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Abstract: In this paper, a flexible probability mass function is proposed for modeling count data, 

especially, asymmetric, and over-dispersed observations. Some of its distributional properties are 

investigated. It is found that all its statistical properties can be expressed in explicit forms which makes 

the proposed model can be utilized in time series and regression analysis. Different estimation 

approaches including maximum likelihood, moments, least squares, Anderson’s-Darling, Cramer von-

Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real 

data. The estimation performance of these estimation techniques is assessed via a comprehensive 

simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real 

data sets “coronavirus-flood peaks-forest fire-Leukemia”. Finally, the new probabilistic model can 

serve as an alternative distribution to other competitive distributions available in the literature for 

modeling count data. 
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1. Introduction 

The count data sets emerge in various fields like the yearly number of destructive earthquakes, 

number of patients of a specific disease in a hospital ward, failure of machines, number of patients due 

to coronavirus, number of monthly traffic accidents, hourly bacterial growth, and so on. Various 

discrete probability models have been utilized to model these kinds of data sets. Poisson and negative 

binomial distributions are frequently for modeling count observations. On the other hand, in the 

advanced scientific eon, the data generated from different fields is getting complex day by day, 

however, existing discrete models do not provide an efficient fit. 

Discretization of continuous distribution can be applied by using different approaches (survival 

discretization-mixed-Poisson-infinite series). The most widely used technique is the survival 

discretization approach by [1]. In literature, several discrete distributions are introduced and studied 

based on the discretization survival function. See for example, discrete Rayleigh [2], discrete a mixture 

of gamma and exponential [3], discrete Burr and Pareto [4], discrete Rayleigh generator [5], discrete 

Lindley [6], discrete Burr-XII [7], discrete Burr III [8], two-parameter discrete Lindley [9], discrete log-

logistic [10], discrete Gompertz [11], discrete alpha power inverse Lomax [12], discrete Poisson and 

Ailamujia [13], discrete Half-Logistic [14], discrete Marshall-Olkin Weibull [15], discrete Gompertz- 

G family [16], discrete Burr-Hatke [17], three-parameter discrete Lindley [18], new discrete Lindley [19], 

exponentiated discrete Lindley [20], discrete generalized Lindley [21], discrete Gumble [22], discrete 

inverted Topp-Leone [23], and references cited therein. 

Although various distributions are available in literate to analyze count observations, there is still 

a need to introduce a more flexible and suitable distribution under different conditions. The 

fundamental purpose of this paper is to propose discrete Ramos-Louzada distribution, which is a one-

parameter lifetime distribution introduced by [24]. The proposed one-parameter distribution herein has 

distinctive properties which makes it among the best choice for modeling over-dispersed and positively 

skewed data with leptokurtic-shaped. A continuous random variable 𝑋  is said to have Ramos-

Louzada distribution if its probability density function (pdf) can be written as 

𝑔(𝑥; 𝜆) =
1

𝜆2(𝜆−1)
(𝜆2 − 2𝜆 + 𝑥) 𝑒−

𝑥

𝜆;  𝑥 ≥ 0, 𝜆 ≥ 2,     (1) 

where λ is the shape parameter. The corresponding survival function (sf) to Eq (1) can be formulated as 

𝐺(𝑥; 𝜆) =
𝜆2−𝜆+𝑥

𝜆(𝜆−1)
𝑒−

𝑥

𝜆;  𝑥 ≥ 0.       (2) 

In this article, the discrete version of Ramos and Louzada distribution is proposed and studied in 

detail. The following are some interesting features of the proposed distribution: Its statistical and 

reliability characteristics can be expressed as closed forms. Its failure rate is showing an increasing 

pattern. The suggested distribution evaluated time and count data sets more effectively than competing 

distributions. As a result, we feel that the proposed model is the greatest option for attracting a wider 

range of applications and industries. 

The rest of the study is organized as follows: In Section 2, we introduce a new distribution using 

survival discretization methodology. Different mathematical properties are derived in Section 3. 

