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1. Introduction

Stampacchia [1] initiated the study of variational inequalities in 1964, which evolved in many
applications related to nonlinear analysis, economics, physics, operations research, optimization,
image recovery, signal processing, control theory, game theory, transportation theory, etc., see for
example [2-7]. Hassouni and Moudafi [8] originated variational inclusions and proposed an scheme
to solve them. System of variational inclusions are the generalized forms of variational inclusions,
see [9—12]. In particular, Pang [13] showed that traffic equilibria, spatial equilibria, Nash equilibria
and general equilibria can be transformed into a system of variational inequalities. Cayley operator
is defined in terms of a resolvent operator and has many applications in Quaternion homography,
Real homography, Complex homography, etc., see for example [14, 15]. The S -iteration process was
introduced by Agarwal, O’Regan and Sahu [16] gives faster rate of convergence than Mann iteration
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process [17] as well as Ishikawa iteration process [18]. Sahu [19] introduced and studied the parallel
S -iteration process and applied it to solve a system of operator equations in Banach space. For more
details of the subject and related topics, see [20-33].

Since variational inclusions, system of variational inclusions, Cayley operator and Yosida
approximation operator all have useful applications in applicable sciences, by combining all these
concepts, we consider a system of mixed genearlized Cayley variational inclusions. We define parallel
Mann iteration process with an equivalent altering point problem and general parallel S -iteration
process to obtain the solution. Convergence criteria is also discussed with a numerical example.

2. Prelimilaries

We denote a real Banach space by E and its dual by E*. We denote norm by || - || and duality pairing
by (-, -). The normalized duality mapping j’ E — 2F is defined by

T ={f € E (e ) = IxlIAIL 10 = Ixllf x € E.
The space E is called uniformly smooth if

T=(1
fim 2 _ 0,
t—0 t
where 77(7) is the modulus of smoothness.
Definition 2.1. Forany x,y € E and Jx—-y) e f (x—y), a single-valued mapping A : E — E is called

(i) accretive, if
(A(x) = A), J(x =) 2 0,

(ii) strictly accretive, if
(A(x) = A, j(x —y)) > 0,

and the equality holds if and only if x =y,
(iii) strongly accretive, if there exist a constant r > 0 such that

(AG) = AG), j(x = y)) = rllx = yIP,
(iv) Lipschitz continuous, if there exist a constant 6, > 0 such that
IA(x) — AWl < allx = I,

Definition 2.2. [34] Let D\(# ¢) C E and Dy (# ¢) C E. Then x* € D and y* € D, are altering points
of mappings S| : Dy > D, and S, : D, — Dy, if S1(x*) = y" and S,(y") = x".

Alt(S 1, S,) means the set of altering points of mappings S; and S, such that
Alt(S1,82) ={(x",y") € Dy X Dy : §1(x) = y*, S2(y") = x"}.

Definition 2.3. [35] Let A : E — E be single-valued mapping. A multi-valued mapping M E—2F
is said to be A-accretive if M is accretive and [A + AM)(E) = E, for all 1 > 0.
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Definition 2.4. [35] Let A : E — E be single-valued mapping and M : E — 2F be A-accretive
multi-valued mapping. The generalized resolvent operator Rﬁ’{ 1 - E — Eis defined by

RY (x) = [A + AM]™'(x), for all x € E. 2.1)

Definition 2.5. The generalized Yosida approximation operator iM 0 E > Eis defined by
— 1 —
Tix) = 5 |4 =R, | ). forall x € E and 2 > 0. (2.2)

Definition 2.6. The generalized Cayley operator C/’K 1 E—Eis defined by
CiL(x) = |2RY, - A| (x), for all x € E and 1> 0. (2.3)

Lemma 2.1. [36] Consider E to be uniformly smooth Banach space and j: . E — 2F 10 be
normalized duality mapping. Then, following (i) and (ii) hold:

(@) Ilx + I < 16l + 2¢y, Jox + ), for all jx+y) € T(x +y),
(i) (x =y, J(6) = JO0) < 2P0 (U220, swhere d = || LA

Proposition 2.1. [35] Let A : E > E be strongly accretive mapping with constant r and M : E—2F
be A-accretive multi-valued mapping. Then generalized resolvent operator 72% 1 - E — E satisfy,

1 —
”R%ﬂ(x) - fo/{/l(y)” < ;”X =y, forall x,y € E.

