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1. Introduction

As an extension of the current development and generalizations in the field of fractional calculus
[1-3], the investigation of solution behaviors and qualitative properties of the solution in classical or
fractional differential equations has become a matter of intense interest for researchers. This reflects the
extent of its uses in several applied and engineering aspects. It draws amazing applications in nonlinear
oscillations of seismic tremors, the detection of energy transport rate, and energy generation rate. The
importance of fractional equations has been recognized in many physical phenomena, in addition to its
importance in the mathematical modeling of diseases and viruses to limit and reduce their spread.
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The relaxation differential equation gives as u'(x) + u(x) = f(t); u(0*) = uy, whose solution is

u(x) = ugexp(—x») + f% f(t —1)exp(—1)dr.
0

Some recent contributions to the theory of FDEs can be seen in [4]. In [5], the authors studied the
following problem

D, u() = f(x,u(x)), »€(0,1),
u(0) = 0,

where 0 < k < 1, f : [0,1] X R* — R" is continuous and f(x, -) is non-decreasing for » € [0, 1], by
lower and upper (LU) solution method. The existence and uniqueness of solutions of the FDE

Dy, u(x) = f(x,u(x)), (0<k<1;%>0), (1.1)
D u(0+) = uy, (1.2)

were obtained in [1,2, 6], by using the fixed point theorem (FPT) of Banach.
In [7], the authors discussed the existence and uniqueness of solutions of the following FDE

Dy, u(x) = f(x,u(x)), x€(0,x],

' ux)|,_ = uo, (1.3)

by using the LU solution method and its associated monotone iterative (MI) method. The problem (1.3)
with non-monotone term has been studied by Bai et al. [8].

In [9], a new appraoch of the maximum principle was presented by using the completely
monotonicity of the Mittag-Leffler (ML) function.

On the other hand, there are several definitions and generalizations of the fractional operators (FOs)
that contributed a lot to the development of this field. The generalization of RL’s FOs based on a local
kernel containing a differentiable function was first introduced by Osler [3]. Next, Kilbas et al. [1]
dealt with some of the properties of this operator. Then, the interesting properties for this operator
have been discussed by Agarwal [10]. Recently, Jarad and Abdeljawad [11] achieved some properties
in accordance with the generalized Laplace transform with respect to another function.

In this regard, most of the results similar to our current work are covered under the generalized FOs
of Caputo [12] and Hilfer [13], for instance, see [14—19], whereas, very few considered results related
to the dependence on generalized RL’s definition. The authors in [20, 21], investigated the existence
and uniqueness of positive solutions of the fractional Cauchy problem in the frame of generalized RL
and Caputo, respectively.

For this end, as an additional contribution and enrichment to this active field, we consider the
following linear and nonlinear relaxation equations with non-monotone term under -RL fractional
derivatives (-RLFD):

DY u(x) + ADY  u(x) = f(x), x € (0, hl, (1.4)
(o) = (0)' ™ uae)| _, = uo # O, (1.5)
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where 0 < h < +00,0 <k, <1,4>0, f € C([0,h],R) and

Dgﬂ‘fu(x) + Au(x) = f(e,u(x)), »€(0,h], (1.6)
(o) = (O0)' ™ uae)| _, = uo # O, (1.7)

where f € C([0,h] X R, R), Dgf’and Dgi‘f are RL fractional derivatives of order « and ¢, respectively,
with respect to another function s € C'([0, k], R), which is increasing, and (%) # 0 for all [0, 4]. The
main contributions of this work stand out as follows:

i) With a new version of Laplace transform, we obtain Hyers-Ulam (HU) and generalized Hyers-Ulam
(GHU) stabilities on the finite time interval to check whether the approximate solution is near the
exact solution for a ¥-RL linear FDEs (1.4) and (1.5).

i) We establish a condition to derive the existence and uniqueness of solutions for -RL nonlinear
FDEs (1.6) and (1.7), by using LU solution method along with the Banach contraction map (this
generalizes the results in [7]).

iii) We formulate a new condition on the nonlinear term to ensure the equivalence between the solution
of the proposed problem and the corresponding fixed point. Then in light of that, we discuss the
maximal and minimal solutions for (1.6) and (1.7).

