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matrix equations by Newton’s method. Second, the different constrained solutions of the linear matrix
equations are solved by the modified conjugate gradient method, and then the different constrained
solutions of the multivariate quadratic matrix equations are obtained. Finally, the convergence of the
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1. Introduction

Quadratic matrix equation has many different forms, such as AX2+BX+C = O arising in quasi-birth-
death processes [1,2] and Riccati equation XCX − XE − AX + B = O arising in transport theory [3–6].
There are also some coupled quadratic matrix equations with two or three variables [7, 8]. This article
will study the general form of these equations. As can be seen, the linear part of these equations can be
expressed in the form

∑3
i=1 C(l)

i XiD
(l)
i , and the quadratic part of them can be expressed as

∑3
i, j=1 XiE

(l)
i j X j.

Therefore, we study the following coupled quadratic matrix equation:∑3

i=1
C(l)

i XiD
(l)
i +

∑3

i, j=1
XiE

(l)
i j X j = S (l) (l = 1, 2), (1.1)

where all matrices are n × n real matrices. Each equation in (1.1) consists of three linear terms and
nine quadratic terms. Besides, Eq (1.1) have three variables and only two equations, so the solution is
not unique.
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As we know, we always need some special kind of solutions in practical applications, such as
symmetric solutions are widely used in control theory [8, 9] and reflexive solutions which are also
called generalized centro-symmetric solutions are used in information theory, linear estimate theory
and numerical analysis [10, 11]. Liao, Liu, etc. have studied the problem of different constrained
solutions of linear matrix equations [12,13]. In this article, we will design a method to obtain different
constrained solutions of a class of quadratic matrix equations.

Many researchers have studied quadratic matrix equations. For example, Bini, Iannazzo and Poloni
gave a fast Newton’s method for a quadratic matrix equation [4]. Long, Hu and Zhang used an
improved Newton’s method to solve a quadratic matrix equation [14]. Convergence rate of some
iterative methods for quadratic matrix equations arising in transport theory was also described by Guo
and Lin [15]. Zhang, Zhu and Liu have studied the constrained solutions of two-variable Riccati matrix
equations based on Newton’s method and modified conjugate gradient (MCG) method [16, 17]. This
article will further study the problem of different constrained solutions of coupled quadratic matrix
equations with three matrix variables. The algorithm designed in the paper is superior in computing
different constrained solutions.

Notation: Rn×n denotes the set of n × n real matrices. The symbols AT and tr(A) represent the
transpose and the trace of the matrix A respectively. A⊗B stands for the Kronecker product of matrices
A and B, vec(·) is an operator that transforms a matrix A into a column vector by vertically stacking
the columns of the matrix AT. For example, for the 2 × 2 matrix

A =

[
a b
c d

]
,

the vectorization is vec(A) = [a, b, c, d]T. We define an inner product of two matrices A, B ∈ Rn×n as
[A, B] = tr(ATB), then the norm of a matrix A generated by this inner product is Frobenius norm and
denoted by ‖A‖, i.e. ‖A‖ =

√
[A, A].

Let Ω1 be the set of symmetric matrices. P1, P2 ∈ Rn×n are said to be symmetric orthogonal matrices
if Pi = PT

i and P2
i = I (i = 1, 2). X ∈ Rn×n is said to be a reflexive matrix with respect to P1 if

P1XP1 = X. Let Ω5 be the set of reflexive matrices. X ∈ Rn×n is said to be a symmetric reflexive
matrix with respect to P2 if XT = X = P2XP2. Let Ω9 be the set of symmetric reflexive matrices. We
call (X1, X2, X3) a constrained matrix in Ω1−5−9 when X1 ∈ Ω1, X2 ∈ Ω5 and X3 ∈ Ω9. Besides, if the
symmetric orthogonal matrices P1 and P2 are changed, we will get different constrained matrices in
Ω1−5−9.

The paper is organized as follows: First, we use Newton’s method to convert the quadratic matrix
equations into linear matrix equations. Second, MCG method [10, 13, 16, 18] is applied to solve the
derived linear matrix equations. Finally, numerical examples are presented to support the theoretical
results of this paper.

2. Newton’s method for solving quadratic matrix equations

As a matter of convenience, we first introduce some notations.