Proposition 2.2. [35] The generalized Yosida approximation operator is

. . . . Oar + 1 . = =, . . .
(i) 6,-Lipschitz continuous, where 6; = A/l—; oo, 1, A >0, if A : E — E is Lipschitz continuous
r
with constant d,,
2

r — —
(ii) 6,-strongly accretive, where 6, = ;r>1,4>0,ifA: E — E is strongly accretive with

constant r.

Proposition 2.3. [35] The generalized Cayley operator is 6s-Lipschitz continuous, where 6; =
2+ 5Ar

;04 >0, ifA: E—Eis Lipschitz continuous with constant 6 4.
3. Problem and its solution

LetA,B: E — E be single-valued mappings and M, N : E — 2F be multi-valued mappings. Let
Rﬂf I E - E and C% 1 E — E be generalized resolvent operator and generalized Cayley operator,
respectively. We study the following problem:

For each 4,p > 0, find (x,y) € EXE satisfying

0 € A(x) - B) + ACY (RY, () + M(x))
3.1
0 € B(y) - A(x) + p(CY(RY (1)) + N()).

The following lemma is fixed point formulation for system (3.1).
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Lemma 3.1. Let A,B : E — E be single-valued mappings and M,N E — 2F be multi-valued
mappings such that A is 6-Lipschitz continuous and r-strongly accretive maaping, B is dg-Lipschitz
continuous and rp-strongly accretive maaping, M and N are A-accretive and B-accretive multi-valued
mappings, respectively. Let R/’;’I v T4 /I,Cf{’ B E — E be generalized resolvent operator, generalized
Yosida approximation operator and Cayley operator, respectively. Then, system of mixed generalized
Cayley variational inclusions (3.1) admits a solution (x,y) € E X E, if and only if it satisfies the
following equations:

x =R RY,0) + (0T 3,0 - ACY, (RY,))]

(3.2)
y =Ry |RY) + (ATY, () - pCY, (RY, ()]
where A,p > 0 are constants.
Proof. Proof is easy and hence omitted. O

Using Lemma 3.1, we suggest following parallel Mann iteration process to solve system of mixed
generalized Cayley variational inclusions (3.1).
Parallel Mann iteration process 3.1. Let x;,y; € E, then compute {x,} and {y,} by the iterative
process:

Xn+1 = (1 - a/n)xn + anﬂ%) [ (yn) + (p (yn) /lC%,l (ﬂ%/l(yn)))]
(3.3)

Yuer = (1= B)yn + BRY, [RU () + (AT () = pCY, (R ()]
where {a,} and {8,} are sequences in [0, 1] andn = 1,2, - --

Theorem 3.1. Let E be real umformly smooth Banach space with modulus of smoothness TE(I) <Cr
for some C > 0. Let A,B : E — E be single-valued mappings and M, N E — 2F be multi-
valued mappings such that A is 64-Lipschitz continuous and r-strongly accretive maaping, B is 0p-
Lipschitz continuous and r,-strongly accretive maaping, M and N are A-accretive and B-accretive
multi-valued mappings, respectively. Suppose that generalized resolvent operators 7{% L and RJI{ , are

Lipschitz continuous with constants - and - generalized Yosida approximation operators J ', and

g , are Lipschitz continuous with constant 91 and 0, and strongly accretive with constants 0, and

0,, and generalized Cayley operators C% L and CY , are Lipschitz continuous with constant 03 and 6,
respectively. Let for some A,p > 0, the following conditions are satisfied:

2 2
21 (1-26,+64C6;°)

rira(ri—p)—n
3

0312

L12(1-20,+64C6,2) (3.4
0. 2 ’
3

rir(n—A)-r,

‘p T e

20, < 1+ 6409;2 and 26, < 1 + 64C62,

1 1 -1 2 2
5Ar1+ 6/ _ Opnptl 0 , 8/ iy 9’; — +0A7] and . = +63r2‘

Ary pr /lr1 pr2 - r 3 r

where 6,
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Then, the iterative sequences {x,} and {y,} generated by process 3.1 strongly converge to the solution
(x,y) € E X E of our system (3.1).