Parameter estimation and simulation study are presented in Section 4. Four data sets are utilized to 

show the flexibility of the proposed model in Section 5. Finally, Section 6 provides some conclusions. 
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2. Synthesis of discrete Ramos-Louzada distribution 

Let 𝑌 be a continuous random variable with sf 𝐺(𝑦; 𝜼), then the pmf of the discrete random 

variable 𝑋 = ⌊𝑌⌋ can be expressed as 

𝑃𝑟(𝑋 = 𝑥; 𝜼) = 𝐺(𝑥; 𝜼) − 𝐺(𝑥 + 1; 𝜼);  𝑥 ∈ ℤ+, 

where ⌊⋅⌋ denotes the floor function, which returns the highest integer value smaller or equal than its 

argument, and 𝜼 is a parameter vector 1 × 𝑘. If the random variable 𝑌 have Ramos-Louzada (RL) 

distribution, then the pmf of discrete RL (DRL) distribution can be written as 

Pr(𝑋 = 𝑥; 𝜆) = 𝑝(𝑥; 𝜆) =
𝑒

− 
𝑥
𝜆

𝜆(𝜆−1)
[(𝜆2 − 𝜆 + 𝑥)(1 − 𝑒− 

1

𝜆)− 𝑒− 
1

𝜆] ;  𝑥 = 0,1,2, …,  (3) 

where 𝜆 ≥ 2 is the shape parameter. The pmf 𝑝(𝑥 + 1; 𝜆) can be expressed as a weight from the 

pmf 𝑝(𝑥; 𝜆) as follows 

𝑝(𝑥 + 1; 𝜆) =
𝑒−

1
𝜆 [(𝜆2 − 𝜆 + 𝑥 + 1) (1 − 𝑒− 

1
𝜆) −𝑒−

1
𝜆]

[(𝜆2 − 𝜆 + 𝑥) (1 − 𝑒−
1
𝜆) −𝑒−

1
𝜆]

𝑝(𝑥; 𝜆). 

Figure 1 illustrates some pmf plots of the DRL models based on different values of the model parameter 

𝜆. It is found that the pmf can be used a positively skewed data with a uni-modal shape. 

 

Figure 1. The pmf plots of the DRL distribution. 

Based on  𝐹(𝑥; 𝜆) = Pr(𝑋 ≤ 𝑥; 𝜆) = 1 − 𝐺(𝑥; 𝜆) + Pr(𝑋 = 𝑥; 𝜆) , the cumulative distribution 

function (cdf) of the DRL distribution can be formulated as 

𝐹(𝑥; 𝜆) = 1 −
𝜆2−𝜆+𝑥+1

𝜆(𝜆−1)
𝑒−

𝑥+1

𝜆 ;  𝑥 = 0,1,2, ….      (4) 

The sf of the DRL model can be expressed as 

𝑆(𝑥; 𝜆) =
𝜆2−𝜆+𝑥+1

𝜆(𝜆−1)
𝑒−

𝑥+1

𝜆 ;  𝑥 = 0,1,2, ….       (5) 
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The hazard rate function (hrf) of the DRL model is given by  

ℎ(𝑥; 𝜆) =
(𝜆2−𝜆+𝑥)(1−𝑒

−
1
𝜆)−𝑒

−
1
𝜆

𝜆2−𝜆+𝑥
;  𝑥 = 0,1,2, …,      (6) 

where ℎ(𝑥; 𝜆) =
Pr(𝑋=𝑥;𝜆)

1−𝐹(𝑥−1;𝜆)
.  Mathematically, the shape of the hrf of the DRL model is always 

increasing, which makes it an effective statistical tool for modeling data, especially in the engineering 

and medical fields. Figure 2 shows the hrf plots of the new discrete model based on various values of 

the model parameter. 

 

Figure 2. The hrf plots of the DRL distribution. 

The reversed hazard rate function (rhrf) and the second rate of failure are given as 

�̆� =
𝑒

−
𝑥
𝜆[(𝜆2−𝜆+𝑥)(1−𝑒

− 
1
𝜆)−𝑒

−
1
𝜆]

𝜆(𝜆−1)−(𝜆2−𝜆+𝑥+1)𝑒
−

𝑥+1
𝜆

;  𝑥 = 0,1,2, …      (7) 

and  

𝑟∗(𝑥) = 𝑙𝑜𝑔 [
(𝜆2−𝜆+𝑥)𝑒

1
𝜆

𝜆2−𝜆+𝑥+1
] ;  𝑥 = 0,1,2, …,      (8) 

where �̆� =
Pr(𝑋=𝑥;𝜆)

𝐹(𝑥;𝜆)
 and 𝑟∗(𝑥) = log [

𝑆(𝑥;𝜆)

𝑆(𝑥+1;𝜆)
]. Mathematically, and after simple algebra steps, it is 

found that the shape of the rhrf of the DRL model is decreasing only. Figure 3 shows some rhrf plots 

of the proposed model based on specific parameter values. 
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Figure 3. The rhrf plots of the DRL distribution. 

