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1. Introduction

As is known to all, time delays exist in the natural dynamic systems, such as transport,
communication, or measurement widely. Time delay causes undesirable dynamic behaviors such as
oscillation, performance deterioration, limit cycles and even instability in the model [1,2]. Thus the
research about stability analysis of time-delay systems has been of great significance [3-9]. It has
attracted enormous attention of many researchers [10-18].
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In general, the problem of stability analysis for time-delay systems can be divided into two
categories. That are constant and time-varying delay systems. The stability criteria of time-varying
delay systems are less conservatism than that of constant delay systems, owing to the full use of time
delay information in stability analysis of time delay systems. The stability analysis of constant delay
systems is described in literature [19].

However, more efforts have been paid to analyze stability of time-varying delay systems.
The main approach to measure conservatism is calculating the maximal admissible delay upper
bounds(MADUPS). There are two major directions to reduce conservatism, namely the Lyapunov-
Krasovskii functional(LKF) [20, 21] structure and Linear matrix inequality(LMI) technique. There
are two approaches to construct suitable LKF, namely, augmented Lyapunov-Krasovskii functional
approach(ALFA) and multiple integral Lyapunov-Krasovskii functional approach(MILFA). The
former introduces more state information into the vector of the positive quadratic terms. The latter
adopts multiple integral terms to the LKF. Literature [22, 23] proposed a new formed LKF for
time-varying delay systems. Although the conservatism of the stability criteria for time-varying
delay systems is reduced in the above literatures. They all introduce the constant matrix in
the positive quadratic terms, such as ft ; i (5)Qx(s)ds, which makes the conclusion conservative.
Secondly, for LMI techniques, there are some useful inequalities were developed, for example,
Jensen’s inequality(JI) [24], Wirtinger-based integral inequality(WBII) [25], free matrix-based integral
inequality(FMBLL) [26] and other LMI techniques [27-35].

¢ A new type of LKF with time-varying delay dependent matrix is constructed, which is
t—h(t) T

I\ :f(’j) ' ($)(Qio + (hy = h()Qu)i(s)ds + [, &7 (5)(Qao + (ha = h(1))Q21)¥(s)ds, which makes more
use of the time-varying delay information in time-varying delay systems. And the influence of the
time-varying rate on the stable operation of system is considered, which plays an important role in

reducing the conservatism of the system.

¢ Two novel time delay partition inequalities are developed in this work for estimating the single
integral terms with time-varying delay information. The proposed one can derive bigger MADUPS of
time-varying delay systems.

¢ Two stability criteria of time-varying delay system are established by applying the above LKF and
inequalities. Based on three numerical examples, the advantages of the stability criteria are verified
through the comparison of MADUPS with different criteria.

Notation: Let R" denotes n-dimensional Euclidean space, R™" denotes the set of all n X n real
matrices, S’} represents a set of positive definite matrices with n X n dimensions, P > 0 stands for that
the matrix P is real symmetric positive definite matrix, 0,3, represents the zero element matrix with
the n x 3n dimensions, X7 is the transpose of matrix X, He{X} = X + XT. % in the matrix represents
the symmetry of matrix.

2. Preliminaries

The time-varying delay system model can be obtained from following equation:

2.1)

x(t) = Ax(¥) + Bx(t — h(¢))
x(t) = ¢(1) t € [—h,,0].
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where x(f) € R" is the state vector. A and B are constant matrices with appropriate dimensions. ¢(t) is
a given vector-valued initial function. The time delay, A(¢), is a time-varying continuous function that
satisfies:

hy <h(t)<h, —u<h@ <pu. (2.2)

where 0 < h; < hy and u is a positive constant. Note that #; may not be equal to 0. The initial
condition, ¢(t), is a continuous vector-valued initial function of ¢ € [—h,, 0].
Before deriving the main results, the following lemmas should be introduced. When we set

hl ;é 0, and change the single integral terms — f o T ($)Rx(s)ds — f o T (s)Rx(s)ds in [29] a
[, (t) T (s)RX(s)ds— f o 17 (s)Rx(s)ds, the following Lemma 1 and 2 can be obtained from Lemma
4 and 6 in [29].

Lemma 1. For a block symmetric matrix R = diag{R, 3R} with R € S" and any matrix § € R*>?", the
single integral terms can be estimated as:

t—hy 1—h() T
fh() & ($)Ri(s)ds + fh i ()Ri(s)ds > 51 (f)[ ] (M(h(f))—N(h(l‘)))[ 2 ](1(1)-
’ (2.3)

where

1—h 1—h(r)
L(1) =col{x(t),  x(t—h(D), x(t—h), x(t— hy), f[_ . h(:;(i) s, f,_ ) hzx_(“z G 0,
X(t = h(@®), x(t—h), x-h)},

€ = [On~(i—1)na L, 0n~(10—i)n] (l =1,2,..., 1O)a

E. = €3 — € €r) — €4
b= e3 + ey, —2es ’ e +eq4 — 2eg
_ alR S _ Q’3SR_1ST 0
M(h(t)) = * @R ], N(h() = [ % @, STRS
i = 2hy — hy — h(?) o = h(t) + hy — 2l o = hy — h(t) oy = h(t) — hy
‘ hy—hy hy—h " ha=h T b=k