Remark 1.1.

(1) Our results remain valid if A = 0 on problems (1.4)—(1.7), which reduce to

Du(x) = f(x), x € (0,h], (1.8)
(W) = w(0) ™ u(oe)| _, = uo # 0. (1.9)

and
DElu) = f(x,u(x)), x € (0,h], (1.10)

() = Y(0)' ™ uCe)| _, = uo # 0, (1.11)
(2) If Y(3) = x, the problems (1.10) and (1.11) reduces to problem (1.3) considered in [7].
(3) The linear versions (1.4) and (1.5) generalizes that given in Theorem 5.1 by Jarad et al. [11].

Observe that in the preceding works, the nonlinear term needs to fulfill the monotone or other
control conditions. Indeed, the nonlinear FDE with a non-monotone term can respond better to generic
regulation, so it is vital to debilitate the control states of the nonlinear term.

This work is coordinated as follows. Section 2 provides some consepts of -fractional calculus.
Section 3 studies the stability results for the ¥-RL linear FDEs (1.4) and (1.5). In Section 4, we
investigate of the the existence and uniqueness results for the -RL nonlinear FDEs (1.6) and (1.7).
Moreover, the existence of maximal and minimal solutions is also obtaind. At the end, we provide
some examples in the last section.
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2. Preliminaries

Given 0 < a < b < +ooand s > 0, and let ¥ (%, a) := (W (x) — Y(a))*. Define a set
Csyla,b]l ={u :u € C(a,bl, y,(x,a)u(x) € Cla, bl}.
Clearly, Cy.y[a, b] is a Banach space with the norm
lledlle,,, = Il (2, @u)llc = Jnax Y(x, a)|u(x)|.
Definition 2.1. [/]Letd > 0, and f : [a,b] — R be an integrable function. Then the generalized RL

fractional integral and derivative with respect to ¢ is given by

. 1 d
o0 = f W (OWer (e, $)F )L,

and | 4
Ky _ " on—ky
Dt fo0) = [ s [ 1 f o,

respectively, where n = [«] + 1, and ¢ : [a, b] — R is an increasing with ¥’ (x) # 0, for all ¢ € [a, b].

Lemma 2.1. ( [11],Theorem 5.1) Let 0 < k < 1, 1 € R is a constant, and ¢ € L(0, h). Then the linear
version

KW _ _
{ D u(x) — Au(x) = ¢(x), x > a, 2.1

L uo)|,_, =ceR,
has the following solution
u#) = Y10 )E (AW (%, a))
+ fo Y (OW1 (3 OE (A (2, O)P(O)dL.

Lemma 2.2. [1] For 0 < k < 1, the ML function E, (=1 (y(x) — ¢(0))") satisfies

0 < E (—AW(x) —y(0)") < L, % €[0,00), 4 >0.
I'(x)

Lemma 2.3. ( see [11], Lemma 4.2) For Re(s) > I/llﬁ , we have

s@P

f " slwe-u)] [ () = W(O) ™" Eqp(—=A[1(¢) — p(0)]")dx = -

0 s+ A

Lemma 2.4. [22] Assume that U is an ordered Banach space, uy,vy € U, uy < vy, D = [up, Vo],
Q : D — U is an increasing completely continuous map and uy < Qugy, vy = Qvo. Then, Q has u* and
v* are minimal and maximal fixed point, respectively. If we set

