier transform as

U(x, t) =
t sgn(csc θ)

π
· e−ix2 cot θ/2

∫
R

f (ξ)
(x − ξ)2 + t2 e−iAξ(x−ξ) cot θ dξ.

• For the parametric set Ω = (0, 1,−1, 0, 0), solution (3.11) boils down to the solution of the ordinary
Laplace equation

U(x, t) =
t
π

∫
R

f (ξ)
(x − ξ)2 + t2 dξ.

Example 3.2. Let us consider the Laplace Eq (3.1) subjected to U(x, 0) = δ(x), then according to (3.11),
the solution has the following form:

U(x, t) =
t sgn(B)

π
· ei(Ax2+Dx)

∫
R

δ(ξ)
(x − ξ)2 + t2 e2iAξ(x−ξ) dx

=
t sgn(B)

π
·

ei(Ax2+Dx)

x2 + t2 . (3.12)

The solution of an Example 3.2 for the case A = B = D = 1 is of the form

U(x, t) =
t
π
·

ei(x2+x)

x2 + t2 . (3.13)

Moreover, the solution of Example 3.2 for the case A = B = D = 1 is graphically shown in Figure 1.
For fixed values of t, the solution of the Example 3.2 for the case A = B = D = 1 corresponding to
different values of x are tabulated in Table 1.
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Figure 1. Real and imaginary parts of Example 3.2 for the case A = B = D = 1.
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Table 1. Solution of Example 3.2 for different values of x and fixed t at A = B = D = 1.

t = 0.5 t = 1.0 t = 1.5 t = 2.0

x u(x, t) u(x, t) u(x, t) u(x, t)

−1.6 0.0325 + 0.0464i 0.0513 + 0.0732i 0.0569 + 0.0813i 0.0557 + 0.0795i

−1.2 0.0550 + 0.0135i 0.0869 + 0.0213i 0.0964 + 0.0236i 0.0943 + 0.0231i

−0.8 0.0559 − 0.0090i 0.0883 − 0.0142i 0.0980 − 0.0158i 0.0958 − 0.0155i

−0.4 0.550 − 0.0135i 0.0869 − 0.0213i 0.0964 − 0.0236i 0.0943 − 0.0231i

0 0.0566 + 0.0000i 0.0894 + 0.0000i 0.0993 + 0.0000i 0.0970 + 0.0000i

0.4 0.0480 + 0.0301i 0.0758 + 0.0475i 0.0841 + 0.0527i 0.0822 + 0.0515i

0.8 0.0074 + 0.0562i 0.0117 + 0.0886i 0.0129 + 0.0984i 0.0127 + 0.0962i

1.2 −0.0497 + 0.0272i −0.0784 + 0.0430i −0.0870 + 0.0477i −0.0851 + 0.0467i

1.6 −0.0297 − 0.0482i −0.0469 − 0.0761i −0.0521 − 0.0845i −0.0509 − 0.0826i

The solution of an Example 3.2 for the case A = D = 0 and B = 1, yields the solution of the classical
Laplace equation corresponding to the initial condition U(x, 0) = δ(x) and is of the form

U(x, t) =
t
π
·

1
x2 + t2 . (3.14)

For a lucid illustration of the behavior of the solution of the traditional Laplace equation subjected
to U(x, 0) = δ(x), a graphical representation of (3.14) is presented in Figure 2.

U
(x

,t
)

x
t

0.1

1

0.15

0.2

0.5

0.25

0.3

0.5

0.35

0

0 -0.5

Figure 2. Solution of Example 3.2 for the case A = D = 0, B = 1 and U(x, 0) = δ(x).

