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Abstract: In this study, we have simulated transient and steady state free convection flow and heat
transfer inside a square enclosure filled with a copper-water nanofluid of spherical shape nanoparticles
following Tiwari-Das model. The cavity containing an insulated rectangular obstacle of height ranging
from 0% to 50% of the cavity side-length. The vertical sides of the enclosure are kept at different
temperatures, while the flat sides are assumed to be adiabatic as the obstacle. The combined method
of lines/penalty-artificial compressibility technique (MOL-PACT) has been applied to solve the
dimensional time dependent mathematical model after converting it into a non-dimensional structure.
The combined method of lines/penalty-artificial compressibility technique is recently successfully
applied to simulate free convection of MHD fluid in square enclosure with a localized heating. The
extension of this promising technique for studying heat transfer of nanofluids is one of the objectives
of this paper. Another objective of the study is to inspect the impact of several model parameters such
as, the obstacle height, nanoparticles volume-fraction, nanoparticles radius and Rayleigh number on
streamlines, temperature distribution and Nusselt number as an expression of heat transfer inside the
enclosure. The results have been discussed and shown graphically. Comparisons with former results
for related cases in the literature are made and reasonably good agreements are observed.
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Abbreviations:
Nomenclature . density [kg/m?]
G: gravitational acceleration [m/s?] /¢ dynamic viscosity [kg/m.s]
Ra: Rayleigh number a. thermal diffusivity [m?/s]
Pr: Prandtl number k: thermal conductivity [W/m.K]
Nu: Nusselt number L4 thermal expansion coefficient [1/K]
L: enclosure side-length [m] @: nanoparticles volume fraction
h: obstacle height [m] L ratio of the nanolayer thickness to the
d: obstacle width [m] original particle radius
x, y: Cartesian coordinates [m] w: stream function [m?%/s]
t: time [s] Subscripts
p: fluid pressure [N/m?] H: hot side
T: temperature [K] C: cold side
u: velocity component in the x direction [m/s] avg: averaged
v: velocity component in the y direction [m/s] NF': nanofluid
n: nanoparticles shape factor W: Water
b: penalty parameter Cu: Copper
¢. compressibility parameter Superscript
Cp: specific heat [J/kg.K] *: dimensional variable
. mixture ratio

1. Introduction

The study of heat transfer of buoyancy convection flow in several geometrical cavities has been
widely investigated using numerical; analytical; and experimental techniques because of the extensive
variety of their requests in engineering and technology such as safety and operation of nuclear reactor,
electronic devices cooling systems, solar-thermal collectors, micro-electro-mechanical systems, and
so on. Enhancing the heat transfer performance in these systems is an important issue in terms of the
proper functionality of these systems and of energy saving as well. As known, the heat transfer of
common conventional fluids such as water, oil, and ethylene glycol of low thermal conductivities that
can be considered as a fundamental limitation of using such fluids in high-efficiency heat transfer
systems because it is very challenging to be content with the representation of such systems [1]. To
defeat this problem, an innovative approach to improve the heat transfer, is achieved by applying
nanoparticles to the base fluid (nanofluid). The term nanofluid (NF) refers to a mixture of liquid and
solid that involves of a base-liquid and nanoparticles of size <100 nano meter. Pure metallic particles
such as Cu, Fe, Al and Ag can be used as nanoparticles. Carbon nanotubes and ceramic particles like
Si02, TiO2, CuO, and Al2Os3 are used as nanoparticles as well. The benefit of these nanoparticles lies
in that they improve the anomalous growth in effective thermal conductivity (ETC) of the fluid. In [2],
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It is noticed that the ETC of the ethylene glycol increases up to 40% by adding copper nanoparticles
of approximately mean diameter <10 nano meter to the base ethylene glycol. In [3], Choi et al.
concluded that the suspension of nanotubes and oil anomalously enhances effective thermal
conductivity of the oil. In [4], Das et al. examined the enhancement in the effective thermal
conductivity for the nanofluids with H2O as a base fluid and CuO or Al2Os3 particles as suspension
nanoparticles rather than using a base fluid only. In [5], Putra et al. performed an experiment
investigation to investigate the heat transfer caused by natural convection in a cylindrical enclosure
filled with Cu—H20, and Al-H20 nanofluids. They determined that the obvious coalescence of
nanoparticles heat transfer, caused by natural convection, is occurred for high Rayleigh number (Ra).