Up, = Qun—l’ Vp = Qvn—la n=12,...,
then

Uy<u < < <u, <<y, <---<vy <vy <y,

u, > u, v, > v.
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Definition 2.2. We say that v(x) € C_,,,[0, h] is a lower solution of (1.6) and (1.7), if it satisfies
DYv(e) + () < fe,v(%)), % € (0, h), (2.2)
Y12, 0) ()|, < uo. 2.3)
Definition 2.3. We say that w(x) € C,_,.,[0, /] is an upper solution of (1.6) and (1.7), if it satisfies
DEYw(x) + Awe) > f(x,w(x)), % € (0, h), (2.4)
126, 0) w(ee)|_ > uo. (2.5)

Theorem 2.4. [11] Let 0 < « < 1. Then, the generalized Laplace transform of y-RL fractional
derivative is given by
2, | Dyl uo)| = 2, o] = 1, uto)|_,

where

LAfO) = f ) e WOVl (1) f(t)dt.

a

3. Stability analysis for a linear problem

Here, we discuss the HU and GHU stability of -RL linear problems (1.4) and (1.5), by using the
Y-Laplace transform. Before proceeding to prove the results, we will provide the following auxiliary
lemmas:

Lemma 3.1. Let 0 <k < 1, and u € C_[0, h]. If
lim (() = Y(0)'™ uG¢) = uo, uo € R,

then
1, u(0%) = lim 1,7 u(x) = uol(k).

Proof. The proof is obtained by the same technique presented in Lemma 3.2, see [1], taking into
account the properties of the  function.

Lemma 3.2. Let 0 < kx,6 < 1, A > 0 is a constant, and f : [0,h] — R is a continuous function. Then
the linear problems (1.4) and (1.5) has the following solution

ux) = [I() + AU6)] uoi-1(%, 0)Ex—s x(—Ax—5(x, 0))
+ fo ’ Y OW-102, O Exs (=AW, O) f (DAL 3.1
Proof. Taking the generalized Laplace transform of (1.4) as
Ly | Dy uto)| + 22, | DY uto| = £, 1£60)].
Via Theorem 2.4, we have
Ly 6] = I uo)|,_, + A| "Ly [uGe)] = 1" uto)| |
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=Z,[fCo)].
From (1.5) and Lemma 3.1, we have I(]);K;‘/’u(%)L[:O = I'(k)uy. It follows that
L, ()] = T(Wuo + |82, (o)l = T@)uo| = Z, [£¢2)].

One has,

-0

e | TG0 + AT @) o +.2, [f()] |- (3.2)

Taking .Zw‘ I to both sides of (3.2), it follow from Lemma 2.3 that

gw [u(x)] =

u) = [[(k) + AUO)] w12, 0)E—s(—AW—5(x, 0))
+ \f(; ¢’(§)¢’x—1 (%’ g)EK—(S,K(_/ll//K—(s(%’ é/))f(g)dga

which is (3.1).

Theorem 3.1. Let 0 < x,0 <1, A >0, and f : [0, h] — R is a continuous function. If u € C;_.,[0, h]
satisfies the inequality

D ue) + ADY u) — f(0)| < €, (3.3)

+

for each x € (0,h] and € > 0O, then there exists a solution u, € C_,[0, h] of (1.4) such that

Y(h,0)

() — u(x%)| < e 1)6'

Proof. Let
T(x) := DY u(x) + ADY u(x) — f(x), x € (0,h]. (3.4)

+

As per (3.3), |Y(x)| < e. Taking the y-Laplace transform of (3.4) via Theorem 2.4, we have
Ly = Ly |Dyluto|+ 4.2, | Dyl uto)| - 2, [f(0)]
= L o] - 1 u0)|_,
+A|8°. 2L, GOl = 1), uGo)| | - Zu £
From (1.5) and Lemma 3.1, I(l);'“wu(x)L:O = I'(k)up. It follows that
Ly T30 = L [uG)] — T(k)ug + A5°.L), [u(x)] = AL(S)ug — £, [ f(2)] .