Proof. Applying parallel Mann iteration process 3.1, Propositions 2.1-2.3, we have

st = 'l = (1 = @+ @RYLIRY, ) + (0T, ) = ACH R G))])

IA

IA

IA

IA

~((1 = ax + @ RILIRY, 07 + (0T, 0°) = ACKRE M|
RRY ) + (0T 3, 0) = ACK (R ()]
~RIRY,07) + (0T 36" = ACH RGN
(1 - ol - X'l + anrilﬂ[ﬂz,pw + (T () = ACH RY )]
~[RY, 07 + (0T, 0" — ACK RGN
(1 -l - 27l + anrll(||R§,,,(yn> ~RY ()
+||CH (R ) = CLRE M)
ALy T

1
(1= allx, = X + an(— + =+ Sy -
rir ry 7"1

+a’n}%||(yn _y*) - (j\g,p(yn) - j\]/gv’p(y*))

(I = an)llx, — x'll + a,

+ | TR, 00 = Th,0M

| (3.5)

Using Lemma 2.1, we evaluate

o =) = (T3, 00 - T3,07)

'2
< v =y 1P+ 2{ = (Ta,0m - TH0).

J(Gn =)= (5,00 - T5,07)) )
= I =Y IP +2( = (T3, 00 = T5,07) 70 =)
+2( = (T30 = Th,0M).
J(0n =) = (TR,00 = Tp,07)) = 1o =)
lyn = I = 26511y = y*I?
+4d275{4|1igp(yn>d— T 0" ]

IA

— — 2
v = 31> = 26511y = I + 64C || T, ) = T(0")
(1 =26} + 64CH,D)|ly, — y'II*. (3.6)

IA

IA

Using (3.6), (3.5) becomes

AIMS Mathematics

p A6

1
B = < (1= @l = X'l + @ —— + = + Sy =yl
rirn r

ri 1
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pJ(1-20, +64C07%)

+a, . = ¥l
r

= (- aplx = X1 + @ lly, = ¥l (3.7

where

p(1-20, +64C07)

Q’:(L+£+/l—923)+

rnr ry rl ri
Using the similar arguments as for (3.5)—(3.7), we compute
. 1 A pbo
e =y < (=@l =yl + @+ =+ 3)|| Xp = X'l
rnry n
(=26, + 64C6))
+an ”xn - X*”
r
= (1= allys =yl + @ Q"llx, = X, (3.8)
where
L1 a4 p AN =26, +64C6)
Q = (— + —+ —2) + .
ryr r }"2 r

Combining (3.7) and (3.8), we get

st = XN+ s =Y < (1= a@pllx, — x|+ @, [y, — ¥l
+(1 = ap)llyn = ¥l + Q" lx, — X7
< (1= a)lx, = X+ Iy, = y°ID
+a, max{Q, Q" }(llx, — x| + |y, — I,
which implies that
st = XN+ yss =Y < (1= au(1 = Q)(lx, = XNl + [lyn = ¥*IDs (3.9)

where Q = /r\nax{Ql,Q"}. Now, we define the norm ||.|l, on E X Eby 1, WIl« = x| + lIyll, for all
(x,y) € E X E. Using (3.9), we have

a1 Y1) = YN = N1t = X7, Y = YOI

et = XM+ yner = Y7l

(1 = au(1 = D)l = X"l + Iy = ¥*ID)
(1 = (1 = D), y) = (7, YO

IA I

From condition (3.4), it is clear that Q < 1and consequently {(x,, y,)} 1s a Cauchy sequence which
strongly converges to (x,y) € EXE. AsA, B, M, N, R A b j A cl 4.4 are all continuous, the conclusion

follows from Lemma 3.1. Hence, (x,y) € E x E is the solution of our system (3.1). m]
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4. Convergence analysis applying altering points problem

By using the altering points problem we obtain strong convergence of system of mixed generalized
Cayley variational inclusions (3.1). We suggest general parallel S -iteration process for altering points
problem associated with the system (3.1).

Let Di(# ¢) C E and D,(# ¢) C E such that D, and D, are closed and convex. Let S : D; — D,
S, : D, — D, be mappings such that

S1 =Ry [RY, + (AT, - pCY (RS )] (4.1)
Sy =R RS, + (pigp —ACH (R, (4.2)

where A,p > 0 are constants. Using Lemma 3.1, it is clear that the system (3.1) is equivalent to
following altering point problem:
Find (x,y) € D; X D, satisfying

= $5(y) = RY[RY + (AT, - pCY (RN )]()
4.3)
y=S8(x)= R%A[R]l}’,p + (o gp — ACY (R )] ().