X =


X1

X2

X3

 , X(k) =


X(k)

1
X(k)

2
X(k)

3

 , X∗ =


X∗1
X∗2
X∗3

 .
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Y , Y (k) and Y∗ are defined in the same way as X, X(k) and X∗ respectively. Then let

ψ(l)(X) =
∑3

i=1
C(l)

i XiD
(l)
i +

∑3

i, j=1
XiE

(l)
i j X j − S (l),

φ(l)
X (Y) =

∑3

i=1
C(l)

i YiD
(l)
i +

∑3

i, j=1
XiE

(l)
i j Y j +

∑3

i, j=1
YiE

(l)
i j X j,

we can obtain
ψ(l)(X + Y) = ψ(l)(X) + φ(l)

X (Y) +
∑3

i, j=1
YiE

(l)
i j Y j (l = 1, 2), (2.1)

where φ(l)
X (Y): Rn×n → Rn×n is the Fréchet derivative of ψ(l)(X) at X in the direction Y [1].

Lemma 2.1. Finding the solution (X∗1, X
∗
2, X

∗
3) ∈ Ω1−5−9 of (1.1) can be transformed into finding the

corrected value (Y1,Y2,Y3) ∈ Ω1−5−9 of ψ(l)(X + Y) = 0 (l = 1, 2). We linearize and solve, to find
(Y1,Y2,Y3) ∈ Ω1−5−9 from the coupled linear matrix equation

φ(l)
X (Y) = −ψ(l)(X) (l = 1, 2). (2.2)

Proof. Supposing that the approximate solution (X1, X2, X3) ∈ Ω1−5−9 of Eq (1.1) has been obtained.
Let X∗i = Xi + Yi (i = 1, 2, 3), then finding (X∗1, X

∗
2, X

∗
3) ∈ Ω1−5−9 of (1.1) is transformed into finding the

corrected value (Y1,Y2,Y3) ∈ Ω1−5−9 from

ψ(l)(X + Y) = O (l = 1, 2). (2.3)

The Eq (2.3) is quadratic equations about Yi. As is known, when the norm of Yi is small enough,
the quadratic parts

∑3
i, j=1 YiE

(l)
i j Y j about Yi in (2.1) can be discarded according to Newton’s method. In

this way, we can get a linear approximation

ψ(l)(X + Y) ≈ ψ(l)(X) + φ(l)
X (Y).

Therefore, finding the solution (X∗1, X
∗
2, X

∗
3) ∈ Ω1−5−9 of (1.1) is transformed into finding

(Y1,Y2,Y3) ∈ Ω1−5−9 from ψ(l)(X) + φ(l)
X (Y) = O (l = 1, 2) , that is, to solve (2.2). �

According to [14], Newton’s method (algorithm 1) is introduced to find constrained solutions in
Ω1−5−9 of (1.1). Let

ψ(X) =

[
ψ(1)(X)
ψ(2)(X)

]
, φX(Y) =

[
φ(1)

X (Y)
φ(2)

X (Y)

]
.

Algorithm 1 : Newton’s method solves the solution X of Eq (1.1)
Step 1. Choose an initial matrix (X(1)

1 , X(1)
2 , X(1)

3 ) ∈ Ω1−5−9 and set k := 1.
Step 2. If ψ(X(k)) = O, stop, else, solve for (Y (k)

1 ,Y (k)
2 ,Y (k)

3 ) ∈ Ω1−5−9 from

φX(k)(Y (k)) = −ψ(X(k)). (2.4)

When (2.4) hasn’t constrained solutions in Ω1−5−9, solve for (Y (k)
1 ,Y (k)

2 ,Y (k)
3 ) ∈ Ω1−5−9, such that

‖φX(k)(Y (k)) + ψ(X(k))‖ = min. (2.5)

Step 3. Compute X(k+1) = X(k) + Y (k), set k := k + 1 and go to step 2.
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The convergent properties about Newton’s method can be obtained as follows according to [14]
(The proof is similar to Lemma 2.1 in [14]).

Theorem 2.1. Assume that the real matrix X∗ is a simple root of (1.1), i.e. ψ(X∗) = O and φX∗(Y) is
regular. Then if the starting matrix X(1) is chosen sufficiently close to the solution X∗, the sequence
{X(k)} generated by Newton’s method converges quadratically to the solution X∗.

