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1. Introduction

The notion of normal structure was introduced by Brodskil and Milman [1] in 1948 in order to study
the existence of common fixed points of certain sets of isometries. Later, the notion of normal structure
was generalized for the weak topology.

Definition 1.1. A Banach space X is said to have normal structure (NS) (res., weak normal structure
(WNS)) if for every bounded, closed (res., weakly compact) and convex subset K of X such that
diam(K) := sup{‖x − y‖ : x, y ∈ K} > 0, there is a point p ∈ K which is not a diametral point, that is,
sup{‖p − x‖ : x ∈ K} < diam(K).
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It is well-known that compact and convex subset of a Banach space X has normal structure. In 1965,
Kirk proved the following important celebrated result.

Theorem 1.2. (Kirk’s fixed point theorem [2]) Let A be a nonempty, bounded, closed (res., weakly
compact) and convex subset of a Banach space X and T : A→ A be a nonexpansive self-mapping, that
is,

‖T x − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ A.

If X is a reflexive Banach space with NS (res., a Banach space with WNS), then T has a fixed point.

There are many interesting extensions of Kirk’s fixed point theorem. One of them is due to Jes̆ić,
where he generalized Kirk’s fixed point theorem to fuzzy metric spaces [3]. To present the main
theorem of [3], we recall some related concepts as below.

In 1965, Zadeh [4] introduced the notion of fuzzy set. After this pioneering work, the concept of a
fuzzy metric space which is closely related to the class of probabilistic metric spaces was introduced
by Kramosil and Michalek in 1975 [5]. George and Veeramani [6] modified the notion of fuzzy metric
space given in [5] with the help of continuous t-norm and described a Hausdorff topology on the
modified fuzzy metric space (see also [7, 8] for more general discussions).

In [3], Jes̆ić defined strict convexity and normal structure in fuzzy metric space and proved a fixed
point theorem for a nonexpansive self-mapping on a strictly convex fuzzy metric space. In this work,
we study the existence of best proximity pairs by considering noncyclic contractions defined on a
union of two nonempty subset of a strictly convex fuzzy metric space. We also consider the noncyclic
relatively nonexpansive mappings and obtain a best proximity pair theorem which is a real extension
of the aforesaid theorem in [3]. In this way, we provide an important basis for the existence of the best
proximity pairs in the setting of strictly convex fuzzy metric spaces. To this end, we need the following
definitions and notions.

Definition 1.3. (Schweizer and Sklar [9]) A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous
triangular norm (t-norm) if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative;
(ii) ∗ is continuous;

(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Some of continuous t-norms are as below:

a ∗ b = min{a, b},
a ∗ b = ab,

a ∗ b =

min{a, b}, if max{a, b} = 1,
0, otherwise.

Definition 1.4. (George and Veeramani [6]) A 3-tuple (X,M, ∗) is said to be an fuzzy metric space if
X is an arbitrary set, ∗ is a continuous t-norm, M is a fuzzy set on X2 × (0,∞) satisfying the following
conditions: For all x, y, z ∈ X, s, t > 0,

(a) M(x, y, t) > 0;
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(b) M(x, y, t) = 1 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
(e) M(x, y, ·) : (0,∞)→ (0, 1] is continuous.

It is worth noticing that if (X, d) is a metric space and we define a ∗ b = ab for any a, b ∈ [0, 1] and
M(x, y, t) = t

t+d(x,y) for all x, y ∈ X and t > 0, then (X,M, ∗) is a fuzzy metric space (see [6] for more
information).

Remark 1.5. (Mariusz [10]) In a fuzzy metric space (X,M, ∗), the function M(x, y, ·) is non-decreasing
for all x, y ∈ X.

Remark 1.6. ( [6]) A sequence {xn} in a fuzzy metric space (X,M, ∗) is said to be convergent to x in X
if and only if lim

n→∞
M(xn, x, t) = 1 for all t > 0.

The next lemma will be used in our coming discussions.

Lemma 1.7. ( [11]) If (X,M, ∗) is a fuzzy metric space and lim
n→∞

xn = x , lim
n→∞

yn = y, then

lim
n→∞

M(xn, yn, t) = M(x, y, t).

Definition 1.8. ( [6]) Let (X,M, ∗) be a fuzzy metric space and r ∈ (0, 1), t > 0 and x ∈ X. The set

B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r} ,

is called an open ball with center x and radius r with respect to t.

The closed ball with center x and radius r with respect to t is given by

B[x, r, t] = {y ∈ X : M(x, y, t) ≥ 1 − r} .

It was announced in [6] that every fuzzy metric space (X,M, ∗) generates a Hausdorff first countable
topology, where its basis is the family of

{
B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0

}
.

Definition 1.9. ( [11]) Let (X,M, ∗) be a fuzzy metric space and A be a nonempty subset of X. The
mappings δA(t) : (0,∞)→ [0, 1] is defined as

δA(t) := inf
x,y∈A

sup
ε<t

M(x, y, ε).

The constant δA = sup
t>0

δA(t) is called fuzzy diameter of nearness of the set A.

Lemma 1.10. ( [12]) Let (X,M, ∗) be a fuzzy metric space. A subset A of X is said to be fuzzy bounded
(F-bounded) if there exist t > 0 and r ∈ (0, 1) such that M(x, y, t) > 1 − r for all x, y ∈ A.

