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Abstract: In this study, we have simulated transient and steady state free convection flow and heat 

transfer inside a square enclosure filled with a copper-water nanofluid of spherical shape nanoparticles 

following Tiwari-Das model. The cavity containing an insulated rectangular obstacle of height ranging 

from 0% to 50% of the cavity side-length. The vertical sides of the enclosure are kept at different 

temperatures, while the flat sides are assumed to be adiabatic as the obstacle. The combined method 

of lines/penalty-artificial compressibility technique (MOL-PACT) has been applied to solve the 

dimensional time dependent mathematical model after converting it into a non-dimensional structure. 

The combined method of lines/penalty-artificial compressibility technique is recently successfully 

applied to simulate free convection of MHD fluid in square enclosure with a localized heating. The 

extension of this promising technique for studying heat transfer of nanofluids is one of the objectives 

of this paper. Another objective of the study is to inspect the impact of several model parameters such 

as, the obstacle height, nanoparticles volume-fraction, nanoparticles radius and Rayleigh number on 

streamlines, temperature distribution and Nusselt number as an expression of heat transfer inside the 

enclosure. The results have been discussed and shown graphically. Comparisons with former results 

for related cases in the literature are made and reasonably good agreements are observed. 
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Abbreviations: 

Nomenclature 

G: gravitational acceleration [m/s2] 

Ra: Rayleigh number   

Pr: Prandtl number 

Nu: Nusselt number 

L: enclosure side-length [m]  

h: obstacle height [m] 

d: obstacle width [m] 

x, y: Cartesian coordinates [m] 

t: time [s] 

p: fluid pressure [N/m2] 

T: temperature [K]  

u: velocity component in the x direction [m/s]  

v: velocity component in the y direction [m/s] 

n: nanoparticles shape factor 

b: penalty parameter 

c: compressibility parameter 

Cp: specific heat [J/kg.K] 

χ: mixture ratio 

𝜌: density [kg/m3] 
𝜇: dynamic viscosity [kg/m.s] 
𝛼: thermal diffusivity [m2/s] 

k: thermal conductivity [W/m.K] 
𝛽T : thermal expansion coefficient [1/K]  

φ: nanoparticles volume fraction 

𝛽: ratio of the nanolayer thickness to the 

original particle radius 

ψ: stream function [m2/s] 

Subscripts 

H: hot side 

C: cold side 

avg: averaged 

NF: nanofluid 

W: Water 

Cu: Copper 

Superscript 
*: dimensional variable 

1. Introduction 

The study of heat transfer of buoyancy convection flow in several geometrical cavities has been 

widely investigated using numerical; analytical; and experimental techniques because of the extensive 

variety of their requests in engineering and technology such as safety and operation of nuclear reactor, 

electronic devices cooling systems, solar-thermal collectors, micro-electro-mechanical systems, and 

so on. Enhancing the heat transfer performance in these systems is an important issue in terms of the 

proper functionality of these systems and of energy saving as well. As known, the heat transfer of 

common conventional fluids such as water, oil, and ethylene glycol of low thermal conductivities that 

can be considered as a fundamental limitation of using such fluids in high-efficiency heat transfer 

systems because it is very challenging to be content with the representation of such systems [1]. To 

defeat this problem, an innovative approach to improve the heat transfer, is achieved by applying 

nanoparticles to the base fluid (nanofluid). The term nanofluid (NF) refers to a mixture of liquid and 

solid that involves of a base-liquid and nanoparticles of size <100 nano meter. Pure metallic particles 

such as Cu, Fe, Al and Ag can be used as nanoparticles. Carbon nanotubes and ceramic particles like 

SiO2, TiO2, CuO, and Al2O3 are used as nanoparticles as well. The benefit of these nanoparticles lies 

in that they improve the anomalous growth in effective thermal conductivity (ETC) of the fluid. In [2], 
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It is noticed that the ETC of the ethylene glycol increases up to 40% by adding copper nanoparticles 

of approximately mean diameter <10 nano meter to the base ethylene glycol. In [3], Choi et al. 

concluded that the suspension of nanotubes and oil anomalously enhances effective thermal 

conductivity of the oil. In [4], Das et al. examined the enhancement in the effective thermal 

conductivity for the nanofluids with H2O as a base fluid and CuO or Al2O3 particles as suspension 

nanoparticles rather than using a base fluid only. In [5], Putra et al. performed an experiment 

investigation to investigate the heat transfer caused by natural convection in a cylindrical enclosure 

filled with Cu–H2O, and Al–H2O nanofluids. They determined that the obvious coalescence of 

nanoparticles heat transfer, caused by natural convection, is occurred for high Rayleigh number (Ra). 