Recently, many researchers analyzed heat transfer of nanofluids caused by natural convection
inside cavities of several shapes such as rectangular [6—9], trapezoidal [10—13], triangular [14—-17] and
unusual shapes [18-22]. In most of the investigations have been done, the effects of different
parameters on the nanofluids heat transfer in the enclosures are analyzed. In [18], Armaghani et al.
investigated the effects of Ra and the aspect ratio of a T-shaped cavity on the free convection and
entropy of Al203—-H20 nanofluid. They assumed the flow is laminar and the nanoparticles of spherical
shapes. They deduced that the values of cavity aspect ratio and Ra have a strong effect on the heat
transfer inside the cavity. In [19], Toghraie et al. examined the impact of porous ribs for L-shaped
microchannels by considering the properties of the porous media for several Reynolds numbers. The
free convection of CuO—-H20 nanofluid inside a corrugated cavity containing a heated obstacle was
examined in [20]. The authors applied the Koo-Kleinstreuer Li model to transact with the fluid ETC
and viscosity. The effect of parallel fins on a nanofluid of water based carbon nanotubes of single wall
was studied by Haq et al. [21]. They determined that the rate of heat transfer increased by expanding
the length of the heated fin and reduces by increasing the value of Ra and solid volume-fraction of
nanoparticles. In [22], Eshaghi et al. investigated the double diffusive natural convection of a hybrid
Cu—Al203—H20 nanofluid within an H-shaped enclosure having an obstacle at the top side. They
studied the impact of Rayleigh and Lewis numbers and buoyancy ratio on the generation of entropy
and heat transfer. Other related studies are given in [23—27]. From the literature, one can observe that
there are little investigations that consider the impact of an insulated obstacle wall within square
cavities.

Recently, the combined method of lines and penalty-artificial compressibility technique (MOL-
PACT) is proposed and successfully applied to simulate the MHD convective fluid inside a square
enclosure due to localized heating of the bottom side [28]. In this study, we will extend the application
of this promising technique to simulate the transient and steady-state heat transfer of a nanofluid
subjected to Tiwari-Das model inside a square enclosure having a rectangular insulated obstacle. The
optimum values of artificial compressibility and penalty parameters of the numerical technique are
estimated using a developed stability restriction. The nanofluid considered in this study is a copper—
water mixture with spherical shape nanoparticles. We will examine the impact of thermal and physical
parameters like Ra, obstacle height, volume-fraction of nanoparticles, ratio between the thickness of
nanolayer and the radius of the original solid particles on streamlines, temperature, and heat transfer.
The results of this study can be provided useful data that may be used to optimize design and enhance
thermal performance of energy systems. The validation of the MOL-PACT results is confirmed by
comparing them for special cases with other results presented in the literature.

The structure of the remaining sections are as follows: in the following section, the physical
description of the physical and mathematical model is revealed. In Section 3, the numerical procedure
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and code validation are given. Section 4 uncovers the investigation results and discussion. The last
section is for summarizing of the obtained results and conclusions of this work.

2. Problem description and mathematical model

Consider the motion of an unsteady, laminar, viscous 2D Cu—H20 nanofluid in a square enclosure
of side-length L. We considered that the x-axis is evaluated along the bottom side wall of the enclosure
and the y-axis is evaluated along the left side wall. The schematic diagram of the physical and
coordinate are displayed in Figure 1. The bottom and top side walls are considered adiabatic and the
nanofluid are isothermally cooled and heated by the right and left vertical side walls of the enclosure
at constant temperatures of 7c¢ and Ty, respectively where 7c¢ < Tu. There is an adiabatic rectangular
obstacle that positioned in the middle of the bottom side. The width and height of the obstacle are
assigned as d and /4, respectively. In this investigation, we consider one case for d and three cases for
has:d=02Land h=0,0.25 L, 0.5 L. In the current study, we have chosen water (H20) as a base
fluid whereas copper (Cu) as nanoparticles. The shapes of the nanoparticles are chosen as spherical
ones. The choice of water as a base fluid are considered because of its practical uses in several fields
such as cooling of many reactors, solar-thermal collector, etc. This problem and geometry can be
happened in many technical applications like solar-collectors, heat-exchangers, and cooling of
electronic apparatus and chips that use nanofluids. The adiabatic obstacle may be considered as a
model of heat transfer modifier device or controller. In heat exchangers, adiabatic obstacle can be a
prototypical of a baffle that manages the process of heat transport and flow rate. In case electronic
chips cooling, an adiabatic obstacle may be used for decreasing or increasing the heat transfer from
special parts of hot chips.

#
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Figure 1. Schematic diagram of the physical model.

It is considered that a thermal balance occurs between the water and copper nanoparticles, and
there is no slip between the two components of the nanofluid. Because of the small diameter of
nanoparticles, they are simply fluidized. We considered the Cu—H20 nanofluid as a water including
copper nanoparticles as species of water. The physical parameters of the nanofluid are assumed to be

AIMS Mathematics Volume 7, Issue 11, 20292-20312.