Proposition 1.11. ( [6]) Every compact subset of a fuzzy metric space is F-bounded.

Definition 1.12. ( [3]) Let A be a nonempty subset of a fuzzy metric space (X,M, ∗). A point p ∈ A is
called a diametral point if

inf
y∈A

sup
ε<t

M(p, y, ε) = δA(t), ∀t > 0.

Therefore, a point u ∈ A is nondiametral whenever there exists t0 > 0 such that

inf
y∈A

sup
ε<t0

M(u, y, ε) > δA(t0).
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In 1970, Takahashi introduced a convex structure on metric spaces [13]. It was generalized by S.N.
Jes̆ić to fuzzy metric spaces as follows.

Definition 1.13. ( [3]) A fuzzy metric space (X,M, ∗) possesses a convex structure if there exists a
functionW : X × X × [0, 1] → X, satisfyingW(x, y, 0) = y, W(x, y, 1) = x and for all x, y, z ∈ X,
θ ∈ (0, 1) and t > 0

M(W(x, y, θ), z, 2t) ≥ M
(
x, z,

t
θ

)
∗ M

(
y, z,

t
1 − θ

)
.

Throughout this article (X,M, ∗;W) stand to denote a fuzzy metric space equipped with a convex
structureW : X × X × [0, 1]→ X and we call it a convex fuzzy metric space.

Definition 1.14. A subset K of a convex fuzzy metric space (X,M, ∗;W) is said to be a convex set if
for every x, y ∈ K and θ ∈ [0, 1] it follows thatW(x, y, θ) ∈ K.

Lemma 1.15. ( [3]) Let (X,M, ∗;W) be a convex fuzzy metric space and {Kα}α∈Λ be a family of convex
subsets of X. Then the intersection K =

⋂
α∈Λ

Kα is a convex set.

Definition 1.16. A convex fuzzy metric space (X,M, ∗;W) is said to have property (C) if every
decreasing net consists of nonempty, F-bounded, closed and convex subsets of X has a nonempty
intersection.

For instance if a convex fuzzy metric space (X,M, ∗;W) is compact, then it has the property (C).
Furthermore, if X is a reflexive Banach space, a∗b = min {a, b} and for any x, y ∈ X and t > 0, θ ∈ (0, 1),

M(x, y, t) =
t

t + ‖x − y‖
, W(x, y, θ) = θx + (1 − θ)y,

then from the Eberlein-Šmulian’s theorem (X,M, ∗;W) is a convex fuzzy metric space having property
(C).

Definition 1.17. ( [3]) A convex fuzzy metric space (X,M, ∗;W) is said to be strictly convex provided
that for every x, y ∈ X, and θ ∈ (0, 1) there exists a unique element z =W(x, y, θ) ∈ X for which

M(x, y,
t
θ

) = M(z, y, t), M(x, y,
t

1 − θ
) = M(x, z, t),

for all t > 0.

We will use the following useful lemmas in our coming discussions.

Lemma 1.18. Let (X,M, ∗;W) be a convex fuzzy metric space. Suppose that for every θ ∈ (0, 1), t > 0
and x, y, z ∈ X the following condition holds

M(W(x, y, θ), z, t) > min{M(z, x, t),M(z, y, t)}, (])

If there exists u ∈ X for which

M(W(x, y, θ), u, t) = min{M(u, x, t),M(u, y, t)},

for all t > 0, thenW(x, y, θ) ∈ {x, y}.
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Proof. Since for any t > 0 we have

M(W(x, y, θ), u, t) = min{M(u, x, t),M(u, y, t)}

for some u ∈ X, by using the condition (]) we must have θ = 0 or θ = 1 which ensures thatW(x, y, 0) =

y orW(x, y, 1) = x and this completes the proof. �

Lemma 1.19. ( [3]) Let (X,M, ∗;W) be a strictly convex fuzzy metric space. Then for any x, y ∈ X
with x , y there exists θ ∈ (0, 1) such thatW(x, y, θ) < {x, y}.

Lemma 1.20. ( [3]) Let (X,M, ∗;W) be a fuzzy metric space which satisfies the condition (]). Then
the closed balls B[x, r, t] are convex sets.

The fuzzy version of the notion of normal structure was introduced in [3] as below.

Definition 1.21. A convex fuzzy metric space (X,M, ∗;W) is said to have fuzzy normal structure if for
every closed, F-bounded and convex subset K of X which consists of at least two different points, there
exists a point p ∈ K which is a non-diametral point.

Definition 1.22. A self-mapping f defined on a fuzzy metric space (X,M, ∗) is said to be nonexpansive
provided that

M( f x, f y, t) ≥ M(x, y, t), ∀x, y ∈ X, ∀t > 0.

Example 1.23. For any x, y ∈ N and t > 0, let

M(x, y, t) =

 min{x,y}
max{x,y} , ∀t > 0, x , y

1, ∀t > 0, x = y,

and define a ∗ b = ab. Then (N,M, ∗) is a fuzzy metric space. Define a function f : N → N with
f (x) = x + 1. Then f is nonexpansive:

If x = y, then M( f x, f y, t) = 1 = M(x, y, t), for all t > 0.
If x , y and x < y, then

M( f x, f y, t) =
x + 1
y + 1

>
x
y

= M(x, y, t).

Therefore, M( f x, f y, t) ≥ M(x, y, t) for all x, y ∈ N, t > 0.