3. Distributional properties 

In this Section, the probability generating function (pgf) as well as its rth moment are investigated. 

Assume the random variable 𝑋 have a DRL model, then the pgf can be expressed as 

𝑊𝑋(𝑧) = ∑ 𝑧𝑥

∞

𝑥=0

Pr(𝑋 = 𝑥; 𝜆) = 1 + (𝑧 − 1) ∑ 𝑧𝑥−1𝑆(𝑥; 𝜆)

∞

𝑥=1

 

= 1 + 𝑒−
1

𝜆(𝑧 − 1) [
1

(1−𝑧𝑒
−

1
𝜆)

+
1

𝜆(𝜆−1)(1−𝑧𝑒
− 

1
𝜆)

2].     (9) 

On replacing z by 𝑒𝑧 in Eq (9), the moment generating function (mgf) can be written as 

𝑀𝑋(𝑧) = 1 + 𝑒−
1

𝜆(𝑒𝑧 − 1) [
1

(1−𝑒𝑧𝑒
− 

1
𝜆)

+
1

𝜆(𝜆−1)(1−𝑒𝑧𝑒
−

1
𝜆)

2].    (10) 

The first four moments around the origin (𝜇′1, 𝜇′2, 𝜇′3, 𝜇′4) can be written as 

𝜇′1 =
𝜆 − 𝜆2 + (𝜆2 − 𝜆 + 1)𝑒

1
𝜆

𝜆(𝜆 − 1) (𝑒
1
𝜆 − 1)

2 , 

𝜇′2 =
(𝜆(𝜆 − 1) + 1)𝑒

2
𝜆 + 3𝑒

1
𝜆 − 𝜆(𝜆 − 1)

𝜆(𝜆 − 1) (𝑒  
1
𝜆 − 1)

3 , 
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𝜇′
3 =

[𝜆(𝜆 − 1) + 1]𝑒
3
𝜆 + [3𝜆(𝜆 − 1) + 10]𝑒

2
𝜆 − [3𝜆(𝜆 − 1) − 7]𝑒

1
𝜆 − 𝜆(𝜆 − 1)

𝜆(𝜆 − 1) (𝑒
1
𝜆 − 1)

4  

and 

𝜇′4 =
[𝜆(𝜆 − 1) + 1]𝑒

4
𝜆 + [10𝜆(𝜆 − 1) + 25]𝑒

3
𝜆 + 67𝑒

2
𝜆 + [10𝜆(𝜆 − 1) − 3]𝑒

1
𝜆 − 𝜆(𝜆 − 1)

𝜆(𝜆 − 1) (𝑒
1
𝜆 − 1)

5 . 

Based on the rth moments, the variance can be expressed as 

𝜎2 =
[𝜆4−2𝜆3+2𝜆2−𝜆]𝑒

3
𝜆−[2𝜆4−4𝜆3+2𝜆2−1]𝑒

2
𝜆+[𝜆4−2𝜆3+𝜆]𝑒

1
𝜆

𝜆2(𝜆−1)2(𝑒
1
𝜆−1)

4 .     (11) 

The dispersion index (di) is defined by variance to mean ratio. The di indicates that the reported model 

is suitable for under-, equi- or over-dispersed data sets. Using the derived moments, the coefficients 

skewness and kurtosis can be listed in closed forms. Some numerical computations for mean, variance, 

di, skewness, and kurtosis based on DRL parameters are listed in Table 1. 

Table 1. Mean, variance, di, skewness, and kurtosis of the DRL distribution. 