20296

fixed except the change of nanofluid density that appears in the mass force portion of the equation of
momentum, that is projected by the Boussinesq-approximation. The acceleration due to gravity acts
out in the downward direction of y axis. All the enclosure walls are rigid with no-slip. Essentially, this
kind of cavities loaded with such nanofluids is developed as a solar-thermal collector. Based on the
aforementioned statements, the fundamental governing equations are presented in a dimensional form
as [10,29]:

ou*  ov*
ax* = Ay* ! (1)
ou* ou* ou* 1 dp* o%u*  o%u*
+u*—+v*—:__i “NF( d 2)' (2)
at* ox* ay* PNF Ox*  pyfp \Ox* ay*
ov” « OV7 « OV" 1 9p* | unr (azv* 62”*) (pBTINF *
U v o= o T* —T, 3
at* + ax* + ay* PNF 0Y* + PNF \0x*2 + dy*2 + ONF g( C)' ( )
aT* aT* arT* k a%r*  a%r*
U+ v — = ( + ) (4)
at* ax* dy*  (pCp)nr \0x*%2 ~ 0y*2

The meanings and dimensions of symbols describe nanofluid physical and thermal properties,
that appear in equations and forthcoming formulas, are listed in the nomenclature. These properties
like nanofluid density, viscosity, thermal diffusivity, heat capacity, thermal conductivity, and
coefficient of thermal expansion. The next expressions are employed to compute the physical and
thermal properties of Cu—H20 nanofluid:

The following formula that presented by Brinkman [30] was used as an expression for the
nanofluid effective viscosity zvr:

lwn

— Hw 3
#NF (1_‘,0) ) (5)

where zz7 1s the viscosity of base fluid (water) and ¢ is the copper nanoparticles volume-fraction. The
effective viscosity of many nanofluids in the different temperature ranges are experimentally
investigated and measured by many researchers. The results of these investigations demonstrated
reasonably great agreement with the Brinkman theory [30]. Respectively, the nanofluid effective-
density, thermal-diffusivity, heat-capacitance and the coefficient of thermal-expansion are provided
in [10,29,31] as:

Pyr =9 Pe,+(1=0) py s (6)

aNF = G ™

(pCp),. =9 (PCP), +(1=0)(pCp), (8)
(PBr) s =9 (PB;)c, +(1=0)(PB;), ©)

Concerning the ETC of nanofluid knr/kw, there are many models in nanofluids [32,33]. In [33],
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Maxwell informed that nanofluid ETC depends on the base liquid thermal-conductivity and solid
particles volume-fraction and shape. He also concluded that the ETC of spherical type nanoparticles
raises as the nanoparticles volume-fraction raise. In addition to the influence of the volume-fraction of
the solid particles on the nanofluid thermal-conductivity, it is also affected by the shape of
nanoparticles for non-spherical particles. One of the famous models of the ETC, of nanofluids with
non-spherical particles, that proposed by Hamilton and Crosser [34] is given below

kw  lkcy+(n—Dky—(kcu—kw)el

where 7 is the nanoparticles shape-factor of. The shape factor takes values ranging from 0.5 to 6.0. For
example, n = 3 for spherical shape particles while n = 4.9 for cylindrical shape particles [35]. Because
of nanofluids may comprise of solid nanoparticles, a bulk liquid and solid-like nanolayers, Yu and
Choi [36] suggested an alternative formula for determining the ETC of nanofluids of spherical shapes
solid particles as:

knr _ [kcut+2kw+2(1+8)3 (kcu—kw) @] an
kw [keu+2ky—1+B)3 (kcu—kw) e’

where the embedding parameter [ is the fraction between the nanolayer thickness and the original
solid particles radius. This model gives a reasonably good results when contrasted with experimental
results in the literature for nanoparticles having diameters <10 nano meter [36]. We used this model to
characterize the ETC of the considered nanofluid in this study.
The appropriate initial/boundary conditions for the model are specified below:
*Fort < 0;
- u=VI=pt=T"=0,
* For t* > 0;
- at the top and bottom boundaries of the cavity and obstacle: u* =v* = JI'/dy" = 0,
- at the left and right boundaries of the obstacle: u™ = v* = JI'/dk" = 0,
- at the left boundaries of the enclosure: u* =v* =0, T" = T#,
- at the right boundaries of the enclosure: u* =v* =0, T" = Tc.
To nondimensionalize the considered model equations (1)—(4), the following non-dimensional
replacements are applied:

x* y* ay t* u*L v*L p*L?
x=_,y:_;t: 2 u= V= ] = 2
L L L aw aw pWaW (12)
T*-T ( L3(Ty-T
_ ¢ pr= “w ’ Ra:gﬁT)WPW (Ty—=Tc¢)
Ty-Tc pw aw uw aw