3. MCG method for solving linear matrix equations

In algorithm 1, when X(k) is known, then Y (k) needs to be solved. In this section, MCG method will
be used to solve Y (k) from Eq (2.2), that is, to solve Eq (2.4) or Eq (2.5). Consider the general form
of Eq (2.2) ∑3

i=1

∑7

j=1
A(l)

i j YiB
(l)
i j = F(l) (l = 1, 2), (3.1)

where all matrices in Eq (3.1) are n × n real matrices. Let

h(Y) =

[
h(1)(Y)
h(2)(Y)

]
, F =

[
F(1)

F(2)

]
, R = F − h(Y) def

=

[
R(1)

R(2)

]
,

p(R) =


p1(R)
p2(R)
p3(R)

 , q(Y) =


q1(Y)
q2(Y)
q3(Y)

 ,
where

h(l)(Y) def
= h(l)(Y1,Y2,Y3) =

∑3

i=1

∑7

j=1
A(l)

i j YiB
(l)
i j (l = 1, 2),

pi(R) =
∑2

l=1

∑7

j=1
(A(l)

i j )TR(l)(B(l)
i j )T (i = 1, 2, 3),

q1(Y) =
1
2

(Y1 + YT
1 ), q2(Y) =

1
2

(Y2 + P1Y2P1),

q3(Y) =
1
4

(Y3 + YT
3 + P2(Y3 + YT

3 )P2),

and P1, P2 ∈ Rn×n are symmetric orthogonal matrices.
In order to solve Eq (3.1), the following two questions will be considered.

Problem 3.1. Assume that (3.1) has constrained solutions, find (Y1,Y2,Y3) ∈ Ω1−5−9 from (3.1).

Problem 3.2. Assume that (3.1) hasn’t constrained solutions, find (Y1,Y2,Y3) ∈ Ω1−5−9, such that

‖h(Y) − F‖ = min. (3.2)

3.1. MCG method for solving problem 1

Based on the MCG method, we establish the following algorithm (algorithm 2) to solve problem 3.1.
From algorithm 2, we can easily see (Y (k)

1 ,Y (k)
2 ,Y (k)

3 ) ∈ Ω1−5−9 for k = 1, 2, · · · and have the following
convergent properties (The proof is similar to Theorem 2.1 in [10]):

Theorem 3.1. Assume that Eq (3.1) has constrained solutions in Ω1−5−9. Then for an arbitrary initial
matrix (Y (1)

1 ,Y (1)
2 ,Y (1)

3 ) ∈ Ω1−5−9, a solution of problem 3.1 can be obtained by algorithm 2 within finite
number of iterations, which is also a constrained solution in Ω1−5−9 of (3.1).
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Algorithm 2 : MCG method to solve problem 3.1
Step 1. Choose an arbitrary initial matrix (Y (1)

1 ,Y (1)
2 ,Y (1)

3 ) ∈ Ω1−5−9, set k := 1 and compute

Rk = F − h(Y (k)) def
=

[
R(1)

k
R(2)

k

]
, R̃k = p(Rk)

def
=


R̃(1)

k
R̃(2)

k
R̃(3)

k

 , Zk = q(R̃k).

Step 2. If Rk = O, or Rk , O and Zk = O, stop, else, compute

αk =
‖Rk‖

2

‖Zk‖
2 , Y (k+1) = Y (k) + αkZk.

Step 3. Compute

Rk+1 = F − h(Y (k+1)) def
=

[
R(1)

k+1
R(2)

k+1

]
, R̃k+1 = p(Rk+1) def

=


R̃(1)

k+1
R̃(2)

k+1
R̃(3)

k+1

 ,
βk+1 =

‖Rk+1‖
2

‖Rk‖
2 , Zk+1 = q(R̃k+1) + βk+1Zk.

Step 4. Set k := k + 1 and go to step 2.

3.2. MCG method for solving problem 2

Algorithm 2 will break if Ri , O and Zi = O, which means that Eq (3.1) hasn’t constrained
solution in Ω1−5−9 according to Theorem 3.1. Therefore, we need to solve problem 3.2, that is, to
find constrained least-squares solutions of (3.1).