 𝜆 

Measure 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 8.0 

Mean 3.500 3.678 4.014 4.414 4.847 5.299 5.762 6.234 8.652 

Variance 8.079 11.80 15.71 20.03 24.82 30.10 35.87 42.13 80.90 

di 2.308 3.207 3.913 4.538 5.121 5.680 6.224 6.757 9.351 

Skewness 1.395 1.519 1.629 1.708 1.764 1.806 1.837 1.862 1.928 

Kurtosis 5.940 6.353 6.821 7.199 7.495 7.727 7.910 8.057 8.484 
 

According to Table 1, it is noted that the DRL model can be used effectively to model overdispersion 

data as di is greater than one, which makes it a proper probability tool to discuss actuarial data. 

Moreover, the new discrete probabilistic model can be utilized to analyze positively skewed data with 

leptokurtic-shaped. 

4. Estimation methods  

In this section, six estimation methods are used to estimate the unknown parameter of DRL 

distribution. The considered estimation methods are maximum likelihood estimation (mle), method of 

moments (mom), least-squares estimation (lse), Anderson-Darling estimation (ade), Cramer von-

Misses estimation (cvme), and maximum product of spacing estimator (mpse). 
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4.1. Maximum likelihood estimation 

Assume a random sample 𝑥1, 𝑥2, … , 𝑥𝑛 from the DRL model, then the log-likelihood function 

can be expressed as 

𝐿(𝜆|𝑥) = −
1

𝜆
∑ 𝑥𝑖

𝑛
𝑖=1 + ∑ ln [(𝜆2 − 𝜆 + 𝑥𝑖) (1 − 𝑒−

1

𝜆) −𝑒−
1

𝜆]𝑛
𝑖=1 − 𝑛 ln 𝜆 − 𝑛 ln(𝜆 − 1). (12) 

Differentiating the Eq (12) with respect to the parameter 𝜆, we get the non-linear equation as follows  

𝜕𝐿(𝜆|𝑥)

𝜕𝜆
=

1

𝜆2
∑ 𝑥𝑖

𝑛
𝑖=1 + ∑

[(2𝜆−1)(1−𝑒
−

1
𝜆)−(1−

1

𝜆
+

1

𝜆2+
𝑥𝑖
𝜆2)𝑒

−
1
𝜆]

[(𝜆2−𝜆+𝑥𝑖)(1−𝑒
− 

1
𝜆)−𝑒

−
1
𝜆]

𝑛
𝑖=1 −

𝑛

𝜆
−

𝑛

𝜆−1
,    (13) 

the exact solution of Eq (13) is not easy, so we will maximize it by using optimization approaches, for 

example, the Newton-Raphson approach using R software.  

4.2. Method of moment estimation 

Based on the mom definition, we must equate the sample mean to the corresponding population 

mean, and then solve the non-linear equation for the parameter 

𝜆−𝜆2+(𝜆2−𝜆+1)𝑒
1
𝜆

𝜆(𝜆−1)(𝑒
 
1
𝜆−1)

2 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 .        (14) 

To solve Eq (14), the uniroot function should be utilized. 

4.3. Least squares estimation 

To estimate the parameter minimizing the sum of squares of residuals, a standard approach like 

the lse should be used. For the estimation of the parameter of DRL distribution, the lse can be obtained 

by minimizing 

lse(𝜆) = ∑ [1 −
(𝜆2−𝜆+x𝑖:𝑛)

𝜆(𝜆−1)
𝑒−

x𝑖:𝑛+1

𝜆 −
𝑖

𝑛+2
]

2
𝑛
𝑖=1 ,     (15) 

with respect to the parameter 𝜆.  

4.4. Anderson-Darling estimation  

The ade of the parameter can be derived by minimizing the following equation 

ade(𝜆) = −𝑛 −
1

𝑛
∑ (2𝑖 − 1) [log (1 −

(𝜆2−𝜆+x𝑖:𝑛)

𝜆(𝜆−1)
𝑒−

x𝑖:𝑛+1

𝜆 ) + log (
(𝜆2−𝜆+x𝑖:𝑛)

𝜆(𝜆−1)
𝑒−

x𝑖:𝑛+1

𝜆 )]
2

𝑛
𝑖=1 ,  (16) 

with respect to the parameter 𝜆.  
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4.5. Cramer von-Misses estimation 

The cvme is an estimation method. This method is derived as the difference between the empirical 

cdf and fitted cdf where 

cvme(𝜆) =
1

12𝑛
+ ∑ [1 −

(𝜆2−𝜆+x𝑖:𝑛)