Lemma 2. For a block symmetric matrix R = diag{R,3R,5R} with R € §"| and any matrix S| € R3¥3n
the single integral terms can be estimated as:

t—h1 1—h(r) T
f & (s)Rx(s)ds +f i" (s)Rx(s)ds > 14 (f)[ ] (R(h(2)) - S(h(f)))[ o ](2(0-
1—h(t) 1=y hy — hl E4 o

where

=h x(s) f RO x(s)
= col , —h 5 - hy), — hy), d ’ ’
OH(1) = col{x(?),  x(t— h(@), x(t—hi), x(t—hy) f woy () — s n ho—h(?) ’

t—hi X(l/l) ff h(r) ff—h(f) X(l/l)
_h - —h ———— duds},
.X(t) .X(t (t)) X(t 1) X(t 2) fh(,)f (l’l(l') 1)2 ; (l’l2 _h(t))z u S}
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Ui =[Ot Ins  Opo-inl @=1,2,...,12),

U3z — Uy Uy — Uy
E3= U3z + Uy — Us , E4: U2+U4—2U6 ,
Uz — Uy + 6U5 - 12vuy4 Uy — U4 + 6U6 - 12vy5
_ allA? S] _ CL’3S 1R IS{ 0
ROy =| " fe], S (hit)) = [ s asTRIS,

It can be seen that, Lemma 1 and 2 can be applied to estimate the single integral terms with the
same Lyapunov matrix.

Different form the Lemma 1 and 2, we consider that the Lyapunov matrix in two single integral
terms is different, such as — ft i_h}:t') 2T ($)R x(s)ds — ft :Z(t) iT (s)R,%(s)dss, the following Lemma 3 and 4
can be obtained.

Lemma 3. For the block symmetric matrices R3; = diag{R;,3R,}, Ry, = diag{R,,3R,} with R; and

R, € S", and any matrix S, € R*”?", the single integral terms can be estimated as:

1= 1—h(1) 1 E, r E
[ omaas [ orsos = ed o] g | oo - vaoy| 2 |ao,
t 2— M 2

1
—h(1) t—hy 2

(2.5)
where
_ (1’1R31 S2 _ C¥3S2R;2152T 0
My =| 5 8 ] NG = [ O SRS, |
Proof. We can obtain the following equations when setting (s, a, b) = 2sb— _ba_“.
b
f x(8)ds = x(b) — x(a),
ab 2 b
f vi(s,a, b)x(s)ds = x(b) + x(a) — —— f x(s)ds,
g b-a], (2.6)

b
f vi(s,a,b) =0,

b
b—a
fy%(s,a,b): 3

The following equations hold based on Schur complement when there exist symmetric matrices
R, > 0, R, > 0, and any matrices M;,i = 1, 2, 3,4 with appropriate dimensions .

M\R'MT MRy'M! M, MsR;'MT M3R;'MT M,
* M>R'M] M, | >0, * M,R;'M] M., |>0.
* * R, * * R,
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Then the following inequalities can be obtained.

M\R'MT MR;'MT M,

t—h Ui U
B = —f fiug * MR} 1MT fiuy |ds <0.
=0 x(s) * * x(s) o
T .
—h(t) | UL M3R§1M3T M3R£1M‘{ M; U
R f far x  MR,'M fan | ds <0.
t=hy x(s) * * x(s)

Where u; = [E],E}1" (1), fi =vi(s,t=h(®),t = hy), fo=v(s,t—hy,t—hD)).

The matrices M;(i = 1,...,4) and S, are defined as following, for any matrices L;,i = 1,2,3,4
with appropriate dimensions.

1
M = - R,0,LTT", M, =-
1 hz—hl[ 1 1] 2 P

[09 3R1a LzT]T,

M3:—

1
L' R,,01", M,=- LY. 0,3R,1", S, =L L,]" =[Ls, L4].
hz_hl[ R, 0] 4 hz_hl[ , 2] » = [Ly, L] =[Ls, L4]

Based on Eq (2.6), the simple algebraic calculation is as follow:
_f"’”[ y ]T[ M\R;'MT  M\R;'M? H y ]ds
r—n@y | it * MoR'MT || fim

T
E hi —h(®) | Rs S» E,
=——0 0| . — ).
h hlgl() Ey (hg—h1 % SIR;S: || Ex a®
t—hy T
uj M | .
-2 x(s)ds
f.hm[ﬁm] [Mz] ®
T —
~ f"”(f) Uy M3R51M3T MsR,'M [y ]
—n | Soun * MuR'M] || fou
h(r) — S:RHST S, || Ey
= ).
=i _h 41()[ 2] S )[ 2 R B [0
—h(1) T
u M | .
-2 d
v[:hz [qu] ] [ M,y ]x(s) g

To s, |[E
hz—h1{l (t)[ [ * 2R3 H E, ]gl(i)'

Then we can obtain the following equation.
t—hy 1—h(0)
1+ =— f X($)R 1 x(s)ds — f X($)Ryx(s)ds
t—h(r) t—hy

T
E,
h —h — (f)[ ] (M(h(0)) - N(h(l)))[ E, ]Q(I)-
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The Eq (2.7) can lead to E; + Z, < 0. Thus the inequality (2.5) can be derived.
Lemma 4. For the block symmetric matrices Ry, = diag{R,,3R;,5R,}, Ry» = diag{R,,3R,,5R,} with
R, and R, € S”, and any matrix S3 € R¥", the single integral terms can be estimated as:

r—hy —h(f) 1 E T E
f &7 ()R x(s)ds + f i ($)Ryx(s)ds > ———1; (t)[ > ] (R(h()) - S(h(t)))[ ’ ]éz(t)-
t—h(r) t—hy hy — hy E4 E,
(2.8)

01R41 S3

R(h(e) = | ") azmz] S(h(r»:[

Q3S3R221S§ 0_
* Q4S3TR211S3 ’

2s—b—a

—< and y(s,a,b) =

Proof. The following equations can be obtained by setting y,(s,a,b) =

652—6(a+b)s+b*+4ab+a>
(b—a)?

b 6 b 12 b b
fa v2(s,a,b)x(s)ds = x(b) — x(a) + P L x(s)ds — b—ap fa I x(u)duds,

b
b—
f y%(s, a,b)ds = 5 a’

b
f Yi(s,a,b)y:(s,a,b)ds = 0,

(2.9)

b
f v2(s,a,b)ds = 0.