Recently, many researchers analyzed heat transfer of nanofluids caused by natural convection 

inside cavities of several shapes such as rectangular [6–9], trapezoidal [10–13], triangular [14–17] and 

unusual shapes [18–22]. In most of the investigations have been done, the effects of different 

parameters on the nanofluids heat transfer in the enclosures are analyzed. In [18], Armaghani et al. 

investigated the effects of Ra and the aspect ratio of a T-shaped cavity on the free convection and 

entropy of Al2O3–H2O nanofluid. They assumed the flow is laminar and the nanoparticles of spherical 

shapes. They deduced that the values of cavity aspect ratio and Ra have a strong effect on the heat 

transfer inside the cavity. In [19], Toghraie et al. examined the impact of porous ribs for L-shaped 

microchannels by considering the properties of the porous media for several Reynolds numbers. The 

free convection of CuO–H2O nanofluid inside a corrugated cavity containing a heated obstacle was 

examined in [20]. The authors applied the Koo-Kleinstreuer Li model to transact with the fluid ETC 

and viscosity. The effect of parallel fins on a nanofluid of water based carbon nanotubes of single wall 

was studied by Haq et al. [21]. They determined that the rate of heat transfer increased by expanding 

the length of the heated fin and reduces by increasing the value of Ra and solid volume-fraction of 

nanoparticles. In [22], Eshaghi et al. investigated the double diffusive natural convection of a hybrid 

Cu–Al2O3–H2O nanofluid within an H-shaped enclosure having an obstacle at the top side. They 

studied the impact of Rayleigh and Lewis numbers and buoyancy ratio on the generation of entropy 

and heat transfer. Other related studies are given in [23–27]. From the literature, one can observe that 

there are little investigations that consider the impact of an insulated obstacle wall within square 

cavities. 

Recently, the combined method of lines and penalty-artificial compressibility technique (MOL-

PACT) is proposed and successfully applied to simulate the MHD convective fluid inside a square 

enclosure due to localized heating of the bottom side [28]. In this study, we will extend the application 

of this promising technique to simulate the transient and steady-state heat transfer of a nanofluid 

subjected to Tiwari-Das model inside a square enclosure having a rectangular insulated obstacle. The 

optimum values of artificial compressibility and penalty parameters of the numerical technique are 

estimated using a developed stability restriction. The nanofluid considered in this study is a copper–

water mixture with spherical shape nanoparticles. We will examine the impact of thermal and physical 

parameters like Ra, obstacle height, volume-fraction of nanoparticles, ratio between the thickness of 

nanolayer and the radius of the original solid particles on streamlines, temperature, and heat transfer. 

The results of this study can be provided useful data that may be used to optimize design and enhance 

thermal performance of energy systems. The validation of the MOL-PACT results is confirmed by 

comparing them for special cases with other results presented in the literature. 

The structure of the remaining sections are as follows: in the following section, the physical 

description of the physical and mathematical model is revealed. In Section 3, the numerical procedure 
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and code validation are given. Section 4 uncovers the investigation results and discussion. The last 

section is for summarizing of the obtained results and conclusions of this work. 

2. Problem description and mathematical model 

Consider the motion of an unsteady, laminar, viscous 2D Cu–H2O nanofluid in a square enclosure 

of side-length L. We considered that the x-axis is evaluated along the bottom side wall of the enclosure 

and the y-axis is evaluated along the left side wall. The schematic diagram of the physical and 

coordinate are displayed in Figure 1. The bottom and top side walls are considered adiabatic and the 

nanofluid are isothermally cooled and heated by the right and left vertical side walls of the enclosure 

at constant temperatures of TC and TH, respectively where TC < TH. There is an adiabatic rectangular 

obstacle that positioned in the middle of the bottom side. The width and height of the obstacle are 

assigned as d and h, respectively. In this investigation, we consider one case for d and three cases for 

h as: d = 0.2 L and h = 0, 0.25 L, 0.5 L. In the current study, we have chosen water (H2O) as a base 

fluid whereas copper (Cu) as nanoparticles. The shapes of the nanoparticles are chosen as spherical 

ones. The choice of water as a base fluid are considered because of its practical uses in several fields 

such as cooling of many reactors, solar-thermal collector, etc. This problem and geometry can be 

happened in many technical applications like solar-collectors, heat-exchangers, and cooling of 

electronic apparatus and chips that use nanofluids. The adiabatic obstacle may be considered as a 

model of heat transfer modifier device or controller. In heat exchangers, adiabatic obstacle can be a 

prototypical of a baffle that manages the process of heat transport and flow rate. In case electronic 

chips cooling, an adiabatic obstacle may be used for decreasing or increasing the heat transfer from 

special parts of hot chips. 

 

Figure 1. Schematic diagram of the physical model. 

It is considered that a thermal balance occurs between the water and copper nanoparticles, and 

there is no slip between the two components of the nanofluid. Because of the small diameter of 

nanoparticles, they are simply fluidized. We considered the Cu–H2O nanofluid as a water including 

copper nanoparticles as species of water. The physical parameters of the nanofluid are assumed to be 
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fixed except the change of nanofluid density that appears in the mass force portion of the equation of 

momentum, that is projected by the Boussinesq-approximation. The acceleration due to gravity acts 

out in the downward direction of y axis. All the enclosure walls are rigid with no-slip. Essentially, this 

kind of cavities loaded with such nanofluids is developed as a solar-thermal collector. Based on the 

aforementioned statements, the fundamental governing equations are presented in a dimensional form 

as [10,29]: 

𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0,           (1) 