3.2. The generalized wave equation

The generalized wave equation defined on a Schwartz class SΩ(R) is given by

Utt = k2D
2
x U, −∞ < k, x < ∞, t > 0, (3.15)

U(x, 0) = f (x), Ut(x, 0) = g(x), −∞ < x < ∞, t > 0. (3.16)

Suppose that U(x, t) as well as its first partial derivatives vanish at infinity. Then, invoking the
quadratic-phase Fourier transform yields

d2

dt2 QΩ

[
U

]
(ω, t) + k2B2ω2QΩ

[
U

]
(ω, t) = 0, (3.17)
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QΩ

[
U

]
(ω, 0) = QΩ

[
f
]
(ω),

d
dt
QΩ

[
U

]
(ω, t)

∣∣∣∣∣
t=0

= QΩ

[
g
]
(ω). (3.18)

Consequently, we have

QΩ

[
U

]
(ω, t) = QΩ

[
f
]
(ω) cos (Bktω) + QΩ

[
g
]
(ω)

sin (Bktω)
Bkω

=
QΩ

[
f
]
(ω)

2

{
eiBktω + e−iBktω

}
+
QΩ

[
g
]
(ω)

2iBkω

{
eiBktω − e−iBktω

}
. (3.19)

Therefore, the desired solution is obtained by applying the backward quadratic-phase Fourier
transformation to (3.19) as:

U(x, t) =
|B|
√

2π

∫
R

{
QΩ

[
f
]
(ω)

2

{
eiBktω + e−iBktω

}
+
QΩ

[
g
]
(ω)

2iBkω

{
eiBktω − e−iBktω

}}
× KΩ(ω, x) dω

=
|B|
√

2π

∫
R

{(
1

2
√

2π

∫
R

f (ξ)
{
eiBktω + e−iBktω

}
KΩ(ω, ξ) dξ

)
+

(
1

2iBkω
√

2π

∫
R

g(ξ)
{
eiBktω − e−iBktω

}
KΩ(ω, ξ) dξ

)}
KΩ(ω, x) dω

=
|B|
2π

∫
R

{(
1
2

∫
R

f (ξ)
{
eiBktω + e−iBktω

}
e−i(Aξ2+Bωξ+Dξ) ei(Ax2+Bωx+Dx) dξ

)
+

(
1

2iBkω

∫
R

g(ξ)
{
eiBktω − e−iBktω

}
e−i(aξ2+Bωξ+Dξ) ei(Ax2+Bωx+Dx) dξ

)}
dω

=
|B|
2π
· ei(Ax2+Dx)

∫
R

{(
1
2

∫
R

f (ξ)
{
eiBktω + e−iBktω

}
e−i(Aξ2+Bωξ+Dξ) eiBωx dξ

)
+

(
1

2iBkω

∫
R

g(ξ)
{
eiBktω − e−iBktω

}
e−i(Aξ2+Bωξ+Dξ) eiBωx dξ

)}
dω.

Setting F(ξ) = f (ξ) e−i(Aξ2+Dξ),G(ξ) = g(ξ) e−i(Aξ2+Dξ) and v = Bω, we obtain

U(x, t) =
sgn(B)

2π
· ei(Ax2+Dx)

∫
R

{(
1
2

∫
R

F(ξ) e−ivξ dξ
{
eiktv + e−iktv

}
eivx

)
+

(
1

2ikv

∫
R

G(ξ) e−ivξ dξ
{
eiktv − e−iktv

}
eivx

)}
dv. (3.20)

By invoking the definition of Fourier transform, (3.20) takes the form:

U(x, t)

=
sgn(B)
√

2π
· ei(Ax2+Dx)

∫
R

{
1
2

F
[
F
]
(v)

{
ei(x+kt)v + ei(x−kt)v

}
+

1
2ikv

F
[
G
]
(v)

{
ei(x+kt)v − ei(x−kt)v

}}
dv
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= sgn(B) ei(Ax2+Dx)
{

1
2
(
F(x + kt) + F(x − kt)

)
+

1
2k

∫
R

F
[
G
]
(v)

{∫ x+kt

x−kt
eivs ds

}
dv

}
= sgn(B) ei(Ax2+Dx)

{
1
2
(
F(x + kt) + F(x − kt)

)
+

1
2k

∫ x+kt

x−kt

{∫
R

F
[
G
]
(v) eivs dv

}
ds

}
= sgn(B) ei(Ax2+Dx)

{
1
2
(
F(x + kt) + F(x − kt)