The following equations also hold based on Schur complement when there exist symmetric matrices
Ry > 0, R, > 0, and any matrices N;,i = 1, 2, 3,4 with appropriate dimensions.

[N\R;'NT NR;'NI N\R;'NT N]
* N2R1_1N2T NzRIlNg N, >0 (2 10)
* * N3R1_1N3T N3~ ' )
* * * R, ]
(NJR;'NT NuR;'NI N,R;'NI N,
* NsR;'NI NsR)'N! N
s 2 e >0, 2.11)
* * N6R2 N6 N
| % * * R, |
Then the following inequalities can be derived.
w | [ MR'NT NR;'NI NiR{'NT N, [ w
= - f"hl fitta *  NRIN] NaR{IND Ny || fun |
1—h(t) f31/tz * * N3RI1N§ N; f31/t2 -
x(s) * * * Ry | x(s)
w, | [ NaRy'NT NuRS'NT NuR;'NT Ny [
:4:_ft_h(t) f2M2 * NSREINST N5R51N6T N;s f2M2 ds <0
t—hy ﬁ;l/tz * * N6R£1Ng Ng f4u2 -
Xx(s) * * * R, 11 x(s)
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Where u, = [E},E}1"{(1), S35 = [Ls, Le, L71" = [Ls, Lo, Li9] and matrices Ni(i = 1,...,6) are
defined for any matrices L;, (i = 5,6, ..., 10)

1
N, = — R.,0,0,L17", N,=- 0,3R,,0,L177,
1 hz—hl[ | 5 > hz—hl[ i 6l
N; = — 0,0,5R, LI, N,=- LY R,,0,01,
3 hz_hl[ 1, L7 ] 4 hz_hl[ 2,0,0]

1
Ns = — LY 0,3R,,0]", N¢=-———[L",0,0,5R,]",
s hz—hl[ 2,0] 6 hz—hl[ 10 2]

f3 = )/Z(S’ r— h(t)’t)a f4 = 72(S7t_ hZ’ r— h(t))

According to the Eq (2.9) and the similar procedure of the proof for inequality (2.5), the following
inequality can be derived.

[x]

t—hy t—h(t)
3+ By =— f 2T ($)R x(s)ds — f 2T ($)Ryx(s)ds
5

—h(1) t=hy

E | Es
E ] (R(h(l))—S(h(t)))[ E, ]fz(t)-

3
4

1 T
+———0(t
= hlé“z( )
The Eq (2.10) and (2.11) can lead to 23 + =4 < 0. Thus the Lemma 4 can be proved.

3. Main results

In this section, the novel LKF with time-varying delay dependent matrix is proposed. By adopting
the matrix inequality Lemma 3 and 4 respectively, we can derive two new stability criteria of time-
varying delay system (2.1) under the limitation (2.2), which are Theorem 1 and 2. In order to verify
the superiority of introducing time-varying delay dependent matrices in reducing the conservatism, we
replace the time-varying delay dependent matrices with constant delay matrices as a contrast. As a
result, the same Lyapunov matrix is appeared in the single integral terms for the derivation of LKF.
So the Lemma 1 and 2 is adopted to deal with the estimation of single integral terms respectively, the
Corollary 1 and 2 can be derived.

Theorem 1. Given constant h;, h,, u, the system (2.1) is asymptotically stable if there exist positive
matrices P € Ro®" W ¢ R™" K € R™" and any matrices Q9 € R™", Q;; € R™", 0,y € R™",
Q> € R S, € R gatisfying the following LMIs:

{ W+h©Q11 >0, Qo+ (i = h(0)Q11 >0, G
W+ h(1)Qs >0, QO+ (hy — h(1)Qr > 0.

¥, MiSs } <o |¥2 MiSs ] .

*  (hy = )W (h(D)) *  (hy = )W (h(1)) (3.2)

Y3 587 . } <0 ¥4 IS . <0

* (b — ) Wi (h()) * (i = h)Wi(h(D)

AIMS Mathematics Volume 7, Issue 2, 1873-1895.
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Where

¥Y=[ul mn=12...,10),
Wi (h(1) = diag{W + h()Q11, 3(W + () Q11)},  Walh() = diag{W + h(t)Qa1, 3(W + (1) Q1))

IT3 = 1134, I13,], II31 =[e3—ex e3+ey—2es], Il =[e;—es ex+es—2e).

0l, 02, 03, 04 separately refers to h(t) = hy and i(f) = u, h(t) = hy and h(f) = —u, h(t) = h, and
h(t) = u, h(t) = hy and h(f) = —pu. Y, fori = 1,2,3,4 in inequalities (3.2) is the specific matrix
of Y under o1, 02, 03, 04, the four situations respectively. For simplicity, some relevant notations in
Theorem 1 are defined in APPENDIX A and the more details about ¢,,, are listed in APPENDIX B.

It is worth noting that the inequalities (3.1) must be satisfied under oy - - - 04, the four situations. So
the inequalities (3.1) are equal to the following linear matrix inequalities:

W+pQ11 >0, Qi >0,
W+ p0 >0, QO+ (hy— )02 >0,
W—uQy >0, Qp>0,
W =0 >0, QO+ (hy—h)0y >0,
W+p011 >0, Q- (ha— )01 >0,
W+uQ@s >0, Qyp>0,
W—u0i1 >0, Q- (ha—h)0n >0,
W —p0s >0, QO >0.