𝜕𝑢∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = −
1

𝜌𝑁𝐹

𝜕𝑝∗

𝜕𝑥∗ +
𝜇𝑁𝐹

𝜌𝑁𝐹
(

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2),     (2) 

𝜕𝑣∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑣∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑣∗

𝜕𝑦∗ = −
1

𝜌𝑁𝐹

𝜕𝑝∗

𝜕𝑦∗ +
𝜇𝑁𝐹

𝜌𝑁𝐹
(

𝜕2𝑣∗

𝜕𝑥∗2 +
𝜕2𝑣∗

𝜕𝑦∗2) +
(𝜌𝛽𝑇)𝑁𝐹

𝜌𝑁𝐹
𝑔(𝑇∗ − 𝑇𝐶),  (3) 

𝜕𝑇∗

𝜕𝑡∗ + 𝑢∗ 𝜕𝑇∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑇∗

𝜕𝑦∗ =
𝑘𝑁𝐹

(𝜌𝐶𝑝)𝑁𝐹
(

𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2).      (4) 

The meanings and dimensions of symbols describe nanofluid physical and thermal properties, 

that appear in equations and forthcoming formulas, are listed in the nomenclature. These properties 

like nanofluid density, viscosity, thermal diffusivity, heat capacity, thermal conductivity, and 

coefficient of thermal expansion. The next expressions are employed to compute the physical and 

thermal properties of Cu–H2O nanofluid: 

The following formula that presented by Brinkman [30] was used as an expression for the 

nanofluid effective viscosity 𝜇NF: 

𝜇𝑁𝐹 =
𝜇𝑊

(1−𝜑)

5

2,          (5) 

where 𝜇W is the viscosity of base fluid (water) and φ is the copper nanoparticles volume-fraction. The 

effective viscosity of many nanofluids in the different temperature ranges are experimentally 

investigated and measured by many researchers. The results of these investigations demonstrated 

reasonably great agreement with the Brinkman theory [30]. Respectively, the nanofluid effective-

density, thermal-diffusivity, heat-capacitance and the coefficient of thermal-expansion are provided 

in [10,29,31] as: 

( )    = + − 1 ,N F C u W          (6) 

𝛼𝑁𝐹 =
𝑘𝑁𝐹

(𝜌𝐶𝑝)𝑁𝐹
,          (7) 

( ) ( ) ( )( )    = + − 1 ,
N F C u W

C p C p C p        (8) 

( ) ( ) ( )( )    = + − 1 .T T TN F C u W
      (9) 

Concerning the ETC of nanofluid kNF/kW, there are many models in nanofluids [32,33]. In [33], 
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Maxwell informed that nanofluid ETC depends on the base liquid thermal-conductivity and solid 

particles volume-fraction and shape. He also concluded that the ETC of spherical type nanoparticles 

raises as the nanoparticles volume-fraction raise. In addition to the influence of the volume-fraction of 

the solid particles on the nanofluid thermal-conductivity, it is also affected by the shape of 

nanoparticles for non-spherical particles. One of the famous models of the ETC, of nanofluids with 

non-spherical particles, that proposed by Hamilton and Crosser [34] is given below 

𝑘𝑁𝐹

𝑘𝑊
=

[𝑘𝐶𝑢+(𝑛−1)𝑘𝑊+(𝑛−1)(𝑘𝐶𝑢−𝑘𝑊)𝜑]

[𝑘𝐶𝑢+(𝑛−1)𝑘𝑊−(𝑘𝐶𝑢−𝑘𝑊)𝜑]
,       (10) 

where n is the nanoparticles shape-factor of. The shape factor takes values ranging from 0.5 to 6.0. For 

example, n = 3 for spherical shape particles while n = 4.9 for cylindrical shape particles [35]. Because 

of nanofluids may comprise of solid nanoparticles, a bulk liquid and solid-like nanolayers, Yu and 

Choi [36] suggested an alternative formula for determining the ETC of nanofluids of spherical shapes 

solid particles as: 

𝑘𝑁𝐹

𝑘𝑊
=

[𝑘𝐶𝑢+2𝑘𝑊+2(1+𝛽)3(𝑘𝐶𝑢−𝑘𝑊)𝜑]

[𝑘𝐶𝑢+2𝑘𝑊−(1+𝛽)3(𝑘𝐶𝑢−𝑘𝑊)𝜑]
,        (11) 

where the embedding parameter 𝛽 is the fraction between the nanolayer thickness and the original 

solid particles radius. This model gives a reasonably good results when contrasted with experimental 

results in the literature for nanoparticles having diameters <10 nano meter [36]. We used this model to 

characterize the ETC of the considered nanofluid in this study. 

The appropriate initial/boundary conditions for the model are specified below: 

• For t* < 0; 

- u* = v* = p* = T* = 0, 

• For t* ≥ 0; 

- at the top and bottom boundaries of the cavity and obstacle: u* = v* = 𝜕T*/𝜕y* = 0, 

- at the left and right boundaries of the obstacle: u* = v* = 𝜕T*/𝜕x* = 0, 

- at the left boundaries of the enclosure: u* = v* = 0, T* = TH, 

- at the right boundaries of the enclosure: u* = v* = 0, T* = TC. 