The next theorem is a main result of ( [3]).

Theorem 1.24. ( [3]) Let (X,M, ∗;W) be a strictly convex fuzzy metric space which satisfies the
condition (]). Assume that K is a nonempty, compact and convex subset of X and f : K → K is a
nonexpansive self-mapping. Then f has at least one fixed point in K.

It is remarkable to note that the proof of Theorem 1.24 is based on the fact that every nonempty,
compact and convex subset of a strictly convex fuzzy metric space X satisfying the condition (]) has
the fuzzy normal structure.

The main purpose of this article is to extend Theorem 1.24 from nonexpansive self-mappings to
noncyclic relatively nonexpansive mappings in order to study the existence of best proximity pairs.

This article is organized as follows: In Section 2, we define the fuzzy projection operators and
survey the nonemptiness of fuzzy proximal pairs under some sufficient conditions. In Section 3, we
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consider the class of noncyclic contractions defined on a union of two nonempty subset of a fuzzy
metric space and study the existence of best proximity pairs for such mappings. Finally, in Section 4, a
concept of fuzzy proximal normal structure is introduced and used to investigate a best proximity pair
theorem for noncyclic relatively nonexpansive mappings which is a real extension of Theorem 1.24.
We also show that every nonempty, compact and convex pair of subsets of a strictly convex metric
space which satisfies the condition (]) has the fuzzy proximal normal structure.

2. Preliminaries

Let A and B be two nonempty subsets of a convex fuzzy metric space (X,M, ∗;W). We shall say
that a pair (A, B) in X satisfies a property if both A and B satisfy that property. For instance, (A, B) is
convex if and only if both A and B are convex; (A, B) ⊆ (C,D)⇔ A ⊆ C, and B ⊆ D.

We shall also adopt the following notations:

∆(x,B)(t) := inf
y∈B

sup
ε<t

M(x, y, ε), ∀x ∈ X, ∀t > 0,

∆(A,B)(t) := inf
(x,y)∈A×B

sup
ε<t

M(x, y, ε), ∀t > 0,

∆(A,B) := sup
t>0

∆(A,B)(t).

The closed and convex hull of a set A will be denoted by con(A) and defined as below

con(A) :=
⋂{

C : C is a closed and convex subset of X such that C ⊇ A
}
.

The F-distance between A and B is defined by

%AB(t) := sup
(x,y)∈A×B

sup
ε<t

M(x, y, ε), ∀t > 0.

Moreover, the F-distance between an element x ∈ X and the set B will be denoted by %xB(t) for all
t > 0. A point (x, y) ∈ A × B is called F-proximal provided that

M(x, y, t) = %AB(t), ∀t > 0.

The F-proximal pair of (A, B) is denoted by (A0, B0) which is defined as follows:

A0 := {x ∈ A : M(x, y, t) = %AB(t), for all t > 0, for some y ∈ B},

B0 := {y ∈ B : M(x, y, t) = %AB(t), for all t > 0, for some x ∈ A}.

It is remarkable to note that the F-proximal pairs may be empty. Next example illustrates this fact.

Example 2.1. Consider the Banach space X = `p, (1 ≤ p < ∞) with the canonical basis {en}. Let k ∈
(0, 1) be fixed and suppose A =

{
((1 + k2n)e2n) : n ∈ N

}
and B =

{
((1 + k2n+1)e2n+1) : n ∈ N

}
. Assume

that M(x, y, t) = t
t+‖x−y‖p

for all (x, y) ∈ A × B and t > 0 and let a ∗ b = ab for any a, b ∈ [0, 1]. Then
(X,M, ∗) is a fuzzy metric space and the sets A and B are bounded, closed and we have

%AB(t) = sup
(x,y)∈A×B

sup
ε<t

(
ε

ε + ‖x − y‖p

)
= sup

ε<t

(
ε

ε + (2)1/p

)
.

In view of the fact that for any (x, y) ∈ A × B and t > 0 we have M(x, y, t) < %AB(t), then A0 = B0 = ∅.
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Definition 2.2. Let (X,M, ∗;W) be a convex fuzzy metric space and E be a nonempty subset of X. The
fuzzy projection operator (briefly F-projection operator) PE : X → 2E is defined as

PE(x) :=
{
y ∈ E : M(x, y, t) = %x,E(t), ∀t > 0

}
,

where 2E denotes the set of all subsets of E.

Proposition 2.3. Let E be a nonempty, F-bounded, closed and convex subset of a strictly convex
fuzzy metric space (X,M, ∗;W) which satisfies the condition (]). If X has the property (C), then the
F-projection operator PE is single-valued.

Proof. Consider an arbitrary element x ∈ X and let r ∈ (0, 1) be fixed. Define

Pr =
{
y ∈ E : M(x, y, t) ≥ %x,E(t) − (1 − r), ∀t > 0

}
.

If y1, y2 ∈ Pr and θ ∈ (0, 1), then by the condition (]) for all t > 0 we have

M
(
x,W(y1, y2, θ), t

)
> min

{
M(x, y1, t),M(x, y2, t)

}
≥ %x,E(t) − (1 − r),

which deduces thatW(y1, y2, θ) ∈ Pr, that is, Pr is convex. We also note that if {yk}k≥1 is a sequence in
Pr which converges to an element y ∈ X, then from Lemma 1.7 we obtain

M(x, y, t) = lim
k→∞

M(x, yk, t) ≥ %x,E(t) − (1 − r), ∀t > 0,

which ensures that y ∈ Pr, that is, Pr is closed. Thus {Pr}r is a descending chain of nonempty, F-
bounded, closed and convex subsets of X. Since X has the property (C),

⋂
r>0 Pr is nonempty. Let

p ∈
⋂

r>0 Pr. Then
M(x, p, t) ≥ %x,E(t) − (1 − r), ∀r ∈ (0, 1).