One has, S
2y 6] = <= [ [T + AT@) o + 2, [XC] + 2, [£(0)]]. (3.5)
Set
Ua(2) = (LK) + AT)] thgthe1 (4, 0) By~ Ays(x, 0)

+ ‘fOV L”’(f)lﬁx—l (%’ Z;)EK—(S,K(_/llr//K—(S(%’ 4))f(§)d{ (36)
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Taking the Laplace transform of (3.6), It follow from Lemma 2.3 that

-0

Ly 0] = ——

| @+ AT@luo +.2, [£60]] 3.7)

Note that

2, | Dyl uaGo)| + A2, [ Dy ua0)|

= Zy TGO+ 2y [f(0)]

= $* % [ua ()] — T()uo + A5° L [ua ()] — AL(S)ug

= (5 + 15°) 2, [ua(6)] = (T(K) + AL()) o (3.8)

Substituting (3.7) into (3.8), we get

Ly [D5Yuae0)| + 1.2, [ Dy ua0)| = 2, [ £,
which implies that u,(x) is a solution of (1.4) and (1.5) due to .Z), is one-to-one. It follow from (3.5)
and (3.7) that

-0

L, [u() — ua()] (5) = sk_i—”.,% [T,

which implies

u(%) = uq(%) Ly {106, 0 B (= W—s(%, 0))} £, [T ()]

{106, 0V E g (= 522, 0))} 5y Y(30).

Thus, from (Definition 2.6, [21]) and Lemma 2.2, we obtain

(Y1 Gt 0)E g (— A5, 0))} 4 Y0

ﬁ W Ot 6,0 | o= AW sCe, O)| 10N dd

|u(2¢) — ua(20)|

IA

IA

€ fov ¢/(§)¢k—l(%a 4) Ek—é,/((_/hpk—é(%’ 4))| dg

IA

€ .
mf; W (W1 (e, O)dl

Y (h,0) .
Tk+1)

IA

Remark 3.1. If & < oo, then (1.4) is HU stable with the constant K := _ﬁ(/(ﬁr?)) .

Yi(h,0)
T+D) ©

Corollary 3.1. On Theorem 3.1, let ¢ : [0, 00) — [0, 00) is continuous function. If we set p(€) =
which satisfies ¢(0) = 0, then (1.4) is GHU stable.
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4. Existence results for a nonlinear problem

In this section, we prove the existence and uniqueness results for ¥-RL nonlinear FDEs (1.6)
and (1.7), by using the LU solution method and the Banach contraction mapping. Moreover, we
discuss the maximal and minimal solutions for the problem at hand. The following hypotheses will be
used in our forthcoming analysis:

(A1) There exist constants A,B>0and 0 < s; <1 < s, < 1/(1 — k) such that for » € [0, /],

|fOe,u) — fOoe, V)] < Alu — V™ + Blu —v|?, u,veR. 4.1
(A2) f:[0,h] xR — R satisfies

fO,u)— f(e,v)+ Au—-v) >0, foru<v<uc<i,

where 4 > 0 is a constant and i, it are lower and upper solutions of problems (1.6) and (1.7)
respectively.
(A3) There exist constant 8 > 0 such that

|fGe,u) — fe,v)| < Nu—v|, x€l[0,h],u,velR.

Remark 4.1. Suppose that f(x,u) = a(x)g(u) with g is a Holder continuous and a(x) is bounded,
then (4.1) holds.