To nondimensionalize the considered model equations (1)–(4), the following non-dimensional 

replacements are applied: 

𝑥 =
𝑥∗

𝐿
, 𝑦 =

𝑦∗

𝐿
, 𝑡 =

𝛼𝑊 𝑡∗

𝐿2  𝑢 =
𝑢∗𝐿

𝛼𝑊
, 𝑣 =

𝑣∗𝐿

𝛼𝑊
, 𝑝 =

𝑝∗𝐿2

𝜌𝑊𝛼𝑊
2 ,

𝑇 =
𝑇∗−𝑇𝐶

𝑇𝐻−𝑇𝐶
,    𝑃𝑟 =

𝜇𝑊

𝜌𝑊 𝛼𝑊
,   𝑅𝑎 =

𝑔(𝛽𝑇)𝑊 𝜌𝑊𝐿3(𝑇𝐻−𝑇𝐶)

𝜇𝑊 𝛼𝑊
 

}     (12) 

Substituting Eqs (5) and (12) into Eqs (1)–(4), yields the following dimensionless shape of the 

model equations 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,           (13) 

( )
 


 

−       
+ + = − + − + 

     

 





 

2 2
5 2

2 2

 
1 ,

 
W W

N F N F

u u u p u u
u v Pr

t x y x x y
    (14) 
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( )
( )

( )

 


  

−      




+ + = − + − + + 

      


 


  

2 2
5 2

2 2
1 ,

TW W N F

N F N F T W

v v v p v v
u v Pr PrRa T

t x y y x y
  

(15) 

𝜕𝑇

𝜕𝜏
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝛼𝑁𝐹

𝛼𝑊
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2),       (16) 

and subjected to the next initial/boundary conditions: 

• For t < 0; 

- u = v = p = T = 0, 

• For t ≥ 0; 

- at the top and bottom boundaries of the cavity and obstacle: u = v = 𝜕T/𝜕y = 0, 

- at the left and right boundaries of the obstacle: u = v = 𝜕T/𝜕x = 0, 

- at the left boundaries of the enclosure: u = v = 0, T = 1, 

- at the right boundaries of the enclosure: u = v = 0, T = 0.  

The motion of the nanofluid can be well described by the stream-function ψ that gained from the 

velocity components as below [11,28]: 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
.          (17) 

The relations in Eq (11) directs to the well-known Poisson's equation, for finding the stream-

function ψ [11,28], 

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 =
𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
.          (18) 

Because of the non-slip conditions at all the boundaries of the enclosure and obstacle, we set ψ = 0 

at all these boundaries when solving the Poisson’s equation (18). The results of ψ are obtained by 

solving the discretized version of Eq (18) using successive over relaxation (SOR) method with an 

appropriate accuracy after obtaining the results of the velocity components u and v. 

The variation of heat transfer of the nanofluid along the hot left side wall can be physically 

described using the local-Nusselt number (Nu) and averaged-Nusselt number (Nuavg) that are given 

below: 

𝑁𝑢 = −
𝜕𝑇

𝜕𝑥
|

𝑥=0
,          (19) 

𝑁𝑢avg = ∫ 𝑁𝑢 𝑑𝑦
1

0
.          (20) 

The thermophysical properties of H2O as a base fluid and Cu as nanoparticles are given in Table 1. 

Table 1. Thermophysical properties of H2O and Cu. 

Property Water (H2O) Copper (Cu) 

𝜌 [kg/m3] 997.1 8933 

Cp [J/kg.K] 4179 385 

𝛽T ×10-5 [1/K] 21 1.76 

k [W/m.K] 0.613 400 

𝛼 ×10-7 [m2/s] 1.47 1163.1 

Pr 6.2 - 
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3. Numerical procedure, stability, and validation 

3.1. Penalty-artificial compressibility technique 

Corresponding to the penalty-artificial compressibility technique (PACT) [28], we introduce the 

next penalty-artificial compressibility equation (PACE) instead of the continuity one (13), 

𝜕𝑝

𝜕𝑡
= −𝑐2 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) − 𝑏

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
),       (21) 

where the artificial compressibility parameter c and the penalty parameter b can be estimated form a 

stability restriction that obtained by applying the linearized Fourier stability analysis to the method of 

lines (MOL) finite difference scheme. 

3.2. Method of lines and stability analysis 

In order to apply the MOL, the space coordinates x and y of the physical domain and the governing 

equations (14)–(16) and the PACE (21) are discretized with M×M uniformly 2D mesh points where 

xk = xk-1 + δx, yl = yl-1 + δy, x0 = x0 = 0, xM = xM = 1, k, l = 1, 2, . . . , M and δx = δy = 1/M, where δx 

and δy are step size in x and y directions, respectively. Making a discretization using 2nd order central 

finite difference approximation to the derivatives of the dependent variables (u, v, p, T) with respect to 

spatial variables x and y in Eqs (14)–(16) and (21), as proposed in [28], yields a system of ordinary 

differential equations (ODEs) that can be easily solved using any time integrator technique. Here we 

used the 4th order Runge–Kutta method that built in Maple software with a time step δt as a time 

integrator. 