Now, if r → 1−, we obtain M(x, p, t) = %x,E(t) and so p ∈ PE(x). On the other hand, if p′ ∈ X
is another member of PE(x), then from the strict convexity of X there exists θ0 ∈ (0, 1) such that
E 3 W(p, p′, θ0) < {p, p′}. Using the condition (]) for any t > 0 we obtain

M
(
x,W(p, p′, θ0), t

)
> min

{
M(x, p, t),M(x, p′, t)

}
= %x,E(t),

which is a contradiction. �

In what follows we present some sufficient conditions which guarantees the nonemptiness of F-
proximal pairs.

Lemma 2.4. Let (A, B) be a nonempty, F-bounded, closed and convex pair in a strictly convex fuzzy
metric space (X,M, ∗;W) which satisfies the condition (]). If X has the property (C), then (A0, B0) is
also nonempty, F-bounded, closed and convex. Furthermore, %AB(t) = %A0B0(t) for all t > 0.

Proof. Let r ∈ (0, 1) be fixed and put

Er =
{
x ∈ A : %x,B(t) ≥ %A,B(t) − (1 − r), ∀t > 0

}
.
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By the fact that %A,B(t) = supu∈A %u,B(t) for any t > 0, the set Er is nonempty. Suppose {xn} is a sequence
in Er such that xn → x ∈ X. Thus %xn,B(t) ≥ %A,B(t) − (1 − r) for all n ∈ N. So there exists an element
y ∈ B such that M(xn, y, t) ≥ %A,B(t) − (1 − r) for all n ∈ N. Using Lemma 1.7, we obtain

%x,B(t) ≥ M(x, y, t) = lim
n→∞

M(xn, y, t) ≥ %A,B(t) − (1 − r),

which concludes that x ∈ Er, that is, Er is closed. Moreover, if u1, u2 ∈ Er and θ ∈ (0, 1), then by the
condition (]) for any y ∈ B we have

M
(
W(u1, u2, θ), y, t

)
> min

{
M(u1, y, t),M(u2, y, t)

}
.

Taking supremum over all y ∈ B in above relation, we deduce that

%W(u1,u2,θ),B(t) ≥ min
{
%u1,B(t), %u2,B(t)

}
≥ %A,B(t) − (1 − r),

which implies that Er is convex. Since A is F-bounded, Er is F-bounded too. Thereby {Er}r>0 is a
decreasing net consists of nonempty, F-bounded, closed and convex subsets of X. Since X has the
property (C),

⋂
r>0 Er is nonempty. Using Proposition 2.3 we obtain A0 =

⋂
r>0 Er, which implies

that A0 is a nonempty, closed and convex subset of X. By a similar argument we can see that B0 is a
nonempty, closed and convex subsets of X. �

Definition 2.5. A pair (A, B) in a convex fuzzy metric space (X,M, ∗;W) is said to be F-proximinal if
A0 = A and B0 = B.

Definition 2.6. Let (A, B) be a nonempty pair in a convex fuzzy metric space (X,M, ∗;W). A mapping
T : A ∪ B −→ A ∪ B is said to be noncyclic if T (A) ⊆ A and T (B) ⊆ B. Also, a point (p, q) ∈ A × B is
said to be a best proximity pair for the noncyclic mapping T whenever

T p = p, T q = q, M(p, q, t) = %AB(t), ∀t > 0.

The set of all best proximity pairs of the noncyclic mapping T is denoted by BestA×B(T ).

3. Noncyclic contraction type mapping

We begin our main result of this section by introducing the following class of noncyclic mappings.

Definition 3.1. Let (A, B) be a nonempty pair in a convex fuzzy metric space (X,M, ∗;W). A mapping
T : A ∪ B −→ A ∪ B is said to be a

• noncyclic contraction mapping if T is noncyclic and there exists λ ∈ (0, 1) such that for all
(x, y) ∈ A × B and t > 0

M(T x,T y, t) ≥ λM(x, y, t) + (1 − λ)%AB(t);

• noncyclic contraction type mapping if T is noncyclic and there exists λ ∈ (0, 1) such that for all
(x, y) ∈ A × B and t > 0

M(T x,T y, t) ≥ λmax
{
M(x, y, t),M(x,T y, t),M(T x, y, t)

}
+ (1 − λ)%AB(t);
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• noncyclic relatively nonexpansive mapping, if T is noncyclic and

M(T x,T y, t) ≥ M(x, y, t),

for all (x, y) ∈ A × B, t > 0. In this case, if A = B, then T is called a nonexpansive self-mapping.

It is clear that every noncyclic contraction type mapping is a noncyclic contraction. Moreover, any
noncyclic contraction type mapping is a relatively nonexpansive mapping, but the reverse is not true.

Example 3.2. Let X = R, A = [0, 1] and B = [3, 4]. Suppose M(x, y, t) = t
t+|x−y| and define T : A∪B→

A ∪ B by

T (x) =

x, x ∈ A

3, x ∈ B.