Proof. Three Lyapunov-Krasovskii functional are adopted as follows

3
V() = Z Vio). (3.3)
i=1

where

Vi(1) = £ ()PE®)
t—hy
Va(t) = f &1 ($)Q1 (h(0)x(s)d's + f

—h(1) t—hy

t—hy t
Vs(t) = f f AT (s)Wx(s)dsdv.

—hy v

t—h(t) t

K1 ($)0x(h())x(s)ds + f AT (s)Kx(s)ds

t—hy

The time derivative of V() can be calculated as;

t—hy t—h(t)
V(1) = £ (1)(He(G{ PGy) + Q)1(1) — f & ($)IW + h(D) Qi 1x(s)ds - f & ($)IW + (D) Q1 14(s)ds.
t—h(t) t—hy
(3.4)
According to Lemma 3, the last two single integral terms of V(¢) can be calculated as follows:
t—hy . t—h(t) .
- f ()W + h(0)Q11]x(s)ds — f ()W + h(1)Q21)4(s)ds (3.5)
1=h(1) 1=

AIMS Mathematics Volume 7, Issue 2, 1873-1895.
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T
, ) E,
<- Tt — hlé“l (t)[ ] (w(h(2), h(1)) — w(h(t),h(t)))[ E, ]gl(t),

From the Leibniz-Newton formulas, the following equation is true for any N € R™".

t—hy t—h(1)
20T O+ xT () +xT (t=h)+xT (1—=hy) + f X (s)ds+ f xT(5)dsIN[-x(t) +Ax(f)+Bx(t—h())] = 0

t—h(t) t—hy

(3.6)
The Eq (3.6) can be written as:
D (1) = 0. (3.7)
Adding the Eq (3.7) to the Eq(3.4), the time derivative of V(#) can be rewritten.
V(t) < [ (DT (1), (3.8)

Therefore I' < 0 leads to V(f) < —o || x(¢) ||* for a sufficient small scalaro- > 0, the system (2.1) is
asymptotically stable with the limitation (2.2).
when A(r) =
1
hy —hy

r=¥- 3,8 W5 (h(1)SiTTE, < 0. (3.9)

When Ah(t) = hy
1

hy —hy

By applying Schur complement, Formulas (3.9) and (3.10) are also equal to LMIs as Egs (3.1) and
(3.2).

Remark 1. We divide [ ()Qis)ds into [0 i ()Qi(h()i(s)ds  and

f o i (5)0x(h(1)x(s)ds. And different from the constant matrices we introduce the time-
varymg delay dependent matrices Ql(h(t)) O + (hy — h())014 and Qz(h(t)) = Oy + (hy — h(1)) Oy
to Vy(r). The integral terms — [ & ()W + h(n)Qi)i(s)ds — [, FT ()W + h(t)Qa1)i(s)ds are
included in the time derivation of V(t)

However when we divide f o i (5)Qx(s)ds into f o i (5)0,x(s)ds and f o 11 (5)0rx(s)ds.
01, 0, are constant matrices, rather than the time- varying dependent matrices. There are only single
integral terms f Ko i (s)Wx(s)ds and f " 5 T (s)Wx(s)ds in V(¢), which are obtained from V;(¢).

Obviously, the time-varying dependent matrices Q;(h(t)), Q,(h(t)) bring more information about
time-varying delay than the constant matrices Q;, Q-.

In order to compare the conservative of stability criterion between time-varying delay dependent
matrices and constant matrices, we replace the Q,(h(?)), Q»(h(?)) with Oy, O, in V,(t). The stability
criteria can be derived as follows:

Corollary 1. Given constant Ay, hy, u, the system (2.1) is asymptotically stable if there exist positive
matrices P, € R W, € R™™, Q; € R™, Q, € R™, K € R™, and any matrix S5 € R>>*"
satisfying the following LMIs:

A, I3,
1 3195 }<O

r=Y-

3,8 S Wi ((1)S 4115, < 0. (3.10)

A, 15,8
2 3195 }<O,

*  (h - hz)(W *  (h - hz)(W 3.11)
Ay TSI <0 Aoy TISI <0
* (- hz)w * (- I’lz)(W

AIMS Mathematics Volume 7, Issue 2, 1873-1895.
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Where

1 .
A=Q, +D+ — 3w, (h(1), h()ITE,

1= 2

‘ . W S
W = diag{W,,3W,},  ws(h(?), h(t)) = al* (hy - Zz)(W ’

G, =colle;, e, e3, es, (W1)—hy)es, (hy—h(1))es},
G, = colfe;, (1 —h()es, ey, e, hEt)—1es+e3, (1 —h(t)ey — ey,
0> = diag{0,.6n, Q77> Osg> Q0> Qro10)s Oss = (1) = D01 + (1 = b)) 02, Qoo = 01 = K, Qg0 = —0a-

Proof. We replace the Lyapunov matrices Q;(h(f)) and Q,(h(t)) as Q; and Q, separately in

Q, = He(GT P,Gy) + s,

Lyapunov-Krasovskii functional V,(¢) of the Eq (3.3). Then integral terms — ft ::;) i (s)Waox(s)ds —

ft [__hil(t) i (s)W,x(s)ds are appeared in the derivation of V(7). Owing to the same Lyapunov matrix W,,
the Lemma 1 can be adopted to estimate the single integral terms. The other process is similar to the
process of Theorem 1. Therefore the details can be omitted.