𝜆(𝜆−1)
𝑒−

x𝑖:𝑛+1
𝜆 −

2𝑖−1

2𝑛
]

2
𝑛
𝑖=1 .     (17) 

4.6. Maximum product of spacing estimator 

For 𝑢 = 1,2,3, … , ℎ + 1, assume 𝐷𝑢(𝜆) = 𝐹(𝑥(𝑢)|𝜆) − 𝐹(𝑥(𝑢−1)|𝜆), be the uniform spacings of 

a random sample from the DRL model, where 𝐹(𝑥(0)|𝜆) = 0, 𝐹(𝑥(ℎ+1)|𝜆) = 1 and ∑ 𝐷𝑢(𝜆)ℎ+1
𝑟=1 = 1. 

The mpse of the parameter 𝜆 , say �̂� , can be estimated by maximizing the geometric mean of the 

spacings 

mpse(𝜆) = [∏ 𝐷𝑢(𝜆)ℎ+1
𝑢=1 ]

1

ℎ+1,         (18) 

with respect to the parameter 𝜆. 

5. Simulation 

In this section, we discussed the results of the simulation study to compare the estimation 

performance of the proposed estimators based on the DRL model. The performance of considered 

estimators is evaluated via absolute biases and mean square errors. We simulate 10,000  random 

samples from the DRL distribution using the following sample sizes 𝑛 = 10, 20, 50, 100, 200, and 

500. The results calculated for parameter values 𝜆 = (2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0) using R 

Software. The absolute bias and mse for the parameter 𝜆 are presented in Tables 2 and 3.  

Table 2. Simulation results of the DRL distribution for different parameter values. 

Para. n Bias mse 

𝜆  mle mom ade cvme lse mpse mle mom ade cvme lse mpse 

2.0 

10 0.099 0.072 0.878 0.606 0.956 0.801 0.762 1.496 2.897 2.059 3.034 1.797 

20 0.034 0.035 0.486 0.259 0.444 0.435 0.307 1.103 1.408 0.749 1.212 0.626 

50 0.017 0.160 0.122 0.037 0.065 0.172 0.055 0.811 0.304 0.086 0.148 0.111 

100 0.013 0.226 0.015 0.003 0.005 0.086 0.017 0.697 0.033 0.006 0.009 0.026 

200 0.009 0.277 0.000 0.000 0.000 0.050 0.007 0.620 0.000 0.000 0.000 0.008 

500 0.002 0.338 0.000 0.000 0.000 0.028 0.003 0.569 0.000 0.000 0.000 0.002 

2.5 

10 0.081 0.131 1.109 1.140 1.397 0.958 1.105 2.032 3.694 3.919 4.392 2.609 

20 0.065 0.239 0.837 0.869 1.060 0.622 0.485 1.487 2.368 2.560 2.765 1.173 

50 0.058 0.293 0.595 0.695 0.798 0.320 0.186 1.063 1.436 1.723 1.785 0.391 

100 0.027 0.298 0.475 0.602 0.672 0.195 0.091 0.816 1.082 1.373 1.428 0.165 

200 0.013 0.255 0.374 0.525 0.589 0.098 0.045 0.602 0.864 1.139 1.185 0.065 

500 0.007 0.146 0.273 0.484 0.532 0.047 0.018 0.316 0.674 0.979 1.014 0.022 

Continued on next page 
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Para. n Bias mse 