)
+

1
2k

∫ x+kt

x−kt
G(s) ds

}
. (3.21)

Substituting back the values of F and G in (3.21), we get

U(x, t) = sgn(B) ei(Ax2+Dx)
{

1
2

(
f (x + kt) ei(A(x+kt)2+D(x+kt)) + f (x − kt)

×ei(A(x−kt)2+D(x−kt))
)

+
1
2k

∫ x+kt

x−kt
g(s) ei(As2+Ds) ds

}
. (3.22)

Expression (3.22) is the desired solution corresponding to (3.15) in the quadratic-phase Fourier
domain.
• For the parametric set Ω = (−A/2B, 1/B,−C/2B, 0, 0), Eq (3.22) reduces to the solution of the wave
equation in the linear canonical domain

U(x, t) =
sgn

(
1
B

)
eiAx2/2B

{
1
2

(
f (x + kt) e−iA(x+kt)2/2B + f (x − kt) e−iA(x−kt)2/2B

)
+

1
2k

∫ x+kt

x−kt
g(s) e−iAs2/2B ds

}
.

• For the parametric set Ω = (− cot θ/2, csc θ,− cot θ/2, 0, 0), θ , nπ, one can obtain the solution of the
generalized wave equation in fractional Fourier domain as

U(x, t) =
sgn(csc θ)
ei cot θ x2/2

{
1
2

(
f (x + kt) e−i cot θ(x+kt)2/2 + f (x − kt) e−i cot θ(x−kt)2/2

)
+

1
2k

∫ x+kt

x−kt
g(s) e−i cot θs2/2 ds

}
.

• For the parametric set Ω = (0, 1,−1, 0, 0), Eq (3.22) boils down to the classical solution of the wave
equation

U(x, t) =
1
2
(
f (x + kt) + f (x − kt)

)
+

1
2k

∫ x+kt

x−kt
g(s) ds.

Example 3.3. Consider the initial value problem:

Utt = D
2
x U, −∞ < x < ∞, t > 0,

U(x, 0) = e−x2
, Ut(x, 0) = e−x2

.

Then, according to (3.22), the solution of the above system is expressible as:

U(x, t) =
sgn(B)

2
· ei(Ax2+Dx)

{
e−(x+t)2

ei(A(x+t)2+D(x+t)) + e−(x−t)2
ei(A(x−t)2+D(x−t))
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+

∫ x+t

x−t
e−s2

ei(As2+Ds) ds
}
. (3.23)

In particular, the solution (3.23) of an Example 3.3 for the case A = B = D = 1 takes the form:

U(x, t) =
ei(x2+x)

2

{
ei(x+t) + ei(x−t)) +

∫ x+t

x−t
e−s2+i(s2+s) ds

}
=

ei(x2+x)

2

{
ei(x+t) + ei(x−t)) +

i
√

(1 + i)π

2
√

2
· e−(1+i)/8

×

erfi
 √1 + i

2
√

2

(
1 + 2(1 + i)(x − t)

) − erfi
 √1 + i

2
√

2

(
1 + 2(1 + i)(x + t)

) . (3.24)

The 3D plots of the solution of Example 3.3 are depicted in Figure 3, while, the estimates of U(x, t)
in (3.24) for different values of x and fixed t are presented in Table 2.
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Figure 3. Real and imaginary parts corresponding to solution of Example 3.3 for A = B =

D = 1.

Table 2. Numerical values of the solution of Example 3.3 for A = B = D = 1.

t = 0.5 t = 1.0 t = 1.5 t = 2.0

x u(x, t) u(x, t) u(x, t) u(x, t)