It is worth noting that, the subscript of A in inequalities (3.11) (oi i = 1,2, 3,4)) separately refers
to h(t) = hy and h(t) = p, h(t) = hy and i(f) = —u, h(t) = hy and h(f) = u, h(t) = hy and A(f) = —p, the
four situations. A,; fori = 1,2, 3,4 in inequalities (3.11) is the specific matrix of A under o1, 02, 03, 04,
the four situations respectively.

Secondly, Theorem 2 for system (2.1) will be derived by Lemma 4. The notations of several
parameters are defined in APPENDIX A
Theorem 2. Given constant Ay, hy, u, the system(2.1) is asymptotically stable if there exists matrices
P; € RO > 0, 010 € R™™, Q1 € R™, Oy € R*",0y; € R”" W € R™ > 0, K € R™™ > 0,
S € R¥3" such that the following LMIs hold:

{ W+ >0, Qi+ (i = h(0)Q1 >0 512
W+ h(t)021 >0 QO+ (hy — h(1))021 >0

¥, 1,8 | ] . ¥, IS | ] 3

A* (hy = ho)Va(h(1)) A* (hy = ha)Va(h(D)) (3.13)

¥, 1,87 | ] . ¥, ,S” | ] 3

* (b = h)V (WD) *  (h = h)Vi(h())

Where

V=[] (mn=12...,12),

Vi(h(t) = diag(W + i(1)Q11, 3(W + h(DQ11), 5(W + h()Q11)),

Va(h(t) = diag(W + (1)Qa1, 3(W + h(1)021), 5(W + h(1)02))),

IT = [I1;, 11,1,

IIi=[vs—vy s+ —2us v3—vy+6us— 12up ], 1L =[va—vs vy +us—2Us Uy — Us + 6Ug — 12015].
The more details about i,,, are listed in APPENDIX B. In addition, the process of converting

stability condition (3.12) to the linear condition is same as those of the stability condition (3.1) in
Theorem 1.
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Proof. We adopt the same Lyapunov-Krasovskii functional as (3.3). So the V(#) can be expressed
as follows:

- 1—h(r)
V(1) = L (D)(He(G P3Ga+0))a(t)— ()W +h(D) Q11 1x(s)ds— f & ($)[W+(1) Qa1 11(s)ds.
t—h(t) t—h
’ (3.14)
According to Lemma 4, the last two single integral terms of V(¢) can be calculated as follows:
t—hy . t—h(t) .
- f ()W + (D) Q11]x(s)ds — f & ($)IW + h(1)Q21)4(s)ds
t—h(t) t—hy
T
L | Es ; ; E;
< —mé (0 [ E, ] (w3(h(1), h(1)) — @3 (h(1), h(1))) [ E, ] &H(1).
The Eq (3.6) can also be rewritten as:
& (O024:(1) = 0. (3.15)
Adding the (3.15) to the Eq (3.14), the time derivative of V(f) can be rewritten as follows:
V(1) < & (D40, (3.16)

The other process is similar to those of Theorem 1. Then the follow conclusions can be derived.
When h(f) = hy

rh=%- 1,8V, (h()S™} < 0. (3.17)

hy — hy
When Ah(t) = hy

A 1 .
L=%-— LSV (h()S'TT} < 0. (3.18)

1~
Similarity, Formulas(3.17) and (3.18) are equal to LMIs as inequalities (3.12) and (3.13) by Schur

complement.

‘i’o,- for i = 1,2,3,4 in inequalities (3.13) is the specific matrix of ¥ under 0l, 02,03, 04, the four
situations respectively.
Remark 2. Similarity to Remark 1, when we introduce the constant matrices Q;, Q, to V,(¢), rather
than Qg + (h; — h(1))Q11, O + (hy — h(1))Q>;. The stability criteria can be derived by Lemma 2 as
follow:
Corollary 2. Given constant Ay, hy, u, the system (2.1) is asymptotically stable if there exist positive
matrices Py, € R W € R™ Q,, € R™", Oy € R™ K € R™ and any matrix S; € R¥>"
satisfying the following LMlIs:

A, ;S
1 191 }<O

A, ;S
2 191 ]<O,

* hy — hy))V * hy — hy)V
A (hy — ho) A (hy — ho) (3.19)
Ay3 HzS{ Ao HQS{
<0 <0
*  (h —h)V *  (h —h)V
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Where

n 1 . n
A=Q, +D, + — Hws(h(6), O = [Ae] (myn=1,2,...,12),

)
a/l(V S
(hy = h)V |’

QZ = He(G§P3G4) + QZ’ QZ = diag{onﬁn’ Q77’ Q/SS’ Q,99a Q,l()]O’ 0n~2n}~

V = diagiW,3W,5W},  wy(h(1), (1)) =

A, fori=1,2,3,41inthe inequalities (3.19) is the specific matrix of A under 01, 02, 03, 04, the four
situations respectively.

4. Numerical example

In this section, Three numerical examples are used to show the validity of the proposed
theorems. The conservation of criteria is checked by calculating maximal admissible delay upper
bounds(MADUPS). The symbol of — in Table 1- 4 denotes that the result is not listed in the literature.
The condition of ¢ depends on the results listed in the other literatures.