𝜆  mle mom ade cvme lse mpse mle mom ade cvme lse mpse 

3.0 

10 0.019 0.224 1.085 1.103 1.304 0.996 1.574 2.613 3.976 4.160 4.504 3.186 

20 0.005 0.268 0.877 0.924 1.044 0.639 0.751 1.793 2.525 2.701 2.865 1.512 

50 0.003 0.193 0.738 0.844 0.893 0.357 0.313 1.003 1.540 1.728 1.760 0.537 

100 0.004 0.130 0.754 0.868 0.872 0.222 0.163 0.567 1.160 1.352 1.341 0.242 

200 0.001 0.053 0.775 0.887 0.896 0.141 0.084 0.238 0.920 1.112 1.106 0.113 

500 0.001 0.006 0.811 0.929 0.940 0.070 0.035 0.066 0.769 0.965 0.980 0.042 

4.0 

10 0.049 0.209 1.105 1.023 1.181 1.100 2.450 3.694 5.254 5.458 5.552 4.850 

20 0.043 0.169 0.896 0.891 0.985 0.748 1.339 2.065 3.000 3.234 3.315 2.269 

50 0.031 0.049 0.835 0.847 0.899 0.400 0.585 0.763 1.608 1.739 1.789 0.815 

100 0.008 0.014 0.849 0.878 0.891 0.255 0.291 0.328 1.161 1.240 1.285 0.377 

200 0.007 0.016 0.838 0.877 0.882 0.156 0.147 0.159 0.911 1.005 1.010 0.174 

500 0.004 0.002 0.831 0.877 0.878 0.066 0.058 0.064 0.773 0.861 0.862 0.062 

Table 3. Simulation results of the DRL distribution for different parameter values. 

Para. n Bias mse 

𝜆  mle mom ade cvme lse mpse mle mom ade cvme lse mpse 

5.0 

10 0.106 0.077 1.058 1.013 1.242 1.164 3.881 4.545 6.333 6.748 7.579 6.421 

20 0.061 0.036 0.955 0.915 1.007 0.824 2.026 2.335 3.527 3.991 4.014 3.056 

50 0.046 0.015 0.864 0.869 0.904 0.447 0.821 0.839 1.793 1.906 1.970 1.070 

100 0.013 0.002 0.857 0.866 0.857 0.270 0.399 0.411 1.244 1.325 1.303 0.513 

200 0.013 0.006 0.833 0.843 0.849 0.161 0.198 0.214 0.946 1.006 1.009 0.238 

500 0.001 0.003 0.832 0.846 0.843 0.082 0.079 0.078 0.792 0.829 0.822 0.086 

6.0 

10 0.167 0.115 1.192 1.073 1.169 1.260 5.339 5.663 8.785 8.977 9.398 8.321 

20 0.049 0.027 0.946 0.952 0.975 0.890 2.794 2.926 4.236 4.861 4.686 3.860 

50 0.008 0.019 0.873 0.889 0.881 0.499 1.081 1.079 2.081 2.225 2.292 1.417 

100 0.007 0.016 0.859 0.843 0.870 0.294 0.523 0.517 1.392 1.421 1.522 0.631 

200 0.007 0.006 0.845 0.839 0.846 0.181 0.261 0.269 1.030 1.061 1.065 0.308 

500 0.001 0.001 0.832 0.832 0.835 0.085 0.107 0.108 0.823 0.841 0.847 0.112 

8.0 

10 0.141 0.089 1.294 1.077 1.320 1.622 8.569 8.656 12.77 12.61 13.63 13.41 

20 0.074 0.009 1.050 0.991 1.111 1.110 4.265 4.178 6.399 6.736 7.355 6.250 

50 0.029 0.003 0.883 0.860 0.918 0.577 1.685 1.630 2.726 3.019 3.118 2.151 

100 0.015 0.014 0.867 0.861 0.859 0.372 0.834 0.814 1.787 1.862 1.859 1.029 

200 0.008 0.019 0.837 0.808 0.842 0.219 0.416 0.422 1.202 1.204 1.285 0.493 

500 0.006 0.001 0.826 0.814 0.820 0.097 0.169 0.175 0.877 0.879 0.902 0.176 

10.0 

10 0.106 0.086 1.365 1.333 1.446 1.868 12.89 12.67 17.66 19.87 19.51 20.26 

20 0.001 0.063 1.143 1.079 1.067 1.308 6.232 6.279 8.767 9.553 9.777 9.056 

50 0.025 0.036 0.899 0.892 0.933 0.686 2.483 2.373 3.774 4.076 4.248 3.246 

100 0.018 0.016 0.868 0.886 0.872 0.457 1.247 1.246 2.255 2.421 2.464 1.489 

200 0.001 0.009 0.852 0.827 0.829 0.267 0.636 0.599 1.467 1.501 1.501 0.712 

500 0.002 0.007 0.823 0.801 0.818 0.119 0.246 0.240 0.967 0.971 1.005 0.255 
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Based on the simulation criteria, it is observed that all estimation approaches work quite well in 

estimating the parameter λ of the DRL distribution. 