Notice that T (A) ⊆ A, T (B) ⊆ B and %AB(t) = t
t+2 . Also, ∀(x, y) ∈ A × B, t > 0,

M(T x,T y, t) =
t

t + |x − 3|
≥

t
t + |x − y|

= M(x, y, t).

Now suppose T is a noncyclic contraction type mapping. Then for some λ ∈ (0, 1) and for all (x, y) ∈
A × B, we have

M(T x,T y, t) − %AB(t) ≥ λ[M(x, y, t) − %AB(t)], ∀t > 0.

Thus we have,
t

t + |x − 3|
−

t
t + 2

≥ λ

[
t

t + |x − y|
−

t
t + 2

]
, ∀t > 0.

Besides for x = 0, y = 3 we have

t
t + 3

−
t

t + 2
≥ λ

[ t
t + 3

−
t

t + 2

]
, ∀t > 0,

which implies that λ ≥ 1 and this is a contradiction. Hence, T is not a noncyclic contraction type
mapping.

It is worth noticing that the class of noncyclic relatively nonexpansive mappings may not be
continuous in general.

Example 3.3. Consider X = R and let A = [−1, 0], B = [0, 1] and M(x, y, t) = t
t+|x−y| . Define T :

A ∪ B→ A ∪ B by

T (x) =


−x − 1, x ∈ A ∩ [−1,−1

2 ]
x
2 , x ∈ A ∩ (−1

2 , 0]
x, x ∈ B.

Clearly T is not continuous, T (A) ⊆ A and T (B) ⊆ B. We claim that T is a noncyclic relatively
nonexpansive mapping.

If x ∈ A ∩ [−1,−1
2 ], y ∈ B, t > 0, then

M(T x,T y, t) =
t

t + |T x − T y|
=

t
t + | − x − 1 − y|

≥
t

t + |x − y|
= M(x, y, t).
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If x ∈ A ∩ (−1
2 , 0], y ∈ B, t > 0, then

M(T x,T y, t) =
t

t + |T x − T y|
=

t
t + | x2 − y|

≥
t

t + |x − y|
= M(x, y, t).

Hence T is a noncyclic relatively nonexpansive mapping.

In 2005, Eldred et al. studied the existence of best proximity pairs for noncyclic relatively
nonexpansive mappings defined on a union of two nonempty, weakly compact and convex subsets of
a strictly convex Banach space X by using a geometric notion of proximal normal structure (see
Theorem 2.2 of [14]). In the case that we restrict the considered mappings to noncyclic contractions,
then the existence of best proximity pairs is guaranteed without the proximal normal
structure [15, 16].

In what follows we present best proximity pair results in the framework of strictly convex fuzzy
metric spaces. To this end we need the following useful lemmas.

Lemma 3.4. Let (A, B) be a nonempty, F-bounded, closed, convex pair in a strictly convex fuzzy metric
space (X,M, ∗;W) which satisfies the condition (]) and has the property (C). Let T : A ∪ B → A ∪ B
be a noncyclic relatively nonexpansive mapping. Then there exists a pair (G1,G2) ⊆ (A, B) which is
minimal with respect to being nonempty, closed, convex and T -invariant pair of subsets of (A, B) such
that %G1G2(t) = %AB(t), for all t > 0. Also (G1,G2) is F-proximinal.

Proof. It follows from Lemma 2.4 that (A0, B0) is a nonempty, closed and convex pair for which
%AB(t) = %A0B0(t) for all t > 0. Also, if x ∈ A0, then there exists a point y ∈ B0 such that
M(x, y, t) = %AB(t) for all t > 0. Since that T is relatively nonexpansive,

%AB(t) ≥ M(T x,T y, t) ≥ M(x, y, t) = %AB(t), ∀t > 0,

and so T x ∈ A0, that is, T (A0) ⊆ A0. Equivalently, T (B0) ⊆ B0 which concludes that (A0, B0) is
T -invariant. Assume that Ξ is a collection of all nonempty sets G ⊆ A0 ∪ B0 such that (G∩ A0,G∩ B0)
is a nonempty, closed and convex pair which is F-proximinal, T -invariant and

%(G∩A0)(G∩B0)(t) = %A0B0(t)
(

= %AB(t)
)

for all t > 0. Note that A0 ∪ B0 ∈ Ξ and so Ξ is nonempty. Suppose {U j} j∈J is a descending chain in Ξ

and set U :=
⋂

j∈J U j. Since X has the property (C), we have

U ∩ A0 = (
⋂
j∈J

U j) ∩ A0 =
⋂
j∈J

(U j ∩ A0) , ∅.