We replace the problem of finding least-squares solutions in Ω1−5−9 of (3.1) with finding solutions
in Ω1−5−9 of equivalent linear matrix equations by the Theorem 3.2, and then an iterative algorithm to
find constrained least-squares solutions in Ω1−5−9 of (3.1) is constructed according to algorithm 2.

As a matter of convenience, we introduce some notations:

u(Y) = h(Y1,Y2,
1
2

(Y3 + P2Y3P2)) def
=

[
u(1)(Y)
u(2)(Y)

]
,

v(Y) = h(YT
1 , P1Y2P1,

1
2

(YT
3 + P2YT

3 P2)) def
=

[
v(1)(Y)
v(2)(Y)

]
,

g(Y) =


g1(Y)
g2(Y)
g3(Y)

 , Q =


Q1(F)
Q2(F)
Q3(F)

 ,
where

g1(Y) = p1(u) + pT
1 (v), g2(Y) = p2(u) + P1 p2(v)P1,

g3(Y) =
1
2

(
p3(u) + pT

3 (v) + P2

(
p3(u) + pT

3 (v)
)

P2

)
,

AIMS Mathematics Volume 7, Issue 2, 1845–1855.
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Q1(F) = p1(F) + pT
1 (F), Q2(F) = p2(F) + P1 p2(F)P1,

Q3(F) =
1
2

(
p3(F) + pT

3 (F) + P2

(
p3(F) + pT

3 (F)
)

P2

)
,

u and v are functions of Y . Then, according to [16, 17], we have the following theorem.

Theorem 3.2. Iterative algorithm for solving problem 3.2 can be replaced by finding constrained
solutions in Ω1−5−9 from

g(Y) = Q. (3.3)

Indeed, (3.3) has constrained solutions in Ω1−5−9.

Proof. When (Y1,Y2,Y3) ∈ Ω1−5−9, we have Y1 = YT
1 , Y2 = P1Y2P1 and Y3 = YT

3 = P2Y3P2. Therefore,
solving problem 3.2 is equivalent to solving (Y1,Y2,Y3) ∈ Ω1−5−9 from

‖

[
u(Y)
v(Y)

]
−

[
F
F

]
‖ = min. (3.4)

Now we have to prove that solving the problem (3.4) is equivalent to finding constrained solutions
in Ω1−5−9 of (3.3). We let multiply operation prior to Kronecker product operation between matrices.
Let

G(l)
i =

∑7

j=1
A(l)

i j ⊗ (B(l)
i j )T,

H(l)
im =

∑7

j=1
A(l)

i j Pm ⊗ (PmB(l)
i j )T, (i = 1, 2, 3; l,m = 1, 2),

M =


G(1)

1 G(1)
2

1
2 (G(1)

3 + H(1)
32 )

G(2)
1 G(2)

2
1
2 (G(2)

3 + H(2)
32 )

G(1)
1 Tn,n H(1)

21
1
2 (G(1)

3 + H(1)
32 )Tn,n

G(2)
1 Tn,n H(2)

21
1
2 (G(2)

3 + H(2)
32 )Tn,n

 ,

y =


vec(Y1)
vec(Y2)
vec(Y3)

 , f =

[
vec(F)
vec(F)

]
,

where Tn,n denotes a commutation matrix such that Tn,nvec(An×n) = vec(AT) [19] and let Tn,n only work
on vec. Then applying vec to the following equations:{

u(Y) = F,
v(Y) = F,

(3.5)

we can get the equivalent equation: My = f . Besides, MTMy = MT f , the normal equation of My = f ,
is the vectorization of (3.3). Therefore, the least-squares solution of My = f is also a solution of
MTMy = MT f , and the vectorization of the solution of (3.3). So the solution of (3.4) is also a solution
of (3.3), and vice versa.

Above all, iterative algorithm for solving problem 3.2 can be replaced by finding constrained
solutions in Ω1−5−9 of (3.3).

As we all know, normal equations always have solutions, and the vectorization of Eq (3.3) is a
normal equation, so Eq (3.3) also has solutions. Suppose Ỹ = (ỸT

1 , Ỹ
T
2 , Ỹ

T
3 )T (whether Ỹ ∈ Ω1−5−9 or

AIMS Mathematics Volume 7, Issue 2, 1845–1855.
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not) is a solution of (3.3), then g(Ỹ) = Q. Let Y∗i = qi(Ỹ) (i = 1, 2, 3), then (Y∗1 ,Y
∗
2 ,Y

∗
3) ∈ Ω1−5−9 and

g(Y∗) = Q. Hence, (3.3) has constrained solutions in Ω1−5−9. �
We use the MCG method to find constrained solutions in Ω1−5−9 of (3.3) by algorithm 3, which is

also a process to solve the problem 3.2.