Example 1. Consider the system (2.1) as follow [20, 25, 26,29, 36,37]:

-2 0 -1 0
A_[ 0 —0.9]’ B_[—l -1 ]
For numerical examplel, the MADUPS of A, respecting to #; = 0 and various u calculated by our
theorems and existing works are listed in Table 1. We can observe the followings:

Table 1. MADUPS with different u.

o [25] [20] [26] [29] [36] [37] Corollary 1 Theorem 1 Corollary 2 Theorem 2
0.1 4.703 4.811 4.788 4.714 4.930 4.921 4.932 4.942 4.941 4.952

0.2 3.834 4.101 4.060 - 4.220 4218 4.320 4.342 4.341 3.424
0.3 2.420 3.061 3.055 - 3.090 3.221  3.281 3.314 3.311 3.421
04 2.137 2.612 2.615 - 2.660 2.792  2.812 2.922 2911 2.987

Table 1 presents the obtained MADUPS of system 1 for different u. From Table 1, we can obtain
the following conclusions.

¢ One can confirm that the results of Corollary 1 and 2 are still larger than the other methods listed
in Table 1. This means the linear matrix inequality techniques (Lemma 1 and 3) can decrease the
conservatism validly.

¢ The results of Corollary 1 and 2 are smaller than those of Theorem 1 and 2 separately. This means
the Lyapunov-Krasovskii functional with time-varying delay dependent matrix plays an important role
to reduce the conservatism of stability criterion.

¢ Theorem 2 is less conservative than Theorem 1 and Corallary 2 is less conservative than
Corollary 1, which means the more augmented vectors in Lemma 3 and 4 decrease the conservatism
validly.
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¢ It also can be seen that Theorem 1 is less conservative than Corollary 2, which means the time-
varying delay dependent matrix proposed in this paper is better than introducing more augmented
vectors technique in reducing the conservatism of the stability criterion.

When h; # 0, the obtained results by applying Theorem 1, Corallary 1, Theorem 2 and Corallary 2
are listed in Table 2 and compared with the results published in previous literatures.

Table 2. MADUPS with different 4, and pu.

h method
! H [38] [39] Corallary 1 Theorem 1 Corallary 2 Theorem 2
hy= 1 0.5 2.07 2.46 2.48 2.53 2.50 2.64
0.9 1.74 2.29 2.32 2.45 2.40 2.58
ho=2 0.5 2.43 2.79 2.92 3.05 2.95 3.2
! 0.9 2.43 2.77 2.85 2.93 2.88 3.01

From Table 2, it should be noted that when #; # 0, the method proposed in this paper is more
superior in reducing conservatism than the previous results. And all the results of Theorem 2 listed
in Table 2 are better than those of Theorem 1, all the results of Corallary 2 are better than those of
Corallary 1. This implies that the Theorem 2 and Corallary 2 effectively reduce the conservatism
of stability criteria by introducing more details about time-varying delay in amplification vector than
Theorem 1 and Corollary 1 separately. Meanwhile, the results of Corallary 1 and 2 are bigger than the
results of [38,39], are smaller than those of Theorem 1 and 2 separately. We can infer that the linear
matrix inequality technique of Lemma 1- 4 can reduce the conservatism and introducing time-varying
delay dependent matrix can reduce conservatism effectively.

When iy = 0, = 0.1, Theorem 2 guarantees the stability for [Example 1, h(r) = 4.952]. And when
hy = 2,u = 0.9, Theorem 2 guarantees the stability for [Example 1, 4(¢) = 3.01]. The state responses
under 7y = O,u = 0.1 and h; = 2,u = 0.9 are displayed in Figure 1 and 2. It can be seen that the
system is stable under given conditions.

0.5 4

04 *: X,(1)

0.3 .
022 8

0.1 = .

Amplitude

Ok

-...‘

-0.1 1

.

-0.2 q

0.3 : : : : :
0 5 10 15 20 25 30

t
Figure 1. The state trajectories of Examplel [ #; = 0, = 0.1 ].
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2
_x1(t)
D leleieieh X,(t) |
1 H 4
@
k]
2
5 05 1
£
S |
0 . D e ey
L]
-0.5 [« 1
L]
.
_1 1 1 1 1 1
0 5 10 15 20 25 30

t
Figure 2. The state trajectories of Example 1 [ h; =2,u =0.9].

Example 2. Considering the system (2.1) with parameters listed as follow [25,26,29,40,41]:

0 1 0 0
SIEIRTEE Y
Setting h; = 0, the MADUPS of h, respecting to various u by utilizing the methods of literature
[25,26,29,40,41] and our theorems can be derived, which are listed in Table 3.

Table 3. MADUPS with different u.

method
H [40] [41] [26] [25] [29] Theorem 1 Theorem 2
0.05 1.81 2.166 2.553 2.551 2.598 2.67 2.82
0.1 1.75 2.028 2.372 2.369 2.397 2.52 2.71
0.5 1.61 1.622 1.731 1.7 1.787 2.01 2.11

From the results in Table 3, one can also see that all the results obtained by Theorem 1 are larger
than those obtained by other literatures listed in Table 3, and smaller than Theorem 2, which verify the
above inference.

When h; = 0,u = 0.1, Theorem 2 guarantees the stability for [Example 2, h(¢) = 2.71]. And when
h; = 0,u = 0.5, Theorem 2 guarantees the stability for [Example 2, 4(¢) = 2.11]. The state responses
under 7y = O,u = 0.1 and h; = 0,u = 0.5 are displayed in Figure 3 and 4. It can be seen that the
system is stable under given conditions.
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Figure 4. The state trajectories of Example 2 [, = 0, = 0.5].