Following the same approach used in [28] to estimate the parameters b and c, produces the next 

stability restriction: 

𝛿𝑡[(𝛿𝑥)−2 + (𝛿𝑦)−2] [𝑐2𝛿𝑡 + 2𝑏 + 2𝑃𝑟(1 − 𝜑)−
5

2
𝜌𝑊

𝜌𝑁𝐹
] < 1.   (22) 

The strategy for estimating the parameters b and c is based on disregarding the convection terms 

the forward Euler explicit representation of Eqs (14)–(16) and (21); and applying the linearized von 

Neumann stability analysis [37]. 

Setting δ2 = ((δx)-2 + (δy)-2)-1 and presenting a mixture ratio χ as, 

𝜒 =
𝑐2𝛿𝑡

2[𝑏 + 𝑃𝑟(1−𝜑)−5/2 𝜌𝑊
𝜌𝑁𝐹

]
,         (23) 

yield the new formulation of the stability condition (22) as 

2𝛿𝑡

𝛿2 [𝑏 + 𝑃𝑟(1 − 𝜑)−
5

2
𝜌𝑊

𝜌𝑁𝐹
] (𝜒 + 1) < 1.      (24) 

Here, we propose a safety factor s, where 0 < s <1, to calculate a value of b form the inequality (24) 

as, 

𝑏 =
𝑠 𝛿2

2𝛿𝑡(𝜒+1)
− [𝑃𝑟(1 − 𝜑)−

5

2
𝜌𝑊

𝜌𝑁𝐹
].        (25) 
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Therefore, the value of c2 can be easily calculated from Eq (23) as,  

𝑐2 =
𝑠 𝛿2𝜒 

(𝛿𝑡)2(𝜒+1)
.          (26) 

For given values of mesh parameters, χ, s, Pr, φ, 𝜌W, 𝜌NF and a suitable small value of δt, we can 

calculate the of values of b and c2 needed for the stability of the numerical scheme. 

All results in the last section are calculated for s = 0.8 and χ = 1, mesh size of 40 × 40 points and 

time step δt = 10-5. The optimum value of the ratio χ is chosen up on calculating and analyzing the 

relative error at the continuity equation (13) for various values of χ varying from 10-4 to 104. These 

evaluations aren’t shown in this study  to avoid lengthening in the paper. The chosen mesh size is taken 

up on a forthcoming grid independence study. 

The steady state solution is obtained if the next condition is satisfied for all dependent variables. 

∑ |𝛩𝑘,𝑙
𝑚+1 − 𝛩𝑘,𝑙

𝑚 |𝑘,𝑙 < 10−5,        (27) 

where Θ refers to dependent variables u, v, T, p or ψ, while k, l and m represent step indices of x, y and 

t respectively. From the obtained results, we noticed that the condition (27) is satisfied for all 

considered cases at t = 0.5. Hence, we considered that the solution at this time represents the problem 

steady-state solution. 

3.3. Grid independence study 

For purpose of grid independency, the results have been obtained for three uniform meshes: G1: 

20 × 20, G2: 40 × 40 and G3: 50 × 50. The variable for which we test the grid independency is the 

steady state averaged Nusselt number Nuavg for Ra = 106, h = 0, 𝛽 = 0.1, φ = 0 and φ = 0.2. The results 

of grid independence study for the considered three meshes are shown in Table 2. 

Table 2. Grid independency for Ra = 106, h = 0, 𝛽 = 0.1, φ = 0 and φ = 0.2. 

Mesh M×M φ = 0 φ = 0.2 

Nuavg %Change Nuavg %Change 

G1 20×20 9.225 - 12.841 - 

G2 40×40 9.208 0.18 12.796 0.35 

G3 50×50 9.211 0.03 12.798 0.02 

Table 2 illustrates that the variation of Nuavg between the mesh G1 and the mesh G2 is 0.18% for 

φ = 0 and 0.35% for φ = 0.2, while the variation between the mesh G2 and the mesh G3 is about 0.03% 

for φ = 0 and 0.02% for φ = 0.2. Therefore, the mesh G2 was used as the mesh size along this 

investigation. 

3.4. Numerical code validation 

To validate the developed numerical technique and code, we obtained results for a non-nanofluid 

(non-NF) case (φ = 0) when the enclosure had no obstacle (h = 0) and filled with air (Pr = 0.7) and 

then compared these results with the benchmark findings in [38] obtained by De Vahl Davis and with 
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results of Mousa in [8]. This comparison, displayed in Table 3, illustrates that there are excellent 

agreements between the present results of the MOL-PACT and results obtained in [8,38]. The code of 

the numerical scheme was also validated by comparing the present results of Nuavg at steady state with 

the results obtained by Kahveci [39] for several values of 𝛽 and φ when h = 0, Pr = 6.2 and Ra = 105. 

This comparison, presented in Table 4, shows an excellent agreement between both results. Therefore, 

the current validations demonstrate the reliability of the numerical results of this work. A full 

comparison between the current results and corresponding results obtained by Kahveci [39] is 

displayed in Table 5. 

Table 3. A Comparison of steady state Nuavg of the current results with those of [8,38] 

when h = 0, φ = 0 and Pr = 0.7 for many values of Ra. 