Algorithm 3 : MCG method to solve problem 3.2
Step 1. Choose an arbitrary initial matrix (Y (1)

1 ,Y (1)
2 ,Y (1)

3 ) ∈ Ω1−5−9, set k := 1 and compute

Rk = Q − g(Y (k)), R̃k = g(Rk), Zk = R̃k.

Step 2. If Rk = O, stop, else, compute

αk =
‖Rk‖

2

‖Zk‖
2 , Y (k+1) = Y (k) + αkZk.

Step 3. Compute
Rk+1 = Q − g(Y (k+1)), R̃k+1 = g(Rk+1),

βk+1 =
‖Rk+1‖

2

‖Rk‖
2 , Zk+1 = R̃k+1 + βk+1Zk.

Step 4. Set k := k + 1 and go to step 2.

From algorithm 3, we can see that (Y (k)
1 ,Y (k)

2 ,Y (k)
3 ) ∈ Ω1−5−9 for k = 1, 2, · · · and have the following

convergent properties (The proof is similar to Theorem 2 in [13]).

Theorem 3.3. For an arbitrary initial matrix (Y (1)
1 ,Y (1)

2 ,Y (1)
3 ) ∈ Ω1−5−9, a solution of problem 3.2 can

be obtained by algorithm 3 within finite number of iterations, and it is also a constrained least-squares
solution in Ω1−5−9 of (3.1).

4. Numerical experiments

In this section, we design two computation programmes to find constrained solutions of (1.1). Then
two numerical examples are given to illustrate the proposed results. All computations are performed
using MATLAB. Because of the influence of roundoff errors, we regard a matrix A as zero matrix if
‖A‖ ≤ 10−7.

Let n be the order of the matrix Xi, k, k1, k2 be the iteration numbers of algorithm 1, algorithm 2
and algorithm 3 respectively, and t be the computation time (seconds).
Programme 1.

(1) Choose an initial matrix (X(1)
1 , X(1)

2 , X(1)
3 ) ∈ Ω1−5−9 and set k := 1.

(2) If ψ(X(k)) = O, stop, else, solve for (Y (k)
1 ,Y (k)

2 ,Y (k)
3 ) ∈ Ω1−5−9 from (2.4) using algorithm 2. When

algorithm 2 breaks, that is (2.4) hasn’t constrained solution in Ω1−5−9, solve for (Y (k)
1 ,Y (k)

2 ,Y (k)
3 ) ∈

Ω1−5−9 from (2.5) using algorithm 3.

(3) Compute X(k+1) = X(k) + Y (k), set k := k + 1 and go to step 2.

AIMS Mathematics Volume 7, Issue 2, 1845–1855.
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Programme 2.

(1) Choose an initial matrix (X(1)
1 , X(1)

2 , X(1)
3 ) ∈ Ω1−5−9 and set k := 1.

(2) If ψ(X(k)) = O, stop, else, solve for (Y (k)
1 ,Y (k)

2 ,Y (k)
3 ) ∈ Ω1−5−9 from (2.5) using algorithm 3.

Especially, when (2.4) has constrained solutions in Ω1−5−9, the constrained least-squares solutions
in Ω1−5−9 are also its constrained solutions in Ω1−5−9.

(3) Compute X(k+1) = X(k) + Y (k), set k := k + 1 and go to step 2.

Example 4.1. Consider (1.1) with the following parameters:

P1 =


0 1 0
1 0 0
0 0 −1

 , P2 =


0 1 0
1 0 0
0 0 1

 ,
C(l)

i = C + l × ones(3), D(l)
i = (C(l)

i )T, E(l)
i j = −uiuT

i ,

S (l) =
∑3

i=1
C(l)

i X∗i D(l)
i +

∑3

i, j=1
X∗i E(l)

i j X∗j (i, j = 1, 2, 3; l = 1, 2),

where

C =


1 0 0
0 1 1
1 0 −1

 , X∗1 =


1 0 0.5
0 1 0

0.5 0 2

 ,
X∗2 =


1 0 0.5
0 1 −0.5
0 0 2

 , X∗3 =


1 0 0.25
0 1 0.25

0.25 0.25 2

 ,
u1 = (1, 1, 0)T, u2 = (0, 1, 1)T, u3 = (0, 0, 1)T.