6. Data analysis 

In this Section, the importance of the proposed distribution is discussed by using data sets from 

different areas. We shall compare the fits of the DRL distribution with different competitive 

distributions such as Poisson (Poi), discrete Pareto (DPr), discrete Rayleigh (DR), discrete inverse 

Rayleigh (DIR), discrete Burr-Hatke (DBH), discrete Bilal (DBi), discrete Lindley (DL), new discrete 

Lindley (NDL), and discrete Burr-XII (DBXII) distributions. The fitted probability distributions are 

compared using some criteria, namely, the negative log-likelihood (−𝐿), Akaike information criterion 

(aic), and Kolmogorov-Smirnov (ks) test with its p-value. 

6.1. Data set I: Covid-19 data in Pakistan 

The first data set represents the number of deaths due to coronavirus in Pakistan during the period 

March 18, 2020, to April 30, 2020, which were obtained from the public reports of the National 

Institute of Health (NIH), Islamabad, Pakistan (https://covid.gov.pk/stats/pakistan). The mean, 

variance, and di of data set I are 9.4773, 102.39, and 10.804, respectively. The mle(s) along with 

standard error(s) “se(s)” and goodness-of-fit measures for this data are presented in Table 4. 

Table 4. The mle(s), se(s), and goodness-of-fit measures for data set I. 

Model 
𝜆 𝛿 Goodness-of-fit measures 

mle se mle se −𝐿 aic ks p-value 

DRL 8.8686 1.5033 - - 145.22 292.43 0.156 0.2300 

Poi 9.4773 0.4641 - - 283.94 569.89 0.391 <0.0001 

DPr 0.5021 0.0757 - - 162.19 326.38 0.401 <0.0001 

DR 9.9883 0.7535 - - 168.85 339.70 0.339 <0.0001 

DIR 7.4291 1.2625 - - 166.31 334.61 0.382 <0.0001 

DBH 0.9950 0.0115 - - 175.37 352.74 0.647 <0.0001 

DBi 11.838 1.2932 - - 151.29 304.59 0.213 0.0370 

DL 0.8313 0.0165 - - 149.17 300.33 0.184 0.1000 

NDL 0.1640 0.0161 - - 148.44 298.89 0.237 0.0140 

DBXII 0.9536 0.0434 11.907 11.305 150.70 305.40 0.302 0.0007 

The results in Table 4 show that the DRL distribution provides a better fit over other competing discrete 

models since it has the minimum aic, and ks values with the highest p-value. Figure 4 shows the 

probability-probability (pp) plots for all tested models which prove the empirical results listed in Table 4. 
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Figure 4. The pp plots for all fitted distributions for data set I. 

6.2. Data set II: Hydrology data 

The second data set was reported in [25], which represents the exceedance of flood peaks in m3/s 

of the Wheaton River near Carcross in Yukon Territory, Canada based on the discretization concept. 

The mean, variance, and di of this data are 11.806, 152.38, and 12.908, respectively. The mle(s), se(s), 

and goodness-of-fit measures for data set II are reported in Table 5. 

Table 5. The mle(s), se(s), and goodness-of-fit measures for data set II. 

Model 
𝜆 𝛿 Goodness-of-fit measures 

mle se mle se −𝐿 aic ks p-value 

DRL 11.214 1.4497 - - 252.71 507.43 0.133 0.1600 

Poi 11.805 0.4049 - - 564.38 1130.8 0.408 <0.0001 

DPr 0.4770 0.0563 - - 276.82 555.64 0.311 <0.0001 

DR 12.280 0.7239 - - 300.65 603.29 0.323 <0.0001 

DIR 4.7947 0.6303 - - 331.46 664.92 0.497 <0.0001 

DBH 0.9966 0.0072 - - 302.29 606.57 0.572 <0.0001 

DBi 14.621 1.2479 - - 272.50 546.99 0.257 0.0002 

DL 0.8592 0.0109 - - 264.30 530.59 0.232 0.0009 

NDL 0.1373 0.0107 - - 262.09 526.17 0.271 <0.0001 

DBXII 0.8205 0.0591 2.6112 0.9287 270.50 544.99 0.228 0.0011 

It is observed that the DRL model is the best among all competitive distributions. Figure 5 illustrates 

the pp plots for all tested distributions which prove the empirical results reported in Table 5. 
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Figure 5. The pp plots for all fitted distributions for data set II. 