Ra Present De Vahl Davis [38] Mousa [8] 

104 2.2444 2.243 2.2447 

105 4.5181 4.519 4.5209 

106 8.8054 8.800 8.8187 

Table 4. A Comparison of steady state Nuavg of the current results with results of Kahveci 

[39] when h=0, Pr = 6.2 and Ra = 105 for many values of 𝛽 and φ. 

𝛽 φ Present Kahveci [39] 

0.02 0.1 5.281 5.384 

0.2 5.756 5.937 

0.1 0.1 5.554 5.662 

0.2 6.339 6.537 

Table 5. A comparison for the steady state Nuavg between present results and results of Kahveci [39]. 

Ra 104 105 106 

φ 𝛽 Present Kahveci [39] Present Kahveci [39] Present Kahveci [39] 

0.1 0.02 2.498 2.553 5.281 5.384 10.458 10.656 

0.1 2.622 2.679 5.554 5.662 11.020 11.227 

0.2 0.02 2.680 2.776 5.756 5.937 11.582 11.921 

0.1 2.949 3.052 6.339 6.537 12.796 13.163 

4. Results and discussion 

In this section, we discuss the obtained results of MOL-PACT for simulating 2D transient and 

steady-state buoyancy convection flow and heat transfer inside a square cavity having an adiabatic 

rectangular obstacle and filled with Cu–H2O nanofluid of spherical shape nanoparticles. The results 

are illustrated by calculating temperature distribution, streamlines, local and averaged Nusselt number 

(Nuavg) for different values of the following parameters: Ra = (104, 105, 106), h = (0, 0.25, 0.5), 𝛽 = 

(0.02, 0.1) and φ = (0.1, 0.2). The simulation is done to analyse the impact of various parameters on 

the characteristics of the flow and heat transfer. The software that was used to execute the code is 

Maple v.2020. The 1-D figures of Nusselt number variations are plotted using Maple v.2020, while the 
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2-D figures of streamlines and temperature distributions are plotted using Surfer v.10. 

Firstly, we represent the time evolution of solution. In this part we will only show the time 

evolution of averaged Nusselt number from the transient state to the steady state of the nanofluid for 

various physical parameters. Then the variations in the streamlines and temperature distribution with 

respect to various physical parameters will be displayed after reaching the steady-state solution at t ≈ 0.5. 

Figures 2–5 illustrate the variations of the averaged-Nusselt number versus time for various values of 

the obstacle height, Rayleigh number, volume-fraction of copper nanoparticles and ratio of the 

nanolayer thickness to the original nanoparticle radius. These figures clearly show the progress of 

averaged-Nusselt number from the transient state to the steady state along the time. It is shown that, 

Nuavg is very significant close to t=0 because of the rapid growth in the temperature at the hot left side. 

Then Nuavg reduces as time propagates and move towards its steady state value at t ≈ 0.5. 

From Figures 2 and 3, We can be notice that the heat transfer inside the encloser improves as the 

value of Ra increases for non-NF case and nanofluid case as well. The impact of the increase of 

obstacle height on the heat transfer is inverse the impact of Ra value i.e., as the obstacle height 

increases, the heat transfer inside the encloser decreases. The impact of the volume-fraction of copper 

nanoparticles on the Nuavg and heat transfer is displayed in Figure 4. Here, we noticed two cases. The 

first one is when the obstacle height less than half of the enclosure side length i.e., h = 0, h = 0.25, 

while the second case is when the obstacle height greater than or equal half of the enclosure side length 

i.e., h = 0.5.  

 

Figure 2. Variations of Nuavg versus t for many values of h and Ra at φ=0 (non-NF). 

For the first case, the overall heat transfer improves as the copper nanoparticles volume-fraction 

increases while when the obstacle height greater than or equal half of the enclosure side length, the 

overall heat transfer decreases as the copper nanoparticles volume-fraction increases. Figure 5 

illustrates the impact of the fraction between the nanolayer thickness and the original solid particles 

radius on and heat transfer. From this figure, we can say that the increase in the ratio of the nanolayer-

thickness to the original nanoparticle radius followed by an increase in the overall heat transfer. 
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Figure 3. Variations of Nuavg versus t for many values of h and Ra at φ = 0.2 and 𝛽 = 0.1. 

 

Figure 4. Variations of Nuavg versus t for many values of h and φ at 𝛽 = 0.02 and Ra = 105. 

 

Figure 5. Variations of Nuavg versus t for many values of h and 𝛽 at φ = 0.2 and Ra = 105. 

Now, the behavior of the streamlines and temperature distribution will be presented and discussed 

for several values of the obstacle height, Ra, volume-fraction of nanoparticles and fraction between 

the nanolayer thickness and the original solid particles radius, but after reaching the steady state 

solution. Figures 6–9 illustrate the steady state streamlines and temperature distribution in the 

enclosure at different values of the physical parameters h, Ra, φ and 𝛽. 
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In Figures 6–9, the arrowed contour plots represent the behavior and direction of the flow 

streamlines while the coloured surface represents the distribution of nanofluid temperature  T. The 

coloured scale displays the temperature intensity inside the cavity. As displayed in these figures, the 

hot fluid climbs adjacent to the left side wall due to buoyancy forces till it gets the top side wall. Then 

it moves to right, toward the left cold side wall. Finally, the limit enforced by the bottom side wall 

pushes the fluid to change direction to left, collecting heat, when it gets the left side wall again. The 

fluid flow path is achieved as the cold fluid is dragged to the ascent flow along the hot side wall. This 

circulation, caused by buoyancy forces, is greatly affected by the height of the rectangular obstacle h. 