Substituting Eqs (5) and (12) into Eqgs (1)—(4), yields the following dimensionless shape of the
model equations

Ju Ov
a'i‘a = 0, (13)
2 2
ou, o4, Va—le—p—Wa—"+Pz(1—¢)‘5/2 pu |[Ou, Tul (14)
ot ox 0y  p,0x P )\ OX  0F
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) 2 2
Q—I—IJ@/—F V@/:_p_Wﬁ_p_i_PI(l_(p)W[pW ](8 V+a V]-}-Pl”f?a(ﬂr)”: 7, (15)

ot ox oy Pyr oy Pyr ox’ 8}; ('BT)W
O L T 4 0T _ ane (0T | 0°T
E+u£+va_ aw (6x2+6y2)' (16)
and subjected to the next initial/boundary conditions:
*Fort<0;
- u=v=p=T=0,
eFort>0;

- at the top and bottom boundaries of the cavity and obstacle: u = v = JT/dy = 0,
- at the left and right boundaries of the obstacle: u = v = JT/dx = 0,
- at the left boundaries of the enclosure: u =v=0,T=1,
- at the right boundaries of the enclosure: u =v =0, T=0.
The motion of the nanofluid can be well described by the stream-function y that gained from the
velocity components as below [11,28]:
%, _
u=2%p=-2 17)
The relations in Eq (11) directs to the well-known Poisson's equation, for finding the stream-
function y [11,28],
0% 0 _ou_ov
ax2 = ay?2 a8y ox (18)
Because of the non-slip conditions at all the boundaries of the enclosure and obstacle, we set = 0
at all these boundaries when solving the Poisson’s equation (18). The results of y are obtained by
solving the discretized version of Eq (18) using successive over relaxation (SOR) method with an
appropriate accuracy after obtaining the results of the velocity components u and v.
The variation of heat transfer of the nanofluid along the hot left side wall can be physically
described using the local-Nusselt number (Nu) and averaged-Nusselt number (Nuavg) that are given
below:

_or

Nu =
0x

(19)

x=0'
1
Nugyy = [, Nu dy. (20)

The thermophysical properties of H2O as a base fluid and Cu as nanoparticles are given in Table 1.

Table 1. Thermophysical properties of H20O and Cu.

Property Water (H20) Copper (Cu)
2 [kg/m?] 997.1 8933

Cp [J/kg K] 4179 385
L£rx107 [1/K] 21 1.76

k [W/m.K] 0.613 400

ax107 [m?/s] 1.47 1163.1

Pr 6.2 -
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3. Numerical procedure, stability, and validation
3.1. Penalty-artificial compressibility technique

Corresponding to the penalty-artificial compressibility technique (PACT) [28], we introduce the
next penalty-artificial compressibility equation (PACE) instead of the continuity one (13),

B _r (2 2) 2 (2 o)
ac ¢ 6x+6y bat 6x+6y' 21
where the artificial compressibility parameter ¢ and the penalty parameter b can be estimated form a

stability restriction that obtained by applying the linearized Fourier stability analysis to the method of
lines (MOL) finite difference scheme.

3.2. Method of lines and stability analysis

In order to apply the MOL, the space coordinates x and y of the physical domain and the governing
equations (14)—(16) and the PACE (21) are discretized with M*M uniformly 2D mesh points where
Xk=xr1+tox,yr=yr1+oy,xo =x0 =0, xv=xu=1,k [=1,2,...,Mand ox = oy = 1/M, where ox
and Jy are step size in x and y directions, respectively. Making a discretization using 2"¢ order central
finite difference approximation to the derivatives of the dependent variables (u, v, p, T) with respect to
spatial variables x and y in Eqgs (14)—(16) and (21), as proposed in [28], yields a system of ordinary
differential equations (ODEs) that can be easily solved using any time integrator technique. Here we
used the 4™ order Runge—Kutta method that built in Maple software with a time step J¢ as a time
integrator.

Following the same approach used in [28] to estimate the parameters b and ¢, produces the next
stability restriction:

5E[(8x)72 + (8y) 2] |26t + 2b + 2Pr(1 — ¢) 2 2], 22)

The strategy for estimating the parameters b and c is based on disregarding the convection terms
the forward Euler explicit representation of Eqs (14)—(16) and (21); and applying the linearized von
Neumann stability analysis [37].