6.3. Data set III: Forest fire in Greece 

The third data set was listed in [26] and represents the number of fires in Greece forest districts 

for the period from 1st July 1998 to 31 August 1998. The mean, variance, and di measures are 5.2, 

32.382, and 6.2272, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are 

listed in Table 6. 

Table 6. The mle(s), se(s), and goodness-of-fit measures for data set III. 

Model 
𝜆 𝛿 Goodness-of-fit measures 

mle se mle se −𝐿 aic ks p-value 

DRL 4.3673 0.5510 - - 301.11 604.21 0.1510 0.0140 

Poi 5.2000 0.2174 - - 434.16 870.32 0.282 <0.0001 

DPr 0.6250 0.0597 - - 339.05 680.10 0.352 <0.0001 

DR 5.6788 0.2714 - - 352.72 707.45 0.261 <0.0001 

DIR 3.5198 0.3748 - - 360.90 723.80 0.413 <0.0001 

DBH 0.9833 0.0136 - - 352.42 706.85 0.532 <0.0001 

DBi 6.7993 0.4693 - - 310.75 623.49 0.107 <0.0001 

DL 0.7337 0.0156 - - 303.88 609.75 0.193 0.0100 

NDL 0.2567 0.0152 - - 302.73 607.47 0.169 0.0037 

DBXII 0.7486 0.0459 2.4582 0.4938 325.00 654.01 0.287 <0.0001 

It is found that the new discrete model is the best among all tested distributions. Figure 6 shows the pp 

plots for all competitive distributions which prove the empirical results listed in Table 6. 



1738 

AIMS Mathematics  Volume 7, Issue 2, 1726–1741. 

 

Figure 6. The pp plots for all fitted distributions for data set III. 

6.4. Data set IV: AG-positive leukemia 

The fourth data set represents the time to death (in weeks) of AG-positive leukemia patients [27]. 

The mean, variance, and di values are 62.471, 2954.3, and 47.29, respectively. The estimates and 

goodness-of-fit measures for all competitive distributions are listed in Table 7. 

Table 7. The mle(s), se(s), and goodness-of-fit measures for data set IV. 

Model 
𝜆 𝛿 Goodness-of-fit measures 

mle se mle se −𝐿 aic ks p-value 

DRL 61.943 15.273 - - 87.425 176.85 0.152 0.8300 

Poi 62.470 1.9169 - - 475.26 952.52 0.470 0.0011 

DPr 0.2838 0.0688 - - 98.335 198.67 0.324 0.0560 

DR 58.076 7.0429 - - 96.794 195.59 0.309 0.0770 

DIR 25.310 6.543 - - 128.59 259.18 0.681 <0.0001 

DBH 0.9999 0.0029 - - 119.81 241.62 0.716 <0.0001 

DBi 75.109 13.164 - - 92.886 187.77 0.219 0.3900 

DL 0.9692 0.0052 - - 91.858 185.72 0.215 0.4100 

NDL 0.0306 0.0052 - - 91.458 184.92 0.218 0.3900 

DBXII 0.9975 0.0008 117.30 45.982 96.151 196.30 0.327 0.0530 

It is noted that the DRL is the best for this data. Figure 7 shows the pp plots for all tested distributions 

which prove the empirical results mentioned in Table 7. 
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Figure 7. The pp plots for all fitted distributions for data set IV. 

7. Conclusions 

In this article, a new one-parameter discrete model has been proposed entitled a discrete Ramos-

Louzada (DRL) distribution. The new model can be used in modeling asymmetric data with 

overdispersion phenomena. Some of its statistical properties have been derived. It was found that all 

its properties can be expressed in closed forms, which makes the new model can be utilized in different 

analysis, especially, in time series and regression. Various estimation techniques including maximum 

likelihood, moments, least squares, Anderson’s-Darling, Cramer von-Mises, and maximum product of 

spacing estimator, have been investigated to get the best estimator for the real data. The estimation 

performance of these estimation techniques has been assessed via a comprehensive simulation study. 

The flexibility of the proposed discrete model has been tested utilizing four distinctive real data sets 

in various fields. Finally, we hope that the DRL distribution attracts wider sets of applications in 

different fields.  
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