Theorem 4.1. Suppose (Al) holds. The function u solves problems (1.6) and (1.7) iff it is a fixed-point
of the operator Q : C_y[0,h] — Ci_,[0, h] defined by

(Qu)() = L(Kuo-1(%, 0) E (=i (%, 0))
+ j; W (W1 (8, DEse(= AW (e, O) f(L, u))dd. (4.2)

Proof. At first, we show that the operator Q is well defined. Indeed, for every u € C;_,.,[0, h] and
% > 0, the integral

‘/OV lr//(g)l///(—l (%a 4)EK,K(_/1(I70K(%’ {))f({, M(Z;))d{,
belongs to Ci_,.,[0, h], due to
Y1-«(%,0)f (£, u(0)) € C[O, hl, and (%, 0)u({) € C[O, A,

bearing in mind that

=" Y- (¢, )
I'(k(m + 1))

(D(%) = l/”({)lr//K—l(%’ {)EK,K(_/l('vllK(%a {)) = Z l//(é/)(

m=0

is continuous on [0, A].
By the condition (4.1), we have

|f(¢, w)] < Alul® + Blul™ + C, 4.3)
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where C = max,.cpo ) f (%, 0).
By Lemma 2.2, for u(x) € Ci_,[0, h], we have

1-010) [ W Q11 OB A0 5. D 10
<UL 0) [ 010 DB =200, ) A @ g
<Y 0) [ O (0, DB (A DA + Bl + )

Swl-K(%,O)f lﬁ'(()wk-l(%,K)EK,K(—J(%(%,O){Atﬁ(K-l)sl(Z,0)[W1-K(§,0)Iu(§)l]s‘
0

+ By (& O Y& (1™ + Cldg
A(llule,_,, )" ¥1-c(e2, 0)

j; w,(zj)l//lﬁl(%’ g)l//(lﬁl)sl (éV, O)d§

: )
) B(||u||c1K;Q(K)w1_K(%,0) fo At D&+ 1)
Ao ) DD e
+B (Ilullc._w)s2 F(lgi(f I)zsi : Jlr)l)lﬂ(x—l)szﬂn—K(x, 0) + s l)llfl(%, 0)
< )
Ll = Do + 11BYe1y41(h, 0) (lle,.,)" + Fer 0

T[(k - 1)sy + k+ 1]

Thus, the integral exists and belongs to Cy_.,[0, h].
The previous inequality and the hypothesis 0 < s < 1 < s, < 1/(1 — k) imply that

1irgl Y1-«(x,0) f W (OW-10¢, D E (=AW (6, O) f (G u(©))dd = 0.
x—0+ 0
Since limy, 0, Ey (=AY (%,0)) = E, .(0) = 1/I'(x) it follows that

lim -6, 0X(Qu)60) = uo.

The above arguments concerted along with Lemma 2.1 yields that the fixed-point of Q solves (1.6)
and (1.7). And the vice versa. The proof is complete.

Next, we consider the compactness of Cy., [0, h]. Let F C Cy,,[0,h] and X = {g(x) = (%, 0)h(x) |
h(x) € F}, then X C C[0, h]. It is obvious that F is a bounded set of C,[0, 4] iff X is a bounded set of
C[0, h].

Thus, to prove that ' C Cj,,[0, h] is a compact set, it is sufficient to show that X c C[0,4] is a
bounded and equicontinuous set.
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Theorem 4.2. Let f : [0,h] X R — R is a continuous and (Al) holds. Then Q is a completely
continuous.

Proof. Given u, — u € Cy_,[0, h], with the definition of Q and condition (A1), we get
lQu, — Qullc,
= |1 (2, 0)(Quy — Qu)ll
= max |y1-,(x.0) fo U QW18 DE (=AWt OV ) = f(G )l

1 A
F_ max -, 0)f W (OW1 06, OIAluy, — ul™ + Blu, — ul™1d(
(K) 0<x< 0

1 v
[A max lﬁl —(%, O)f W (O 10, OW—s11-00(L, 0) Y (1-00 (L, Oty — ul™ dd
r(K) 0

+ B max g, 0)f f W (106, DY —31-0(L5 0) Yy 1-0(L, Oluty — MI”df]
F( )[ (II — ulle,_ ¢)51 max y(x, O)f W (OWee1 G OW g, 10, 0)dL

+ B(luy = ller_,,) " max y1-,¢,0) f W OW1 66 O -0 (& )L |
<n< 0

A (||un - ullcl_w)sl 1 = s;(1 = &)]
ITL - s1(1 — &) +«] W1—5,(1-x)(h, 0)
B(||un - u||CH;¢)S' T1 = 55(1 = K]
+ [[1 = s5(1 — k) +«] Y1—5y(1-1) (R, 0)

-0, (- o).