 

Figure 6. Streamlines and temperature distribution for many values of h and Ra at φ = 0 (non-NF). 

 

Figure 7. Streamlines and temperature distribution for many values of h and Ra at φ = 0.2 and 𝛽 = 0.1. 



20305 

AIMS Mathematics  Volume 7, Issue 11, 20292–20312. 

As h increases, the buoyancy forces increase and hence the speed of the flow circulation rises 

resulting in a strong flow circulation and a weak heat transfer. Also, the greater value of Rayleigh 

number implies more fluid circulation, and more heat will be added to the fluid to increase the 

nanofluid convection. Moreover, it can be noticed that as Ra increases, the thermal boundary layers 

become adjacent to each other causing an increase in temperature-gradients and heat transfer. As the 

nanoparticles volume-fraction φ increases, thermal-diffusion enhances and hence the isotherms 

become regularly parallel to the hot side wall. Also, the heat transfer in the cavity enhances as the 

value of φ increases. The effect of the fraction between the nanolayer thickness and the original solid 

particles radius on the flow and temperature distribution can be shown Figure 9. 

 

Figure 8. Streamlines and temperature distribution for many values of h and φ at 𝛽 = 0.1 and Ra = 105. 

It is known that the radius of the nanoparticles hasn’t a significant impact on the solid-like 

nanolayer. Therefore, the lower values of 𝛽 relate to the higher values of nanoparticles radius. From 

Figure 9, it can be noticed that the intensity of fluid movement takes on lower values as the 

nanoparticles radius increases. It is worth to mention that the effect of 𝛽 on temperature distribution is 

very small and isn’t noticed in Figure 9. 

To examine the impact of the obstacle height, Rayleigh number, nanoparticles volume-fraction 

and fraction between the nanolayer thickness and the original solid particles radius on the rate of heat 

transfer inside the cavity, it is essential to visualize the local-Nusselt number along the left hot side 

wall. 
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Figure 9. Streamlines and temperature distribution for many values of h and 𝛽 at φ=0.2 and Ra=105. 

Figures 10–13 show the variations of steady state Nu at several values of physical parameters h, 

Ra, φ and 𝛽. As displayed in Figures 10 and 11, the strength of the fluid circulation increases because 

of increasing the buoyancy forces due to the increase of the value of Ra. This causes a growth in the 

local-Nusselt number Nu along the hot side wall. Because of a strong circulation causing by high 

thermal energy transport from the hot side to the nanofluid near its surface, therefore the local-Nusselt 

number takes on high values with the increase of solid-volume fraction. In fact, high rates of thermal-

conductivity are supplemented by high rates of thermal-diffusivity. As the value of thermal-diffusivity 

increases, the temperature-gradient decreases and accordingly the thermal boundary-layer thickness 

increases. Because the influence of the temperature-gradient due to the existence of nanoparticles is 

much less significant than the thermal-conductivity ratio, an increasing in the Nusselt number is 

noticed with the increase in the nanoparticles solid-volume fraction. The impact of increasing obstacle 

height on the local-Nusselt number is inverse the impact of Rayleigh number values i.e., the local-

Nusselt number inside the encloser decreases as the obstacle height increases, while it increases with 

the increase of Rayleigh number. 

 

Figure 10. Variations of Nu versus y for many values of h and Ra at φ = 0 (non-NF). 
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Figure 11. Variations of Nu versus y for many values of h and Ra at φ = 0.2 and 𝛽 = 0.1. 

 

Figure 12. Variations of Nu versus y for many values of h and φ at 𝛽 = 0.1 and Ra = 105. 

 

Figure 13. Variations of Nu versus y for many values of h and 𝛽 at φ = 0.2 and Ra = 105. 

The effect of the nanoparticles volume-fraction φ on the local-Nusselt number is shown in Figure 12. 

Generally, because of the impact of the temperature gradient caused by the existence of the 

nanoparticles is less significant than the effect of thermal conductivity, an increase in the Nu value will 

be noticed as the value of φ increased. Here, we have two cases. The first case is when the obstacle 

height less than half of the enclosure side length i.e., h = 0, h = 0.25, while the second case is when the 
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obstacle height greater than or equal half of the enclosure side length i.e., h = 0.5.  For h = 0, h = 0.25, 

the local-Nusselt number increases as the volume-fraction of nanoparticles increases along all the left 

side wall. But for h = 0.5, the local-Nusselt number decreases as the nanoparticles volume-fraction 

increases at the lower portion of the left side wall until y ≈ 0.41 and then it rises again by the increase 

of nanoparticles volume-fraction after y ≈ 0.41. This explains that the overall heat transfer inside the 

cavity is highly dependent on the obstacle height. Figure 13 illustrates the effect of radius of 

nanoparticles on the local Nusselt number. From this figure, we can notice that the value of Nu 

enhances with reducing the radius of nanoparticles. This improvement in the local-heat transfer can be 

mainly ascribed to the increasing of the effective nanolayer volume-fraction. It can be observed that 

the local-Nusselt number shows a notable enhancement with reducing radius of nanoparticle. This 

enhancement in local heat transfer can be ascribed mainly to the increase of nanolayer volume-fraction. 