We construct the general parallel S -iteration process to solve system (3.1).
Parallel S -iteration process 4.1. For any given (x;,y;) € Dy XD», let {(x,, y,)} be an iterative sequence
in Dy X D, defined by

Xn+l = SZ[(l - a’n)yn + CL’,,S l(xn)]
“4.4)

Yn+1 = Sl[(1 - an)xn + anSZ(yn)]’
where {a,} is a sequence in [0, 1]. The following result is needed in continuation.

Theorem 4.1. Let E be real unzformly smooth Banach space with modulus of smoothness Tx(f) < Ct*
for some C > 0. Let A,B : E — E be single-valued mappings and M,N : E — 2F be multi-
valued mappings such that A is 6,-Lipschitz continuous and ri-strongly accretive maaping, B is p-
Lipschitz continuous and r,-strongly accretive maaping, M and N are A-accretive and B-accretive
multi-valued mappings, respectively. Suppose that generalized resolvent operators R A and RB are

Llpschltz continuous with constants ; and 1 P generalized Yosida approximation operators j A and

o are Lipschitz continuous with constant 6, and 6', and strongly accretive with constants 6, and 6,
and generalized Cayley operators Cf([ Land CY B, are Lipschitz continuous Wlth constant 03 and 0, with

26, < 1+ 64C6;* and 26, < 1 + 64CH}, where 6y = {12, 67 = %25 9, = M 0 ===, 6 = 2+ff”

and 6, = M—m , respectively. Then mappings S| and S, are Lipschitz continuous with constants Q and

" . pA(1-2¢ +64CO'3) /(126 +64CO%)
Q| respectively, where Q = ( +£4 /1923 ) 4 EVUZRAOTD g ( AU,
1 r1 rnr rn

r

+4 +2)+

rn r2

Proof. Let x,y € E. Then, we have
15100 = S 1091 = [RYLIRY, + (073, — ACK, RN

AIMS Mathematics Volume 7, Issue 11, 20259-20274.
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_R%A[Rg,p + (Pi gp - AC%A(RKA))]@)H

1 —

< RS0+ T30 ACK R )]
~[R},0) + (T, - AL RL N
1 —

< IR =R, 0| + 25,00 - T, 0

ACH R () — CHLRY 00

1,1 -
< (=l =yl + plle =) = (T3, 0 = T3,00)|

ry 'n

03
+pllx =yl + =l - y))
r

1 p 65
< Gt
+r%||(x —y) = (T a0 = Ty, )| (4.5)

Using same arguments as used for (3.6), we obtain

=)~ (T, - Ty,o)| = (1 26+ 64colx 2.

Combining (4.5) and (4.6), we obtain

pJ(1 =20, +64C012)

n

1 A6
IS1(x) =SiWIl < [(_ £ _23) +

rir ry rl

]le—yll.

.. . . / p\J(1-20,+64C8' %)
Hence S 1s Q -Lipschitz continuous, where Q = (L +£2 4 %) + + In the same manner,
1

rir2 r

. . "o . . " A A (1-26,+64C6?
it follows that S, is Q" -Lipschitz continuous, where Q" = (L +4 42 3) 4 ANm2eroAce) O

rir r r% m

The convergence criteria is established for system (3.1) by applying general parallel S -iteration
process.

Theorem 4.2. Let D, and D, be same as in parallel S -iteration process (4.1). Let A, B, M, N, R%/v \iﬁﬁ
and C% , be same as in Theorem 3.1 such that all the conditions of Theorem 3.1 are satisfied. Let S
and S > be same as in Theorem 4.1. Then (1) and (1l) hold.

(I) There exists a point (x*,y*) € Dy X D,, which solves altering point problem (4.3) associated with
the system (3.1).

(II) The sequence {(x,,y,)} generated by general parallel S -iteration process (4.4) converges strongly
to point (x*,y*) € D; X D;.

AIMS Mathematics Volume 7, Issue 11, 20259-20274.
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Proof. (I). Applying Lemma 3.1 and (4.3), (I) follows.
(II). Using parallel S -iteration process 4.1 and Theorem 4.1, we have

ynet = Y1 =[S 111 = @)% + @S 2] = S1 ()

< QA = @)x + @S 20001 — X7l

< Q1 - allx, — XN + @llS 2(v) — X7

< Q1= @l — X'l + @allS 20 = S20))

< Q((1 = @)l = x| + @ [ly, = y°Il)

< (1 - e)Qlx, — 2 + @, Q |y, — . (4.6)

Similarly,

Xer = XN = ||S2L(1 = @)yn + @uS 1(x)] = S207)]]