Thus, Q is continuous.

Assume that F C Cy_,,[0, 1] is a bounded set. Theorem 4.1 shows that Q(F) C Ci_[0, h] is
bounded.

Finally, we show the equicontinuity of Q(F). Given € > 0, for every u € F and »,%, € [0, h],%; <
2,

1, 0Y( Q)Y msy — [, 0)( Q) ()]s |
< [F(K)MOEK,K(_/le(%a O))]ZZ + [%—x(%, 0)‘[(; L”’(f)lﬁx—l(%’ (:)
X Evu(=A00s(ot, ) (G u(E)dC ]
< [TK)ugE e, (— Amoﬂ D)%
Y142, 0)
e OV G, O (DN
®  J
(2,0 (1,0
4 Yol )F(K;” 1-1,0) fo V() s 042, D) = e G, O FC @ L

= [F(K)MOEK,K(_/hpK(%y O))]Z? + 1+ 1.
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As E, (=AY ,(x,0)) 1s uniformly continuous on [0, #]. Thus

(Lo E (=AW, )2 — 05 as 23 — 21,

y 0
nos =Y r(<%§ ) f W OWer G, OV G uNE

< w1—l<( X, 0)

T f W (D102, O(Alul™ + Blul™ + C)d{
(«)

(3

_pa (hdic.., )"
I'(p1 + &)
p2B(lule,,,)”
I'(p2 + &)
C
F( n 1)1/11(%2 XY —(%2,0)

— 0, asx, — %4,

lpl—K(}ﬂZ’ O)w[)l (%29 %l)

lﬁl—K(%Za O)sz (%29 %l)

where py =(k—1)s;+ land p, = (k— 1)s, + 1,

—K ,O - —K aO ! ’
o = PR D) [ Q) e, = s, DL @
—K ,O - —K 70 ! ’
< wl (%2 ) wl (%1 ) f w (é«) ['70/(—1(%2’{) _ wk_l(%l’é‘)]
['(x) 0
x (Alul*" + Blul”* + C)d¢
=N+ h+-Jy—J5—Js
— 0,
where 0) (1. 0) %
gy < OO D e, )" [ 0 @ 0 6.0 0
s ,O —K ,0 52 ! ’
gy DR O D e, ) [0 Qe G 00200 = 0
Js < ‘ﬁl—x(%z, 0) - wl—l((%l9 0)(/1‘[%1 lﬁ’({)lﬂx—l(%bodf -0
(k) 0
—x ,0 - —K ,0 S1 I ’
Jy < il }(K;bl = )A (”””CI,K;» j(; Y (W1 Ge1, O, (£,0)dS — 0
J5 < %—K(%z, 0) - wl—/((%la 0)

J6 < lﬁl—x(%Z’ O) - lﬂl—K(%l’ 0)(/1~f‘%1 lﬁ’(()lﬁk—l(%l,f)d{ -0
['(x) 0

as %, — x; along with the continuity of ¢. To summarise,

(12, 0)(QU)CO) e, — (W12, 0)(QU) () Lz | — O, a8 202 — 221

Thus, Q(F) is equicontinuous. The proof is complete.
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Theorem 4.3. Let f : [0,h] X R — R is a continuous, (Al) and (A2) hold, and v,w € Ci_.,[0, h] are
lower and upper solutions of (1.6) and (1.7), respectively, such that

v(x) <w(x), 0<x<h. (4.4)

Then, the problems (1.6) and (1.7) has x* and y* as minimal and maximal solution, respectively, such
that
x*=1lim Q%, y"=lim Q"w.