Example 3. Considering the system (2.1) listed as follow [25,26,29,37,42]:

0 1 0 0
=[5 h ] ee[5]
For numerical Example 3, setting #; = 0, the comparison of our results obtained by Theorem 1 and

2 with the results in [25,26,29,37,42] is conducted in Table 4.
The results listed in Table 4 show the Theorem 2 gives slightly larger delay bounds comparing with

those of Theorem 1 and other literatures.
When h; = 0, = 0.1, Theorem 2 guarantees the stability for [Example 3, h(f) = 7.821]. And when

h; = 0,u = 0.8, Theorem 2 guarantees the stability for [Example 3, h(#) = 2.657]. The state responses
under 7y = O,u = 0.1 and A = 0, = 0.8 are displayed in Figure 5 and 6. It can be seen that the

system is stable under given conditions.
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Table 4. MADUPS with different u.

J7i [25] [26] [29] [42] [37] Theorem 1 Theorem 2
0.1 6.590 7.148 6.610 7.230 7.308 7.408 7.821
0.2 3.834 4.060 - 4.556 4.670 4.897 5.231
0.5 2.420 3.055 1.687 2.509 2.664 3.124 3.423
0.8 2.137 2.615 - 1.950 2.072 2.458 2.657
0.5 :
. s X (1)
4=  lasssm X, () 1
03 |
o 02 |
% 0.1r% = 1
E L]
< 0
_01 4
-0.2 |
0.3 . : : : :
5 10 15 20 25 30

t

Figure 5. The state trajectories of Example 3 [ = 0, = 0.1].

Amplitude

10

15
t

20

25 30

Figure 6. The state trajectories of Example 3 [, = 0,4 = 0.8].
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5. Conclusions

This work has investigated the stability analysis issue of linear systems with time-varying delays
via some novel approaches. Firstly, two integral inequalities are put forward to deal with the single
integral terms with time-varying delay dependent matrices. Secondly, the novel Lyapunov-Krasovskii
functionals with the time-varying delay matrix, rather than constant matrix are proposed. Thirdly,
improved stability criteria are obtained based on the proposed approaches. Finally the results of three
numerical example dealt with our methods and the previous methods, are contrasted to verify the
improvement of our proposed methods.
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Appendix

APPENDIX A

The relevant notations in Theorem 1 are defined as follows:

(—h (—h(r)
&) = col{x(r), x(t—h()) x(t—hy), x(t—hy), f x(s)ds, f x(s)ds},

t=h(?) —hy
O1(h(®) = Q1o+ (h —h(®)Q11,  Qa2(h(®)) = Qo + (2 — h(1)) a1,
Gl = COl{eb €2, €3, €4, (h(t) - hl)659 (h2 - h(t))€6},

G, =colle, (1 —h(t)es, e9, er, (h(t)—Des+es, (1—h(t)es — esl,

e W) Sy o | asSa WS h()ST 0
w(h(t)’ h(t)) - * a’z(Wz(h(l)) ’ W(l’l(t), h(t)) - 2* 4 CY4S Z’(Wl—l(h(t))s4 ’
_ _ j T
r=v Pa— L (h(t), h()ITL,
Y=Q+0+ ! [Lw(h(f), h(H))ITE,
hy — h,
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Q = He(G] PG,) + 0,
0 = diag{Open, Q77. Qss,  Qoo,  Quoioh,
Q77 = (hy —h)W + K,
Oss = (h(t) = 1)Q10 + (h(t) — h)(1 — k() Q11 + (1 — (1)) Qa0 + (hy — R())(1 — (1)) Qa1
Qoo = Q1o + (h1 — 1)1 — K
Q1010 = =020 — (h2 — h(1)) Qa1
The relevant notations in Theorem 2 are defined as follows:

Gs =colfvy, wva, w3, vy, (WD) —h)vs, (hy —h(D)vs},
Gy =colfvs, (1—-h®ws, wvo, vy, ()= Dva+vs, (1 —h(t)v, — v,
a1V (h(1)) S , a3 SV, (h(t))S” 0

@3(h(1), h(1)) =

w3(h(0), h(1)) = % ar,Vy(h(0) |’ * s STV (h(1)S|’

M (h(t), ()T,

. A 1 . . 1
P=0Q,+0, + — Mws(h(f), h()ITT, T, =¥ - -

11— 2 1_h2

O, = He(GLP3Gy) + O, 0O =diag{0,60, Q77 Osss Qo9,  Qioros 022}

APPENDIX B

The elements in ¥ are as follows:

Y11 = NA+A'NT gy = (h(t) = D)Pis + (1 — h(t))Pis + NB Y3 = Pis + ATNT 1y = =P+ AT N”
Y15 = (h(t) = h)DA'NT i = (hy = R(O)A'NT Y7 =Py +ATNT =N i3 = (1 = h(®)P1y W19 = Pi3
Y0 = Pua.

WYz =(h(t) = 1)Pas + (h(t) = 1)Ps + (1 = (1)) Py + (1 — (1)) P

h (4([1R1 S{I—S{2+S;+S§2—S11+521—Slz+522+402R2).
1=

Yo = Pas + (h(t) — 1)PLs + (1 — h(t))Ph + B'NT + (2a'1R1 +8T +8T, +87 +850).

1_

Wau = =Py + (h(t) = DPjs + (1 = h(D))Pss + B'N" +

I (511 =S80 =S8Sin+S8Sn+2aR,).
—hy

Was = (h(t) — D)(h(t) = h)PLs + (1 = h())(h(t) — hy)PLg + (h(t) — h))B'NT — (25 +282%, +6aR)).

h1

Va6 = (A(r) = 1)(ha = h(1)Pss + (1 = h(D))(hy — h(1)) P + (hy — h(1))B"NT +

1
A (2812 = 282 — 6a3R,).
1= h

Yo7 = Pl + BINT g = (1 = ()Py Yoo = Paz W10 = Pog.