Obviously, U ∩A0 is closed and convex. Similarly, the set U ∩B0 is also nonempty, closed, convex and
it is easy to see that the pair (U ∩ A0,U ∩ B0) is T -invariant. We show that %(U∩A0)(U∩B0)(t) = %AB(t) for
all t > 0 and that (U ∩ A0,U ∩ B0) is F-proximinal. Let x ∈ U ∩ A0. Then x ∈ U j ∩ A0 for any j ∈ J.
In view of the fact that the pair (U j ∩ A0,U j ∩ B0) is F-proximinal, there exists y ∈ U j ∩ B0 for which
M(x, y, t) = %AB(t) for all t > 0. Note that this element, y, is unique. Indeed, if there is another element
y′ ∈ B0 such that M(x, y′, t) = %AB(t) for all t > 0 then from Lemma 1.19 there exists θ ∈ (0, 1) such
thatW(y, y′, θ) < {y, y′}. It follows from the condition (]) that

M(W(y, y′, θ), x, t) = min{M(y, x, θ), x, t),M(y′, x, θ), x, t)}
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for all t > 0. Using Lemma 1.18 we obtain W(y, y′, θ) ∈ {y, y′} which is a contradiction. Hence
(U∩A0,U∩B0) ∈ Ξ. Now using Zorn’s lemma, Ξ has a minimal element, say G. If we set G1 = G∩A0

and G2 = G ∩ B0, then the result follows. It is worth noticing that since G ∈ Ξ is minimal we must
have (G1,G2) is F-proximinal. �

It is remarkable to note that if in Lemma 3.4 the pair (A, B) is compact, then the condition of
property (C) of X can be dropped.

Notation: Under the hypothesis of Lemma 3.4, byMT (A, B) we denote the family of all nonempty,
closed, convex, minimal and T -invariant pair (G1,G2) ⊆ (A, B) for which %G1,G2(t) = %AB(t) for all
t > 0.

Lemma 3.5. Let (A, B) be a nonempty pair in a convex fuzzy metric space (X,M, ∗;W). Then

∆(
con(A),con(B)

)(t) = ∆(A,B)(t), ∀t > 0.

Proof. Since (A, B) ⊆
(
con(A), con(B)

)
, it is sufficient to verify that ∆(A,B)(t) ≤ ∆(con(A),con(B))(t) for all

t > 0. Let x ∈ A and t > 0 be arbitrary and fixed. Then for any y ∈ B we have M(x, y, t) ≥ ∆(x,B)(t).
Put ∆(x,B)(t) := 1 − rx. Thus we have B ⊆ B[x, rx, t] which implies that con(B) ⊆ B[x, rx, t]. Therefore,
con(B) ⊆

⋂
x∈AB[x, rx, t]. Put ∆(A,B)(t) := 1 − r. Now if v ∈ con(B), then con(A) ⊆ B[v, r, t]. Indeed,

for all x ∈ A since v ∈ con(B),

M(x, v, t) ≥ 1 − rx = ∆(x,B)(t) ≥ ∆(A,B)(t) = 1 − r,

and so x ∈ B[v, r, t], that is, A ⊆ B[v, r, t] which concludes that con(A) ⊆ B[v, r, t]. This implies that

con(A) ⊆
⋂

v∈con(B)

B[v, r, t],

which ensures that ∆(
con(A),con(B)

)(t) ≥ 1 − r = ∆(A,B)(t) and hence the lemma. �

Next theorem is the main result of this section.

Theorem 3.6. Let (A, B) be a nonempty, F-bounded, closed and convex pair in a strictly convex fuzzy
metric space (X,M, ∗;W) which satisfies the condition (]) and has the property (C). Assume that
T : A ∪ B → A ∪ B is a noncyclic contraction type mapping in the sense of Definition 3.1. Then
BestA×B(T ) , ∅.

Proof. Lemma 3.4 guarantees thatMT (A, B) is nonempty. Suppose (G1,G2) ∈ MT (A, B). In view of
the fact that T is noncyclic,

(
con(T (G1)), con(T (G2))

)
⊆ (G1,G2) and so

T (con(T (G1))
)
⊆ T (G1) ⊆ con(T (G1)),

T (con(T (G2))
)
⊆ T (G2) ⊆ con(T (G2)),

which implies that the closed and convex pair
(
con(T (G1)), con(T (G2))

)
is T -invariant, that is,(

con(T (G1)), con(T (G2))
)
∈ MT (A, B).
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It follows from the minimality of (G1,G2) that con(T (G1)) = G1 and con(T (G2)) = G2. Since (G1,G2)
is F-proximinal, there exists an element (x, y) ∈ G1 ×G2 for which

M(x, y, t) = %G1G2(t)
(

= %AB(t)
)
, ∀t > 0.

Relatively nonexpansiveness of T deduces that

%AB(t) ≥ %con(T (G1))con(T (G2))(t) ≥ M(T x,T y, t) ≥ M(x, y, t) = %AB(t),

for all t > 0 and so, %con(T (G1))con(T (G2))(t) = M(T x,T y, t) = %AB(t). Let u ∈ G1 and t > 0 be an arbitrary
fixed number. If v ∈ G2, because of the fact that T is a noncyclic contraction type mapping, we have

M(T u,T v, t) ≥ λmax
{
M(u, v, t),M(u,T v, t),M(T u, v, t)

}
+ (1 − λ)%AB(t)

≥ λmax
{
M(u, v, t),M(u,T v, t),M(T u, v, t)

}
+ (1 − λ)M(u, v, t)

≥ λ∆(G1,G2)(t) + (1 − λ)%AB(t)

where λ ∈ (0, 1). Put
1 − r := λ∆(G1,G2)(t) + (1 − λ)%AB(t).

Then M(T u,T v, t) ≥ 1− r, and hence T v ∈ B[T u, r, t] for all v ∈ G2. Thus T (G2) ⊆ B[T u, r, t] which
concludes that

G2 = con(T (G2)) ⊆ B[T u, r, t].