n—oo

Proof. Obviously, if functions v, w are lower and upper solutions of problems (1.6) and (1.7), then
there are v < Qv, and w > Qw. Indeed, by the definition of the lower solution, there exist 5](%) > 0and
€ > 0 such that

DiYv0e) + Q) = [, v(0) = q(), % € (0, ),
Ui, 0)v(x) = up — €.
Using Theorem 4.1 and Lemma 2.2, we obtain
v0¢) = T() (g = W1 (%, 0) E (= (, 0))
+ fo 1 OB~ DD - q(ldg
< (QV)(0).
By the definition of the upper solution, there exist g(») > 0 such that

DY w() + (L) = f(e, w()) + q(), % € (0, h),

Wi (¢, O)w(x) = uy + €.

Similarly, there is w > Qw.
By Theorem 4.2, Q : C_y[0,h] — C,_,[0, h] is increasing and completely continuous. Setting
D := [v,w], by the use of Lemma 2.4, the existence of x*, y* is gotten. The proof is complete.

Theorem 4.4. Let f : [0,h] X R — R is a continuous and (A3) hold. Then problems (1.6) and (1.7)
has a unique solution u in the sector [vy, wy] on [0, h], provided

N
mlﬁk(h, 0) < l, (45)

where vy, wy are lower and upper solutions, respectively, of (1.6) and (1.7), and vy(x) < wy(x).

Proof. Let u is a solution of (1.6) and (1.7). Then vy < u < wy. Consider the operator
Q : Ci_yl0,h] = Ci_y[0, h] defined by (4.2). For any u;, u € Ci_,4[0, h], we have

1Qui = Qusllc,_,,
= |l1-(2¢, 0)(Quy = Qur)lleo

X max "le—K(%a O) fc: lr//({)l///(—l (%a {)EK,K(_/I('J/K(%v {))

0<x<h
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X [f&u) = £ w)ldl]

1 %
< T ggftx Y-, O)f U (O 10¢, ON|uy — us|dd

< max T f V(O 166, O lluy — wolle,,, dE

N
< Tt l)l//K(h, Olley = walle,,, -

From (4.5), we obtain
1Qui — Quallc,_,, < llur —ualle,_,,,-

According to Banach’s contraction mapping [23], Q has a unique fixed point, which is unique solution.

5. Examples

In this part, we provide two examples to illustrate main results.

Example 5.1. Consider the following problem

i i 1l +x sin 7w 0.5 L5
Dy ute) + 15ue) = r(1_K)+F(1_K)ﬁ(|u(%)| +luGol'),
1
Y16, ()| _, 5 #0.

Here x € (0,1], A1 = Dgi” is the Y-RL fractional derivative of order 0 < k < 1. Obviously,

10’

1+ sin % 05 L5
f(’"”"r<1—K>+m_K)ﬁ('”' + luf").

and for » € [0, 1], u,u € [0, c0), we have

_ |sin 7| 0.5 15 =05 _ =15
fee0 - foeT) < ﬁ[w " = " - |
1 05 0.5 1.5 _ 1.5
S RTovE M ' @]

; _ =05 _—L5

= r(l—K)\/%[lu al” 4 ="

= Au-u" +Blu-u"",

for0<s;=05<s5=15<1/(1-«)=2,fork= %, here A = B = ;W.Moreover, we have

T(1-x)

|sin 7| 0.5 L5

foewl < pi— e ﬁ[w + "]
1 0.5 1.5
—F(I—K)\/JT([1+|M| + lul"|
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= Alu® + Blul" + C,

where C = maX,e, 1) f(%,0) = Also, for x € [0, 1], u,u € [0, o], we have

(- )«f

sin 7%
f(%vu)_f(%,m = m(l Os_mo.5+|ull.5_|’it'|].5)
Sin 7 L5 15 -1
) 2 ——————u—ul,
F(l—K)\/f_r(ll g ) F(l—K)\/El ul
where A = o K) oV > 0. From the foregoing, we conclude that (Al), (A2) and (4.3) are satisfied. Hence,

problem (3.4) has a solution on [0, 1].
Example 5.2. Consider the following problem

{D“”u(x)+ wu(x) = 13 (0 — uC))® — 1o, 5.0)

e 0)u(%)| =1#0.