The similar dependency of the local and averaged heat transfer rates on the Ra , volume-fraction and 

radius of nanoparticles was also noted in [39–41]. 

The amount of the heat transfer for all the considered cases is summarized in Table 6, which 

displays the values of the averaged-Nusselt number in the steady-state for all values of the considered 

parameters. The values of the averaged heat transfer rates were ordered from the lowest to the highest. 

As can be noticed from the values presented in Table 6, Nuavg doesn’t vary considerably with the 

increasing the value of φ for low values of Ra, due to weak convection. While, for higher values of the 

Ra, there is a notable augmentation in Nuavg with rising the value of φ. Also, for higher values of the 

Ra, there is a remarkable augmentation in Nuavg with reducing the radius of nanoparticles. While the 

effect of nanoparticles radius on the averaged heat transfer is insignificant for low values of Ra. The 

impact of the obstacle height on the averaged heat transfer rate may be demonstrated by comparing 

the values of Nuavg in Table 6 for various values of h. The averaged-Nusselt number exposes a 

decreasing trend with the increasing of obstacle height. The minimum value of the averaged heat 

transfer rate is about 0.88 and occurs for the non-NF case with h = 0.5 and Ra = 104. While the 

maximum rate of the averaged heat transfer is about 12.796 and occurs for the nanofluid case with 

h = 0, 𝛽 = 0.1, φ = 0.2 and Ra = 106. 

Table 6. Steady state averaged-Nusselt number (Nuavg) for many values of h, Ra, φ and 𝛽. 

Ra 104 105 106 

φ 𝛽 / h 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5 

0 - 2.273 1.752 0.880 4.718 4.279 3.136 9.208 8.525 6.938 

0.1 0.02 2.498 1.834 0.966 5.281 4.683 3.144 10.458 9.719 7.820 

0.1 2.622 1.918 1.022 5.554 4.907 3.251 11.020 10.246 8.228 

0.2 0.02 2.680 1.950 1.166 5.756 4.905 2.898 11.582 10.765 8.501 

0.1 2.949 2.160 1.330 6.339 5.341 3.060 12.796 11.888 9.334 

Some cases considered in this work was previously examined by Kahveci [39]. Table 5 shows a 

comparison between the values of Nuavg obtained by Kahveci [39] for Cu–H2O nanofluid and the 

present results of steady state Nuavg for h = 0. The comparison reveals that there is a reasonably 

excellent agreement between the present results and results in [39] for the same corresponding cases. 

Differences between the current results and the results of Kahveci [39] can be attributed to the 

difference in the accuracy of the numerical technique used and also to the difference in the accuracy 

of the integration method used in calculating the averaged-Nusselt number. 
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5. Conclusions 

In this study, we propose a new application of the MOL-PACT to simulate transient and steady 

state buoyancy convective flow in a square cavity filled by Cu–H2O nanofluid and contains a 

rectangular adiabatic obstacle. Expressions of the artificial compressibility and penalty parameters that 

are convenient with the derived stability condition are obtained. The consideration of several Rayleigh 

number, nanoparticles’ radius, and volume-fraction with three different heights of the obstacle makes 

the current study more convincing from engineering and applied physics point of views. The time-

evolution of heat transfer rate from transient state to steady one was examined in detail for several 

governing parameters. 

It can be summarized that those nanoparticles make a considerably enhancement in the heat 

transfer rate inside the enclosure. It can be also summarized that the manner of variation in the overall 

rate of heat transfer is almost linear dependent on with the nanoparticles volume-fraction. The obtained 

results illustrate that the rate of heat transfer decreases with a rising of the height of the rectangular 

obstacle. It is worth to mention that the impact of the nanoparticles volume-fraction on the heat transfer 

rate is related to the obstacle height. There is a remarkable increasing in rate of heat transfer with 

reducing the radius of nanoparticles for relatively high values of Rayleigh number, while this effect 

becomes insignificant for low values of the Rayleigh number. The Minimum rate of heat transfer 

occurs when φ = 0, h = 0.5 and Ra = 104, while the maximum rate occurs when φ = 0.2, 𝛽 = 0.1, h = 0, 

and Ra = 106. The reasonably good agreement between the current results and the related ones found 

in the literature, demonstrate accuracy and reliability of this work. 

The novelty of the current investigation lies in the fact that the obtained results are new and may 

be helpful for the experimentalists to inspect the efficiency of the buoyancy convection inside square 

cavities having adiabatic obstacles and filled with a nanofluid for a purpose of increasing the overall 

heat transfer rate. Moreover, the proposed numerical technique could offer CFD scientists avenues of 

research into its development to simulate such models. It's worth to give MOL-PACT more interest to 

handle hybrid nanofluids with various thermal conditions around the cavity boundaries. 
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