1
Y33 = P3s + Pis + ——— (4C¥1R1) Y34 = —P3 + Pis — (S11+S821 =512 = 52).
hy—hy hy — hy
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6
W35 = (h(t) — h)PLs — ————a R, W36 = (hy — h(t))Pss —
h] I’l2 h] - 2

Yas = (1 — h(t)P3y Y30 = Py Y10 = Paa.

(2512+2522) Y37 = m—N-

4 2
Yag = —Pys — Pl + ———arRy  Yus = —(h(t) — h))PL + ————(S3, = S5,).
]’11 - hz hl - h2

6 ,
j(azRZ) Yy =Pl =N Yug=1—-ht)Py Vs =P, o= Py

Yas = —(hy — h(t))Pes — I

12

Yss = - aiRy Yse = - S»  Ws1 = (hy — h()N + (h(t) — hy)P]s
—hy - hy
Uss = (1 — (@) (h(t) — h)Ps  Wso = (h(t) — h)Pys  Wsio = (h(t) — hy)Pls
12 .
Wee = P @Ry e = (ha — ()P + (h(t) — )N s = (1 — h(1))(hy — h(t))Pi.

Yoo = (hy — h(D))Ps  Wei0 = (hy — h()Phg Y7 = (hy—h)W—-N-N" + K
Wss = (A(t) — 1)Q1o + (h(t) — h))(1 = (1) Q11 + (1 = h(£)) Qa0 + (hy — h())(1 — h(2)) Q2
o9 = Q10 + (hy — ()01 — K Y1010 = —Q20 — (hy — h(2)) 021

The elements in ¥ are as follows:
diy = NA+A'N" iy = (h(t) = DPis + (1 — h(t))P1g + NB i3 = Pis + A'N'.
Uia = —Pis+ ATNT s = (h(t) = h)A'N" 6 = (o — h(t))ATNT.
Ui =P +A'N" =N g =1 - )Py 1o = Py3.
‘/Afllo =Py l/A/111 = l/A/112 =0
Uy =(h(t) = 1)Pas + ((1) — 1)Phs + (1 — h(1))Pas + (1 — h(1)) P

(90’1R1+9Q’2R2—SU S{l—512—5{2—513—5{3+521+52Tl+522+52Tz+523+SZT3

hl_ 2
_S3] _S31_S32_S32_S33_ 33)-

U3 =Pas + (h(t) — 1)Pis + (1 — h(t))Pis + BTN” + (=3 R +S], +ST, +ST,+8%, +85,+S5,

1— Ny
T T T
+83,+85, +533).

U4 = — Pys + ((t) — DPLs + (1 — h(t))Pis + B'N" + (B3a2Ry +S11 =80 +8351=-S1+8»-83»

hy — hy
+813 =823 +8533).

Yas =(h(t) — 1)(h(t) — h)PLs + (1 = h())(h(t) — h)PL + (h(t) — h))B'N™ + (=36a,R, — 287, - 287,

hl_ 2
287, + 685, + 681, +651).

N . . 1
a6 =(h(t) = 1)(hy = h(1))Pss + (1 = 1)) (hy = h(1))Pgs + (hy = h(1))B'N" + hz(—36asz +251,-28»

|-
+2S32+6S13-6Sz3+6533).
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o7 = P+ B'N" g = (1 = (t)Py o = Pa3 tha10 = Paas.

iy = s ©0R1 1287 — 1287, = ST) oy = i
o 1
33 = P35 + Pis + e h29a/1R1
o 1
Y34 = —Py + Pis + ; ( S1i—=820-831+S2+S8S2+532-Si3—-523-S53).
1=
A S
l//35 = (h(t) - hl)P55 + ﬁ24a’1R1.
1= hy
o 1
Y36 = (hy — h(1))Pse + Pa— (=2812 =282 =283 — 6513 — 6523 — 6533).
)
U371 =Py =N s =(1—h()Py; Y39 = P33 Y310 = P
Ui = —600!1R1h ; U1 = ; ( 12515 — 12853 — 128 33).
1= hy 1=
Yags = —Pys — Pig + I _h2902R2
Y45 = (hy — h(t))PL, + m(zs; —- 281, +28. - 65}, + 651, —6S1).
1
w46 - (h(t) hZ)Pé() + n A 24&’2R2.
1= hy
Uar = Ply— N Yug =1 —h(O)P}, o =Py, Uaio = P
Uan1 = m(12S3T1 — 1285, + 128%) dunn = e h260a2R2-
l/A/55 = PR 192 R, I/A/56 =7 (4S22 — 12853, + 12573 — 36533).
1= hy )
Us7 = (h(®) — h)Pls + (hy — h(O)N  Prsg = (1 = h(D)(h(t) — h)Phs  rso = (h(t) — hy)Ps.
n ~ 1 o
Usi0 = (1) = h)P3s sy = — 360a 1R, Y512 = (24523 — 728 33).
hy —hy hy —
o 1 o o .
Veo = -— 19205R; sy = (hy — h()PLs + (h(t) = ho)N  Yres = (1 — h(t))(hy — h(1)) Pl
1= hy

n N - 1
Yoo = (hy = h(D)P3s  er0 = (hy = h(t)Pys  Pen = = (245 +728 33).

360a,R, Y77 = =N = NT + (h, — h))W + K.

.
Y12 = P
Uss = (h() = 1)Q10 + (h(t) — h)(1 = h(D) Q11 + (1 — h()) Qa9 + (ha — h(1))(1 = h(1)) Q2.

@99 = Qi+ (h —h(®)0n — K l/A’IOIO = =0 + (hy — h(2)) 0.
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7200 R, U112 = 144833 Yiann =

1 1
7200,R>.
h—hy hy—hy h—h,

17[/11]1 =
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