< QNI = @)y, + @S 1(x)] =yl

< QA = alyn =Yl + @llS 1(x) = y*Il)

< QA - a)lys =Yl + @l 1(x) = S 1)

< Q1= allyn =Yl + @ llx, — x°1l)

< (1=a)Q llyn =yl + @, Q2 Q |Ix, — x°|\. (4.7)

Combining (4.6) with (4.7), we have

[2ns1 = XN+ e =Yl < (4 = @)Q 1, = X7 + @, QQly, = |

+(1 = @)Qlyn = Il + 0, Q' Q|Ix, — X7l

Q1 - ay)llx, — XN, Qx, — x7|1}

+Q{(1 = a)llyn = Yl llyn — ¥ II}

max{Q’, Q" H(1 — @)%, = X[l + lly, = ¥°I)

+a, max{Q', Q" }(Ilx, — x| + lly, — ¥*ID}

< Q1 = au(1 = Q)(lx, — Il + Iy, — ¥*ID, (4.8)

IA

IA

where Q = max{Q’, Q"}. The norm ||.||. on E x E is defined by [|(x, y)|l. = ||| + |lyll. Using (4.9), we
have

115 Yus1) = 5, YOl = (1 = X7, yoar = ¥
= 1 = XM+ [y = ¥OI
< Q1 = (1 = Q)NCx, yu) = (57, YO (4.9)

Since Q(1-a,(1-Q)) < Q < 1, we obtain that lim ||(x,, y,,)—(x*, y")||. = 0. Thus, we get lim ||x,—x*|| =

lim |y, — y*|| = 0 and hence the sequence {(x,, y,)} converges strongly to point (x*, y*). O
5. Numerical example
For illustration, we provide the following example. All codes are written in MATLAB R2019a.
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Example 5.1. Let E = R, D; = [0,20], and D, = [0,23]. Let A, B : E — E and M,N : E — 2F be
such that

A(x) = gx,

4
B(x) = gx,

1
M(x) = {10 }
N(x) = {%x}

Clearly, A is + strongly accretive and ——Llpschtzz continuous mapping and B is ——strongly
accretive andA%-Llp:v\chnz continuous mapping ch MAand N are accretive mappings. For 1 =
I,[A + AMI(E) = E and for p = 1,[B + pNI(E) = E, the multi-valued mappings M and N are
A-accretive and B-accretive mappings.

The generalized resolvent operators, generalized Yosida approximation operators and generalized
Cayley operators are defined below:

10 15
Ria(0) = [A + AM] () = =%, Ry, () = [B+pNT™ (x) =

3 23"

1 8 47
Tih(x) = JA-R () = P Tpp(x) = —[B Ry () = or

C%/l(x) = ZRKA(X) -Alx) = z—sx, Cg’p(x) = 27€g,p(x) - B(x) = —62—9x, forall x € E.

The above defined generalized resolvent operators RY, and Rg’p are Lipschitz continuous with

constants i = }(1) and L = 9 respectively, and generalized Yosida approximation operators J \' aq and

I I

N are szschztz contznuous with constants 6, = %0l — 22 and 0, = ntl — B pespectively
2
2 _

= M or2 4
1 r.
1 — 19 y 2 _ 13 .
= = 100 and 0y = - = o respectively and
2+0471] 31

generalized Cayley operators CM and Cg’ , are Lipschitz continuous with constants 65 = e T

and strongly accretive with constants 6, =

y _ 2+0pry _ 45
and 0}, = =2 =1 respectively.

For A =1 and p = 1, we evaluate the mappings S| and S, such that

Si(x) = RYIRE, + (0Tp, —ACH o RY DI(x) = 0.8254x,
S2(x) = Ry [RY, +TY, —p Cy, 0 RE)(x) = 0.83081x,

which are Lipschitz continuous with constants 15 and 19, respectively.
Also, the conditions considered in Theorem 3.1,

p2r12(1—209§§+64C9’2 nd 'p r1r2(rzr/1) n| <«
ri,rn>1, 20, <1+ 64C9;2 and 26, < 1+ 64C6" are satisfied for all the values considered above.
Thus, Theorem 3.1 is satisfied.