Thus for any w ∈ G2 we have M(T u,w, t) ≥ 1 − r and so

∆(T u,G2)(t) = inf
w∈G2

M(T u,w, t) ≥ 1 − r, ∀u ∈ G1.

Therefore, ∆(T (G1),G2)(t) = infx∈G1 ∆(T u,G2)(t) ≥ 1 − r. Equivalently, ∆(G1,T (G2))(t) ≥ 1 − r. Using
Lemma 3.5 we obtain

∆(G1,G2)(t) = ∆(
con(T (G1)),G2

)(t) = ∆(T (G1),G2)(t) ≥ 1 − r = λ∆(G1,G2)(t) + (1 − λ)%AB(t).

Thereby ∆(G1,G2)(t) = %AB(t), which leads us to

M(x, y, t) = %AB(t), ∀(x, y) ∈ G1 ×G2.

We assert that both the sets G1 and G2 are singleton. Let x1 and x2 be two distinct elements of G1.
Since X is strictly convex, from Lemma 1.19, there exists θ ∈ (0, 1) for whichW(x1, x2, θ) < {x1, x2}.
According to the condition (]), for any y ∈ G2 we obtain

%AB(t) ≥ M(W(x1, x2, θ), y, t) > min{M(x1, y, t),M(x2, y, t)} ≥ ∆(G1,G2)(t) = %AB(t), ∀t > 0,

which is a contradiction. So G1 is singleton. Similarly, G2 is singleton too. Let G1 = {p} and G2 = {q}
for some (p, q) ∈ G1 ×G2. Then (p, q) ∈ BestA×B(T ) and the proof is completed. �

The following corollaries are straightforward consequences of Theorem 3.6.
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Corollary 3.7. Let (A, B) be a nonempty, F-bounded, closed and convex pair in a strictly convex fuzzy
metric space (X,M, ∗;W) which satisfies the condition (]) and has the property (C). If T : A ∪ B →
A ∪ B is a noncyclic contraction mapping, then BestA×B(T ) , ∅.

Corollary 3.8. Let (A, B) be a nonempty, closed and convex pair in a strictly convex and compact
fuzzy metric space (X,M, ∗;W) which satisfies the condition (]). If T : A ∪ B→ A ∪ B is a noncyclic
contraction type mapping, then BestA×B(T ) , ∅.

In the next section, we present an extension version of Corollary 3.8 for noncyclic relatively
nonexpansive mappings. We do that by considering a geometric concept of fuzzy proximal normal
structure which is defined on a nonempty and convex pair of subsets of a convex fuzzy metric space.

4. Noncyclic relatively nonexpansive mappings

The notion of proximal normal structure (PNS for brief) was first introduced in [14] in the setting
of Banach spaces in order to study the existence of best proximity pairs for noncyclic relatively
nonexpansive mappings. After that, in [17], a concept of proximal quasi-normal structure as a
generalization of PNS was presented in the framework of convex metric spaces for the purpose of
survey the existence of best proximity points for cyclic relatively nonexpansive mappings. We also
mention that a characterization of PNS was given in [18] by using proximal diametral sequences. It
was announced in [14] that every nonempty, compact and convex pair in a Banach space X has the
PNS (see also Theorem 3.5 of [18] for a different approach to the same problem).

In what follows we present the concept of PNS in the setting of convex fuzzy metric spaces.

Definition 4.1. A convex pair (A, B) in a convex fuzzy metric space (X,M, ∗;W) is said to have Fuzzy
proximal normal structure (F-PNS for brief) if for any F-bounded, closed, convex and proximinal pair
(G1,G2) ⊆ (A, B) such that %G1G2(t) = %AB(t) and ∆(G1,G2)(t) < %AB(t) for all t > 0, there exist a point
(u, v) ∈ G1 ×G2 and t0 > 0 such that

min
{
∆(u,G2)(t0),∆(G1,v)(t0)

}
> ∆(G1,G2)(t0).

It is clear that under the assumptions of the above definition, the sets G1 and G2 are not singleton.
Moreover, if we take A = B, then we get the notion of fuzzy normal structure which was introduced
in [3].

Remark 4.2. It is remarkable to note that if X is a Banach space, a∗b = min {a, b} and for any x, y ∈ X
and t > 0, θ ∈ (0, 1), we define

M(x, y, t) =
t

t + ‖x − y‖
, W(x, y, θ) = θx + (1 − θ)y,

then the concepts of F-PNS and PNS coincide. In this way, every nonempty, bounded, closed and
convex pair in a uniformly convex Banach space X has the F-PNS (see Proposition 2.1 of [14]). We
refer to [18–20] for further information about the PNS in Banach spaces.

Definition 4.3. We say that a convex fuzzy metric space (X,M, ∗;W) is strongly convex provided that
for any x1, x2, y1, y2 ∈ X and θ ∈ (0, 1) we have

M(W(x1, x2, θ),W(y1, y2, θ), t) ≥ θM(x1, y1, t) + (1 − θ)M(x2, y2, t), ∀t > 0.
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Example 4.4. Suppose that (X,W, d) is a hyperbolic metric space in the sense of Kohlenbach ( [21]).
If we define a ∗ b = min{a, b} and M(x, y, t) = t

t+d(x,y) for all x, y ∈ X and t > 0, then (X,M, ∗;W) is a
strongly convex fuzzy metric space.

We are now ready to state the main conclusion of this section.