Setting > = ((dx)2 + (6y)?)"! and presenting a mixture ratio y as,

c?st
= , (23)
—p)-5/2PW
Z[b + Pr(1—¢) ONF
yield the new formulation of the stability condition (22) as
5
20t [b +Pr(1—¢)2 p—W] (r+1)<1. (24)
82 PNF

Here, we propose a safety factor s, where 0 < s <1, to calculate a value of b form the inequality (24)
as,

_ 587
T 26t(x+1)

~[Pra-o) Lu] (25)
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Therefore, the value of ¢? can be easily calculated from Eq (23) as,

2 sé&%y

T (8D2(x+1) (26)

For given values of mesh parameters, y, s, Pr, ¢, pw, pnr and a suitable small value of d¢, we can
calculate the of values of b and ¢? needed for the stability of the numerical scheme.

All results in the last section are calculated for s = 0.8 and y = 1, mesh size of 40 x 40 points and
time step ¢ = 10°. The optimum value of the ratio y is chosen up on calculating and analyzing the
relative error at the continuity equation (13) for various values of y varying from 10 to 10*. These
evaluations aren’t shown in this study to avoid lengthening in the paper. The chosen mesh size is taken
up on a forthcoming grid independence study.

The steady state solution is obtained if the next condition is satisfied for all dependent variables.

Yei|omtt — o] < 1075, (27)

where O refers to dependent variables u, v, T, p or y, while k, [ and m represent step indices of x, y and
t respectively. From the obtained results, we noticed that the condition (27) is satisfied for all
considered cases at t = 0.5. Hence, we considered that the solution at this time represents the problem
steady-state solution.

3.3. Grid independence study

For purpose of grid independency, the results have been obtained for three uniform meshes: G1:
20 x 20, G2: 40 x 40 and G3: 50 x 50. The variable for which we test the grid independency is the
steady state averaged Nusselt number Nuavg for Ra = 10°, 2=0, £=0.1, 9 = 0 and ¢ = 0.2. The results
of grid independence study for the considered three meshes are shown in Table 2.

Table 2. Grid independency for Ra = 10%, h=0, £=0.1,p =0 and ¢ = 0.2.

Mesh  MxM p=0 p=0.2
Nuavg %Change  Nuavg %Change
Gl 20%20 9.225 - 12.841 -
G2 40x40 9.208 0.18 12.796 0.35
G3 50%50 9.211 0.03 12.798 0.02

Table 2 illustrates that the variation of Nuavg between the mesh G1 and the mesh G2 is 0.18% for
@ =0and 0.35% for ¢ = 0.2, while the variation between the mesh G2 and the mesh G3 is about 0.03%
for ¢ = 0 and 0.02% for ¢ = 0.2. Therefore, the mesh G2 was used as the mesh size along this
investigation.

3.4. Numerical code validation

To validate the developed numerical technique and code, we obtained results for a non-nanofluid
(non-NF) case (¢ = 0) when the enclosure had no obstacle (4 = 0) and filled with air (Pr = 0.7) and
then compared these results with the benchmark findings in [38] obtained by De Vahl Davis and with
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results of Mousa in [8]. This comparison, displayed in Table 3, illustrates that there are excellent
agreements between the present results of the MOL-PACT and results obtained in [8,38]. The code of
the numerical scheme was also validated by comparing the present results of Nuavg at steady state with
the results obtained by Kahveci [39] for several values of £and ¢ when h =0, Pr = 6.2 and Ra = 10°.
This comparison, presented in Table 4, shows an excellent agreement between both results. Therefore,
the current validations demonstrate the reliability of the numerical results of this work. A full
comparison between the current results and corresponding results obtained by Kahveci [39] is
displayed in Table 5.

Table 3. A Comparison of steady state Nuavg of the current results with those of [8,38]
when 2 =0, ¢ =0 and Pr = 0.7 for many values of Ra.

Ra Present De Vahl Davis [38] Mousa [8]
10* 2.2444 2.243 2.2447
10 4.5181 4.519 4.5209
10° 8.8054 8.800 8.8187

Table 4. A Comparison of steady state Nuavg of the current results with results of Kahveci
[39] when h=0, Pr = 6.2 and Ra = 10° for many values of £ and ¢.

/4 ® Present Kahveci [39]
0.02 0.1 5.281 5.384

0.2 5.756 5.937
0.1 0.1 5.554 5.662

0.2 6.339 6.537

Table 5. A comparison for the steady state Nuavg between present results and results of Kahveci [39].