We can easily see that (1.1) has the constrained solution (X∗1, X
∗
2, X

∗
3) ∈ Ω1−5−9. By applying

programmes 1 and 2 with the initial matrix X(1)
i = eye(3), Y (1)

i = zeros(3)(i = 1, 2, 3), we obtain
the constrained solution in Ω1−5−9 of (1.1) as follows:

X(5)
1 =


1.0000 −0.0000 0.5000
−0.0000 1.0000 0.0000
0.5000 0.0000 2.0000

 ,

X(5)
2 =


1.0000 −0.0000 0.5000
−0.0000 1.0000 −0.5000
−0.0000 0.0000 2.0000

 ,
X(5)

3 =


1.0000 −0.0000 0.2500
−0.0000 1.0000 0.2500
0.2500 0.2500 2.0000

 .
The iteration numbers and computation time are listed in Table 1.
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Table 1. The iteration numbers and computation time of programmes 1 and 2.

Results n k k1 k2 t
Programme 1 3 5 97 0 0.4521
Programme 2 3 5 0 184 3.4310

From the results in Table 1, we see that programme 1 is more effective when the derived linear
matrix equations are always have constrained solutions in Ω1−5−9.

Example 4.2. Consider (1.1) with the following parameters:

C(l)
i = i ×C + l × ones(3), D(l)

i = (C(l)
i )T,

E(l)
i j = −uiuT

i (i, j = 1, 2, 3; l = 1, 2),

S (1) =


−18.5 32 −29

36 50.5 4.5
−43 −5.5 −37.5

 , S (2) =


2.5 68 −11
81 83.5 29.5
−22 17.5 −22.5

 ,
where

C =


1 0 0
0 1 1
1 0 −1

 ,
u1 = (1, 1, 0)T, u2 = (0, 1, 1)T, u3 = (0, 0, 1)T.

By applying programmes 1 and 2 with the initial matrix X(1)
i = ones(3), Y (1)

i = zeros(3) (i =

1, 2, 3), P1 and P2 are identity matrices, we obtain a special constrained solution (now, X1 and X3 are
symmetric matrices, X2 is a general matrix) in Ω1−5−9 of (1.1) as follows:

X(4)
1 =


1.1352 1.5249 1.5924
1.5249 1.0188 0.9904
1.5924 0.9904 1.1223

 ,

X(4)
2 =


0.9332 0.8411 1.0152
1.8411 0.9730 0.9549
2.0152 0.9549 1.0135

 ,
X(4)

3 =


0.9769 1.6245 1.4150
1.6245 1.0128 1.0299
1.4150 1.0299 0.9482

 .
When X(1)

i = eye(3) (i = 1, 2, 3), others remain unchanged, we obtain another special constrained
solution in Ω1−5−9 of (1.1) as follows:

X(6)
1 =


1.8147 1.8833 2.4692
1.8833 1.1089 1.0227
2.4692 1.0227 2.6495

 ,
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X(6)
2 =


1.2581 −0.0773 0.6145
0.9227 0.6873 0.5880
1.6145 0.5880 0.2754

 ,
X(6)

3 =


0.3466 2.2276 1.1261
2.2276 1.3542 1.0098
1.1261 1.0098 1.1756

 .
Thus it can be seen that if the constrained solution of Eq (1.1) is not unique, we can get different

constrained solutions in Ω1−5−9 when choosing different initial matrices.

5. Conclusions

In this paper, an iterative algorithm is studied to find different constrained solutions. By using the
proposed algorithm, we compute a set of different constrained solution in Ω1−5−9 of multivariate
quadratic matrix equations. The provided examples illustrate the effectiveness of the new iterative
algorithm.

There are still some results we can obtain by changing the initial matrices X(1)
i and Y (1)

i , the direction
matrix Zk in algorithm 2 and Eq (3.3) in algorithm 3. In this way, we can get other kind of constrained
solutions, which are not only interesting but also valuable. It remains to study in our further work.
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