2r3(1-20,+64C62)

rira(ri—p)—-n
/l - 9/2 B
3

0312
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For arbitrary x; € Dy and y, € D,, the common terms of {x,} and {y,} produced by process 3.1 are
given by

Xt = (1= an)x, + R RE ) + (0T 5 ,0) = ACH (R )]
X N n(0.8254)y,

n+1 n+1

Yt = (L= a)yn + @Ry [RY (e + (AT (5) — pCYL (RS ()]
Vn N n(0.8308)x,

n+1 n+1

Hence,

8254)y,
X mM0.8254)y

xn+] = B
n+1 n+1

Vn N n(0.8308)x,

Fns1 n+1 n+l

For arbitrary x;, € Dy and y, € D,, the common terms of {x,} and {y,} produced by process 4.1 are
given by

Xor1 = Sof(1— a’n)yn + @,51(x,)]
_ (0.8308)y, N n(0.6857)x,
B n+1 n+1 ~’
Yart = Sil(1 = @)x,y + @nS2(yn)]
_ (0.8254)x, N n(0.6857)y,
Bl n+1 n+1
Hence,
(0.8308)y, n(0.6857)x,
xn+1 = + ’
n+1 n+1
(0.8254)x, n(0.6857)y,
Y1 = + .
n+1 n+1
Taking different initial values x; = 3,y; = =3,x; = 5 and y; = -7, the sequences {x,} and {y,}
converge to the unique solution (x*,y*) = (0,0) of system (3.1).
In Table 1, we compare both the processes under consideration for x = 3,x = —3. Convergence
of parallel Mann iteration process for different initial values of x is shown in Figure 1. In Table 2,
comparison of parallel Mann iteration process and parallel S -iteration process for x = 5 and x = =7 is

shown and in Figure 2, convergence of parallel S -iteration process is shown for different initial values
of x. In all cases, the iteration process will terminate for ||x,,1 — X,|| < 107 and |[y,+1 — yall < 107.

AIMS Mathematics Volume 7, Issue 11, 20259-20274.
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Table 1. Comparison table: For initial values x; = 3 and y; = -3.
No. of iterations Parallel Mann iteration process Parallel S-iteration process
(n) X Y X Yn
1 3 -3 3 -3
2 2.05722 -2.05722 0.90219 -0.90219
3 1.41072 -1.41073 0.27131 -0.27131
4 0.96739 -0.96739 0.08159 -0.08159
5 0.66338 -0.66338 0.02453 -0.02453
6 0.45491 -0.45491 0.00737 -0.00737
7 0.31195 -0.31195 0.00221 -0.00221
8 0.21391 -0.21391 0.00066 -0.00066
9 0.14669 -0.14669 0.00020 -0.00020
10 0.10059 -0.10059 0.00006 -0.00006
13 0.03244 -0.03243 0 0
16 0.01046 -0.01046 0 0
20 0.00231 -0.00231 0 0
23 0.00074 -0.00074 0 0
26 0 0 0 0
27 0 0 0 0
6
——x,= 3
4 ¥4
— % —%;=5
2l —e W= |
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Figure 1. Convergence graph of {x,} and {y,} produced by parallel Mann iteration
process (3.3) taking different initial values.
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Table 2. Comparison table: For initial values x; = 5 and y; = -7.

No. of iterations

Parallel Mann iteration process

Parallel S-iteration process

(n) Xn Vn Xn Vn
1 5 -7 5 -7
2 3.42871 -4.80019 1.50366 -2.10512
3 2.35121 -3.29169 0.45219 -0.63307
4 1.61232 -2.25725 0.13599 -0.19038
5 1.10564 -1.54789 0.04089 -0.05725
6 0.75818 -1.06145 0.01229 -0.01721
7 0.51991 -0.72788 0.00369 -0.00517
8 0.35653 -0.49914 0.00111 -0.00155
9 0.24448 -0.34228 0.00033 -0.00046
10 0.16765 -0.23471 0.00010 -0.00014
13 0.05406 -0.07568 0 0
16 0.01743 -0.02441 0 0
20 0.00385 -0.00539 0 0
23 0.00124 -0.00174 0 0
26 0.00040 -0.00056 0 0
30 0 0 0 0
——x,=3
F—y,=-3
— ¥ —X,= 5
— 4 —¥,=T| |

R i e S

10 15 20
MNumber of iterations (n)

25

30

Figure 2. Convergence graph of {x,} and {y,} produced by parallel S -iteration process (4.4)
taking different initial values.
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6. Conclusions

The general parallel S -iteration process is established to discuss the convergence criteria for the
problem (3.1). We apply parallel Mann iteration process to obtain the solution of our system. We
provide a numerical example applying Matlab program.

Further, we remark that our result can be extended in other higher dimensional spaces.
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