Ra 10* 10° 10°
® /4 Present Kahveci [39] Present Kahveci [39] Present Kahveci [39]
0.1 0.02 2.498 2.553 5281  5.384 10.458  10.656
0.1 2622 2.679 5.554  5.662 11.020 11.227
0.2 0.02 2.680 2.776 5.756  5.937 11.582  11.921
0.1 2949 3.052 6.339  6.537 12.796  13.163

4. Results and discussion

In this section, we discuss the obtained results of MOL-PACT for simulating 2D transient and
steady-state buoyancy convection flow and heat transfer inside a square cavity having an adiabatic
rectangular obstacle and filled with Cu—H20 nanofluid of spherical shape nanoparticles. The results
are illustrated by calculating temperature distribution, streamlines, local and averaged Nusselt number
(Nuavg) for different values of the following parameters: Ra = (10%, 10°, 10°), # = (0, 0.25, 0.5), £ =
(0.02, 0.1) and ¢ = (0.1, 0.2). The simulation is done to analyse the impact of various parameters on
the characteristics of the flow and heat transfer. The software that was used to execute the code is
Maple v.2020. The 1-D figures of Nusselt number variations are plotted using Maple v.2020, while the
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2-D figures of streamlines and temperature distributions are plotted using Surfer v.10.

Firstly, we represent the time evolution of solution. In this part we will only show the time
evolution of averaged Nusselt number from the transient state to the steady state of the nanofluid for
various physical parameters. Then the variations in the streamlines and temperature distribution with
respect to various physical parameters will be displayed after reaching the steady-state solution at t = 0.5.
Figures 2-5 illustrate the variations of the averaged-Nusselt number versus time for various values of
the obstacle height, Rayleigh number, volume-fraction of copper nanoparticles and ratio of the
nanolayer thickness to the original nanoparticle radius. These figures clearly show the progress of
averaged-Nusselt number from the transient state to the steady state along the time. It is shown that,
Nuavg 18 very significant close to =0 because of the rapid growth in the temperature at the hot left side.
Then Nuavg reduces as time propagates and move towards its steady state value at ¢ = 0.5.

From Figures 2 and 3, We can be notice that the heat transfer inside the encloser improves as the
value of Ra increases for non-NF case and nanofluid case as well. The impact of the increase of
obstacle height on the heat transfer is inverse the impact of Ra value i.e., as the obstacle height
increases, the heat transfer inside the encloser decreases. The impact of the volume-fraction of copper
nanoparticles on the Nuavg and heat transfer is displayed in Figure 4. Here, we noticed two cases. The
first one is when the obstacle height less than half of the enclosure side length i.e., 2 = 0, A = 0.25,
while the second case is when the obstacle height greater than or equal half of the enclosure side length
ie., h=0.5.

Figure 2. Variations of Nuavg versus ¢ for many values of 4 and Ra at 9=0 (non-NF).

For the first case, the overall heat transfer improves as the copper nanoparticles volume-fraction
increases while when the obstacle height greater than or equal half of the enclosure side length, the
overall heat transfer decreases as the copper nanoparticles volume-fraction increases. Figure 5
illustrates the impact of the fraction between the nanolayer thickness and the original solid particles
radius on and heat transfer. From this figure, we can say that the increase in the ratio of the nanolayer-
thickness to the original nanoparticle radius followed by an increase in the overall heat transfer.
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Figure 4. Variations of Nuavg versus ¢ for many values of 4 and ¢ at £= 0.02 and Ra = 10°.
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Figure 5. Variations of Nuavg versus ¢ for many values of 4 and fat ¢ = 0.2 and Ra = 10°.

Now, the behavior of the streamlines and temperature distribution will be presented and discussed

for several values of the obstacle height, Ra, volume-fraction of nanoparticles and fraction between

the nanolayer thickness and the original solid particles radius, but after reaching the steady state
solution. Figures 6-9 illustrate the steady state streamlines and temperature distribution in the

enclosure at different values of the physical parameters 4, Ra, ¢ and /.
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In Figures 6-9, the arrowed contour plots represent the behavior and direction of the flow
streamlines while the coloured surface represents the distribution of nanofluid temperature 7. The
coloured scale displays the temperature intensity inside the cavity. As displayed in these figures, the
hot fluid climbs adjacent to the left side wall due to buoyancy forces till it gets the top side wall. Then
it moves to right, toward the left cold side wall. Finally, the limit enforced by the bottom side wall
pushes the fluid to change direction to left, collecting heat, when it gets the left side wall again. The
fluid flow path is achieved as the cold fluid is dragged to the ascent flow along the hot side wall. This
circulation, caused by buoyancy forces, is greatly affected by the height of the rectangular obstacle 4.