−1.6 0.0656 + 0.1300i 0.2625 + 0.2295i 0.3192 + 0.3784i 0.0216 + 0.4255i

−1.2 0.3101 + 0.0367i 0.4750 + 0.0394i 0.3693 + 0.2689i −0.0287 + 0.2621i

−0.8 0.5159 − 0.1442i 0.4845 + 0.0572i 0.1553 + 0.2634i −0.0934 + 0.0726i

−0.4 0.7013 − 0.1362i 0.3291 + 0.2522i −0.0700 + 0.1444i −0.0291 − 0.0271i

0 0.6622 + 0.1691i 0.1074 + 0.1673i −0.0047 + 0.0058i 0.0050 + 0.0058i

0.4 0.2982 + 0.3944i 0.2810 + 0.0603i −0.1301 + 0.0897i 0.0008 + 0.0396i

0.8 −0.1428 + 0.3531i 0.1569 + 0.4641i 0.1001 + 0.2897i −0.0127 + 0.1177i

1.2 −0.2203 − 0.1721i −0.4697 + 0.1232i −0.3457 + 0.2984i −0.2080 + 0.1620i

1.6 0.1446 + 0.0219i 0.1386 − 0.3198i −0.2119 − 0.4474i −0.3034 − 0.2992i

Also for A = D = 0 and B = 1, solution (3.23) correspond to the classical case and is given by

U(x, t) =
1
2

(
e−(x+t)2

+ e−(x−t)2)
+

1
2

∫ x+t

x−t
e−s2

ds
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=
1
2

(
e−(x+t)2

+ e−(x−t)2)
+

√
π

4

(
erf (x + t) − erf (x − t)

)
. (3.25)

For a lucid illustration of the behaviour of one dimensional wave equation, a graphical
representation of the expression (3.25) is depicted in Figure 4.
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Figure 4. Solution of Example 3.3 for A = D = 0 and B = 1.

3.3. The generalized heat equation

Consider the heat equation associated with the quadratic-phase Fourier transform given by

Ut = k2D
2
x U(x, t), −∞ < k, x < ∞, t > 0, (3.26)

subjected to

U(x, 0) = f (x). (3.27)

Applying quadratic-phase Fourier transform (2.1) to the above system of equations, we obtain

d
dt
QΩ

[
U

]
(ω, t) + k2 B2ω2QΩ

[
U

]
(ω, t) = 0, (3.28)

QΩ

[
U

]
(ω, 0) = QΩ

[
f
]
(ω). (3.29)

Subsequently, the complementary function of the Eq (3.28) is given by

QΩ

[
U

]
(ω, t) = ei(Cω2+Eω)QΩ

[
f
]
(ω)QΩ

[
g
]
(ω), (3.30)

where QΩ

[
g
]
(ω) = e−k2B2ω2t−i(Cω2+Eω).

Invoking the convolution theorem (2.8) for quadratic-phase Fourier transform, we obtain the
solution of (3.30) as:

U(x, t) =
1
√

2π

∫
R

f (ξ) g(x − ξ) e2iAξ(x−ξ) dξ, (3.31)

where

g(x) =
|B|
√

2π

∫
R

e−k2B2ω2t−i(Cω2+Eω)QΩ(ω, x) dω
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=
|B|
√

2π
· ei(Ax2+Dx)

∫
R

e−(k2B2t)ω2+(iBx)ω dω

=
sgn(B)

k
√

2t
· ei(Ax2+Dx)−x2/4k2t, t > 0. (3.32)

Implementing (3.32) in (3.31), we obtain

U(x, t) =
sgn(B)
2k
√
πt

∫
R

f (ξ) exp
{

i(x − ξ)
(
A(x − ξ) + 2Aξ + D

)
−

(x − ξ)2

4k2t

}
dξ. (3.33)

Expression (3.33) is the desired solution of the heat equation in the quadratic-phase Fourier domain.
• For the case Ω = (−A/2B, 1/B,−C/2B, 0, 0), solution (3.33) boils down to the solution of the heat
equation in linear canonical domain:

U(x, t) =
sgn

(
1
B

)
2k
√
πt

∫
R

f (ξ) exp
{
−iA(x − ξ)(x − 3ξ)

2B
−

(x − ξ)2

4k2t

}
dξ.

• For the case Ω = (− cot θ/2, csc θ,− cot θ/2, 0, 0), θ , nπ, one can obtain the solution in the context
of fractional Fourier transform as

U(x, t) =
sgn(csc θ)

2k
√
πt

∫
R

f (ξ) exp
{
−i cot θ(x − ξ)(x − 3ξ)

2
−

(x − ξ)2

4k2t

}
dξ.