Here x € (0,1], 1 = E’ Dgf’ is the Y-RL fractional derivative of order O < k < 1. Obviously,

feu) = 35— =~ '

and for x € [0, 1], u,u € [0, c0),we have

FOe) ~ FGeT < 56— ) = G2~

2
< %%3' (4 =) = 3 (@ = ) + 3 G - w)
< %%5|u—ﬁ]§%|u_m23|u_ml.5’

for s, =15 < 1/(1 —k) = 2, fork = 1, here A = 0, B = 3. Take vo(x) = 0, wo(x) = y(%,0) =
[w(x) - 1//(0)]2 , it is not difficult to verify that vy(x), wo(x) be lower and upper solutions, respectively,
of (5.1), and vo(x) < wy(%). Then for x € [0, 1],

1
— %" = f(x,vo(%))

D Vo(%)'i‘i\/()(%) = 0<

10 5 4
1 " 1
D wO<x>+EwO<x> = DY [w<x>—w<0>]z+E[wm)—w(m]z
_ r(3) _ 2—k i _ 2
= TG W) v O™ + 5 [W6) ~ (O]
8 3 1

= 72 + —%

e
> 1u00 = = 2t = fo W)
> 2% % 4% = f(x, wo(x)),
where we used Y(x) = ». In addition, let € > 0, g(%) = 5, and q(x) = %?, and consider

{ CU900) + V() = -1t —q(), %€ (O,h), (52)

s, 0>v<z> = up— €.
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and

{ D'”/'w(%) + w(%) = l %51 =) — 1 %t +q(), %€ (0,h), (5.3)

t//l_K(% O)w(x) = uo + €.

By Lemma 4.1, we have

1 1
V) = T() (o~ ©) = (—1/—0;
X 1 (%_{ (46 4«4 é«)
—El 1 - - — - - d )
0 &= [ 10 J T

and

B 1 1 Ve

w(x) = F(—) (up + €) TEK,K (_ﬁ)
1 ra-9 &z

L e R

Thus, all assumptions of Theorem 4.2 are fulfilled. As per Theorem 4.3, problem (5.1) has minimal and
maximal solutions u* € [vy, wol, u* € [vg, wo] , which can be obtained by

u' =1lim v,, u = limw,,

n—o0 n—oo

where
1 1 D
Vp(2) = F(E)MOWE%% (_ﬁ)
1 NG (1, s 1
and

1 1
W) =T —Ey (—1—‘/;)

0
b g [—“(%_5
o Vo-o 10

D=

1 1
J(Ef@‘ Wa1())? = 154)61{, n>1.

6. Conclusions

In the current work, we have investigated two classes of fractional relaxation equations. Our results
were based on generalized Laplace transform, fixed point theorem due to lower and upper solutions
method, and functional analysis approaches. The psi- RL fractional operator, which is connected
with numerous well-known fractional operators, has been used in our study. Ulam-Hyer’s stability of
solutions for the linear version has been shown by the generalized Laplace transform approach. Then
by establishing the method of lower and upper solutions along with Banach’s fixed point technique,

AIMS Mathematics Volume 7, Issue 11, 20275-20291.
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we have investigated the existence and uniqueness of iterative solutions for the nonlinear version with
the non-monotone term f(x, u(x)), which permits the nonlinearity f to manage the condition (A1) to
|fCe,u)| < Alul + Blu|** + C. Besides, we have also discussed the maximal and minimal solutions
to the nonlinear version. Then, some known results in the literature have been extended. Finally, two
examples to illustrate the obtained results have been provided.
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