Ra=10*

Ra=10°

Ra=10°

Ra=10*

Ra=10°

Ra=108

Figure 7. Streamlines and temperature distribution for many values of # and Ra at ¢ = 0.2 and /= 0.1.
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As h increases, the buoyancy forces increase and hence the speed of the flow circulation rises
resulting in a strong flow circulation and a weak heat transfer. Also, the greater value of Rayleigh
number implies more fluid circulation, and more heat will be added to the fluid to increase the
nanofluid convection. Moreover, it can be noticed that as Ra increases, the thermal boundary layers
become adjacent to each other causing an increase in temperature-gradients and heat transfer. As the
nanoparticles volume-fraction ¢ increases, thermal-diffusion enhances and hence the isotherms
become regularly parallel to the hot side wall. Also, the heat transfer in the cavity enhances as the
value of ¢ increases. The effect of the fraction between the nanolayer thickness and the original solid
particles radius on the flow and temperature distribution can be shown Figure 9.

Figure 8. Streamlines and temperature distribution for many values of 4 and ¢ at #= 0.1 and Ra = 10°.

It is known that the radius of the nanoparticles hasn’t a significant impact on the solid-like
nanolayer. Therefore, the lower values of /4 relate to the higher values of nanoparticles radius. From
Figure 9, it can be noticed that the intensity of fluid movement takes on lower values as the
nanoparticles radius increases. It is worth to mention that the effect of £ on temperature distribution is
very small and isn’t noticed in Figure 9.

To examine the impact of the obstacle height, Rayleigh number, nanoparticles volume-fraction
and fraction between the nanolayer thickness and the original solid particles radius on the rate of heat
transfer inside the cavity, it is essential to visualize the local-Nusselt number along the left hot side
wall.

AIMS Mathematics Volume 7, Issue 11, 20292-20312.



20306

Figure 9. Streamlines and temperature distribution for many values of 4 and £ at ¢=0.2 and Ra=10°.

Figures 10—13 show the variations of steady state Nu at several values of physical parameters £,
Ra, ¢ and /. As displayed in Figures 10 and 11, the strength of the fluid circulation increases because
of increasing the buoyancy forces due to the increase of the value of Ra. This causes a growth in the
local-Nusselt number Nu along the hot side wall. Because of a strong circulation causing by high
thermal energy transport from the hot side to the nanofluid near its surface, therefore the local-Nusselt
number takes on high values with the increase of solid-volume fraction. In fact, high rates of thermal-
conductivity are supplemented by high rates of thermal-diffusivity. As the value of thermal-diffusivity
increases, the temperature-gradient decreases and accordingly the thermal boundary-layer thickness
increases. Because the influence of the temperature-gradient due to the existence of nanoparticles is
much less significant than the thermal-conductivity ratio, an increasing in the Nusselt number is
noticed with the increase in the nanoparticles solid-volume fraction. The impact of increasing obstacle
height on the local-Nusselt number is inverse the impact of Rayleigh number values i.e., the local-
Nusselt number inside the encloser decreases as the obstacle height increases, while it increases with
the increase of Rayleigh number.

Figure 10. Variations of Nu versus y for many values of # and Ra at ¢ = 0 (non-NF).
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Figure 13. Variations of Nu versus y for many values of 4 and Fat ¢ = 0.2 and Ra = 10°.

The effect of the nanoparticles volume-fraction ¢ on the local-Nusselt number is shown in Figure 12.
Generally, because of the impact of the temperature gradient caused by the existence of the
nanoparticles is less significant than the effect of thermal conductivity, an increase in the Nu value will
be noticed as the value of ¢ increased. Here, we have two cases. The first case is when the obstacle
height less than half of the enclosure side length i.e., # = 0, 2 = 0.25, while the second case is when the
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obstacle height greater than or equal half of the enclosure side length i.e., 2 = 0.5. For 2 =0, h = 0.25,
the local-Nusselt number increases as the volume-fraction of nanoparticles increases along all the left
side wall. But for 2 = 0.5, the local-Nusselt number decreases as the nanoparticles volume-fraction
increases at the lower portion of the left side wall until y = 0.41 and then it rises again by the increase
of nanoparticles volume-fraction after y = 0.41. This explains that the overall heat transfer inside the
cavity is highly dependent on the obstacle height. Figure 13 illustrates the effect of radius of
nanoparticles on the local Nusselt number. From this figure, we can notice that the value of Nu
enhances with reducing the radius of nanoparticles. This improvement in the local-heat transfer can be
mainly ascribed to the increasing of the effective nanolayer volume-fraction. It can be observed that
the local-Nusselt number shows a notable enhancement with reducing radius of nanoparticle. This
enhancement in local heat transfer can be ascribed mainly to the increase of nanolayer volume-fraction.
The similar dependency of the local and averaged heat transfer rates on the Ra , volume-fraction and
radius of nanoparticles was also noted in [39-41].