• For the case Ω = (0, 1,−1, 0, 0), solution (3.33) reduces to the classical solution of the heat equation
as

U(x, t) =
1

2k
√
πt

∫
R

f (ξ) e−(x−ξ)2/4k2t dξ.

Example 3.4. Consider the initial value problem:

Ut =
1
4
D

2
x U(x, t), −∞ < x < ∞, t > 0,

U(x, 0) = δ(x).

Then, according to (3.33), we can express the solution as:

U(x, t) =
sgn(B)
√
πt

∫
R

δ(ξ) exp
{

i(x − ξ)
(
A(x − ξ) + 2Aξ + D

)
−

(x − ξ)2

t

}
dξ

=
sgn(B)
√
πt
· exp

{
i
(
Ax2 + Dx

)
−

x2

t

}
. (3.34)

In particular, for A = B = D = 1, solution (3.34) is expressible as under:

U(x, t) =
1
√
πt
· exp

{
i
(
x2 + x

)
−

x2

t

}
. (3.35)
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The graphical representation of the solution (3.35) of an Example 3.4 for the case A = B = D = 1
is depicted in Figure 5. To show the numerical values of the solution (3.35) for various values of x and
fixed t are presented in Table 3.
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Figure 5. Real and imaginary parts of the solution of Example 3.4 for A = B = D = 1.

Table 3. The values of the solution of Example 3.4 for A = B = D = 1.

t = 0.5 t = 1.0 t = 1.5 t = 2.0

x u(x, t) u(x, t) u(x, t) u(x, t)

−1.6 0.0027 + 0.0039i 0.0250 + 0.0357i 0.0479 + 0.0685i 0.0636 + 0.0909i

−1.2 0.0046 + 0.0011i 0.0424 + 0.0104i 0.0812 + 0.0199i 0.1077 + 0.0264i

−0.8 0.0047 − 0.0008i 0.0431 − 0.0069i 0.0825 − 0.0133i 0.1095 − 0.0177i

−0.4 0.0046 − 0.0011i 0.0424 − 0.0104i 0.0812 − 0.0199i 0.1077 − 0.0264i

0 0.0048 + 0.0000i 0.0436 + 0.0000i 0.0836 + 0.0000i 0.1109 + 0.0000i

0.4 0.0040 + 0.0025i 0.0370 + 0.0232i 0.0708 + 0.0444i 0.0940 + 0.0589i

0.8 0.0006 + 0.0047i 0.0057 + 0.0432i 0.0109 + 0.0829i 0.0145 + 0.1100i

1.2 −0.0042 + 0.0023i −0.0382 + 0.0210i −0.0733 + 0.0402i −0.0973 + 0.0533i

1.6 −0.0025 − 0.0041i −0.0229 − 0.0371i −0.0439 − 0.0712i −0.0582 − 0.0944i

Also for A = D = 0, B = 1, we have from (3.34)

U(x, t) =
1
√
πt
· e−x2/t, (3.36)

which can be represented graphically in Figure 6 as:
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Figure 6. Representation of solution of the heat equation for A = D = 0 and B = 1.
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4. Conclusions

In this article, we have investigated the analytic solutions of several prominent differential
equations including the Laplace, wave, and the heat equations by employing the quadratic-phase
Fourier transform. This strategy of obtaining the analytical solution of differential equations is novel
to the literature and stands for its efficiency and simplicity. Moreover, this technique is advantageous
over the existing ones in the sense that it is direct, compatible, and useful in investigating the
problems in science and engineering demanding analytical solutions of non-linear systems. For lucid
illustration of the novel technique, several examples and three-dimensional visualizations have been
depicted in Figures 1–6. In addition, the solution of equations for various values is illustrated in
Tables 1–3. These analytical solutions could have a wide range of applications in science and
engineering. We observe that the obtained solutions are generalized versions of the solutions to the
traditional Laplace, wave, and heat equations.
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