The amount of the heat transfer for all the considered cases is summarized in Table 6, which
displays the values of the averaged-Nusselt number in the steady-state for all values of the considered
parameters. The values of the averaged heat transfer rates were ordered from the lowest to the highest.
As can be noticed from the values presented in Table 6, Nuavg doesn’t vary considerably with the
increasing the value of ¢ for low values of Ra, due to weak convection. While, for higher values of the
Ra, there is a notable augmentation in Nuavg With rising the value of ¢. Also, for higher values of the
Ra, there is a remarkable augmentation in Nuavg With reducing the radius of nanoparticles. While the
effect of nanoparticles radius on the averaged heat transfer is insignificant for low values of Ra. The
impact of the obstacle height on the averaged heat transfer rate may be demonstrated by comparing
the values of Nuavg in Table 6 for various values of 4. The averaged-Nusselt number exposes a
decreasing trend with the increasing of obstacle height. The minimum value of the averaged heat
transfer rate is about 0.88 and occurs for the non-NF case with 4 = 0.5 and Ra = 10*. While the
maximum rate of the averaged heat transfer is about 12.796 and occurs for the nanofluid case with
h=0,£=0.1,¢=02and Ra = 10°.

Table 6. Steady state averaged-Nusselt number (Nuavg) for many values of 4, Ra, ¢ and /4.

Ra 10* 10° 10°
® Llh 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
0 - 2273 1752 0.880 4.718 4279 3.136 9.208 8.525 6.938

0.1 0.02 2498 1.834 0966 5281 4.683 3.144 10.458 9.719 7.820
0.1 2,622 1918 1.022 5554 4907 3.251 11.020 10.246 8.228
0.2 0.02 2.680 1950 1.166 5.756 4905 2.898 11.582 10.765 8.501
0.1 2949 2160 1330 6.339 5341 3.060 12.796 11.888 9.334

Some cases considered in this work was previously examined by Kahveci [39]. Table 5 shows a
comparison between the values of Nuavg obtained by Kahveci [39] for Cu—H20 nanofluid and the
present results of steady state Nuavg for 7 = 0. The comparison reveals that there is a reasonably
excellent agreement between the present results and results in [39] for the same corresponding cases.
Differences between the current results and the results of Kahveci [39] can be attributed to the
difference in the accuracy of the numerical technique used and also to the difference in the accuracy
of the integration method used in calculating the averaged-Nusselt number.
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5. Conclusions

In this study, we propose a new application of the MOL-PACT to simulate transient and steady
state buoyancy convective flow in a square cavity filled by Cu—H20 nanofluid and contains a
rectangular adiabatic obstacle. Expressions of the artificial compressibility and penalty parameters that
are convenient with the derived stability condition are obtained. The consideration of several Rayleigh
number, nanoparticles’ radius, and volume-fraction with three different heights of the obstacle makes
the current study more convincing from engineering and applied physics point of views. The time-
evolution of heat transfer rate from transient state to steady one was examined in detail for several
governing parameters.

It can be summarized that those nanoparticles make a considerably enhancement in the heat
transfer rate inside the enclosure. It can be also summarized that the manner of variation in the overall
rate of heat transfer is almost linear dependent on with the nanoparticles volume-fraction. The obtained
results illustrate that the rate of heat transfer decreases with a rising of the height of the rectangular
obstacle. It is worth to mention that the impact of the nanoparticles volume-fraction on the heat transfer
rate is related to the obstacle height. There is a remarkable increasing in rate of heat transfer with
reducing the radius of nanoparticles for relatively high values of Rayleigh number, while this effect
becomes insignificant for low values of the Rayleigh number. The Minimum rate of heat transfer
occurs when ¢ = 0, 2 = 0.5 and Ra = 10*, while the maximum rate occurs when ¢ = 0.2, #= 0.1, h =0,
and Ra = 10°. The reasonably good agreement between the current results and the related ones found
in the literature, demonstrate accuracy and reliability of this work.

The novelty of the current investigation lies in the fact that the obtained results are new and may
be helpful for the experimentalists to inspect the efficiency of the buoyancy convection inside square
cavities having adiabatic obstacles and filled with a nanofluid for a purpose of increasing the overall
heat transfer rate. Moreover, the proposed numerical technique could offer CFD scientists avenues of
research into its development to simulate such models. It's worth to give MOL-PACT more interest to
handle hybrid nanofluids with various thermal conditions around the cavity boundaries.
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