Theorem 4.5. Let (A, B) be a nonempty, F-bounded, closed and convex pair in a strongly convex fuzzy
metric space (X,M, ∗;W) which satisfies the condition (]) and has the property (C). Let T : A ∪ B →
A∪ B be a noncyclic relatively nonexpansive mapping. If moreover, X is strictly convex and (A, B) has
F-PNS, then BestA×B(T ) , ∅.

Proof. It follows from Lemma 3.4 that MT (A, B) is nonempty. Assume that (G1,G2) ∈ MT (A, B).
Equivalent reasoning of the proof of Theorem 3.6 concludes that con(T (G1)) = G1 and con(T (G2)) =

G2. In the case that ∆(G1,G2)(t) = %AB(t) for all t > 0, then by a similar argument of Theorem 3.6 we are
finished. So assume that ∆(G1,G2)(t) < %AB(t) for all t > 0. Since (A, B) has F-PNS , there is a point
(u, v) ∈ G1 ×G2, t0 > 0 and ν ∈ (0, 1) such that

νmin
{
∆(u,G2)(t0),∆(G1,v)(t0)

}
≥ ∆(G1,G2)(t0).

By the proximinality of the pair (G1,G2), there exists an element (u′, v′) ∈ G1×G2 such that M(u, v′, t) =

σAB(t) = M(u′, v, t) for all t > 0. For θ ∈ (0, 1) put u∗ := W(u, u′, θ) ∈ G1 and v∗ := W(v′, v, θ) ∈ G2.
Since X is strongly convex,

M(u∗, v∗, t) = M
(
W(u, u′, θ),W(v′, v, θ), t

)
≥ θM(u, v′, t) + (1 − θ)M(u′, v, t)
= %AB(t),

which implies that M(u∗, v∗, t) = %AB(t) for all t > 0. On the other hand for any y ∈ G2 we have

M(u∗, y, t0) = M
(
W(u, u′, θ), y, t0

)
≥ θM(u, y, t0) + (1 − θ)M(u′, y, t0).

By taking infimum of two sides of the above inequality on y ∈ G2, we conclude that

∆(u∗,G2)(t0) ≥ θ∆(u,G2)(t0) + (1 − θ)M(u′,G2, t0)

≥
θ

ν
∆(G1,G2)(t0) + (1 − θ)∆(G1,G2)(t0)

> ∆(G1,G2)(t0).

Similarly, we can see that
∆(G1,v∗)(t0) > ∆(G1,G2)(t0).

Therefore, min
{
∆(u∗,G2)(t0),∆(G1,v∗)(t0)

}
> ∆(G1,G2)(t0). Put 1 − r1 := ∆(u∗,G2)(t0) and 1 − r2 := ∆(G1,v∗)(t0).

If we define

G∗1 =

⋂
y∈G2

B[y, r1, t0]

 ∩G1 and G∗2 =

⋂
x∈G1

B[x, r2, t0]

 ∩G2,
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then (G∗1,G
∗
2) is a closed and convex subset of (G1,G2) and (u∗, v∗) ∈ G∗1 × G∗2 which implies that

%G∗1G∗2
(t) = %AB(t) for any t > 0. We show that T is noncyclic on G∗1∪G∗2. Suppose x ∈ G∗1. Then x ∈ G1

and for any y ∈ G2 we have M(x, y, t0) ≥ 1 − r1. Since T is relatively nonexpansive, M(T x,T y, t0) ≥
M(x, y, t0) ≥ 1 − r1, that is, T y ∈ B[T x, r1, t0] for all y ∈ G2. Thus T (G2) ⊆ B[T x, r1, t0]. Thereby,
G2 = con(T (G2)) ⊆ B[T x, r1, t0] and so T x ∈ G∗1 for all x ∈ G∗1, which ensures that T (G∗1) ⊆ G∗1.
Equivalently, T (G∗2) ⊆ G∗2, that is, T is noncyclic on G∗1 ∪ G∗2. Minimality of (G1,G2) deduces that
G1 = G∗1 and G2 = G∗2. Hence

G1 ⊆

⋂
y∈G2

B[y, r1, t0]

 and G2 ⊆

⋂
x∈G1

B[x, r2, t0]

 .
Thus, for any (x, y) ∈ G1 ×G2 we have M(x, y, t0) ≥ max{1 − r1, 1 − r2} and so

min{1 − r1, 1 − r2} > ∆(G1,G2)(t0) ≥ max{1 − r1, 1 − r2},

which is impossible. �

To obtain a real extension of Theorem 1.24, we need the following proposition.

Proposition 4.6. Every nonempty, compact and convex pair (A, B) in a strictly convex fuzzy metric
space (X,M, ∗;W) which satisfies the condition (]) has the F-PNS.

Proof. Suppose the contrary, that is, there exists a closed, convex and proximinal pair (G1,G2) ⊆ (A, B)
such that %G1G2(t) = %AB(t) > ∆(G1,G2)(t), ∀t > 0,

∆(u,G2)(t) = ∆(G1,G2)(t), ∀u ∈ G1,∀t > 0.

Notice that if G2 = {v}, for some v ∈ X, then from the proximinality of the pair (G1,G2), there exists
an element u′ ∈ G1 such that M(u′, v, t) = %AB(t) for all t > 0. Then

%AB(t) = M(u′, v, t) = ∆(u′,G2)(t) = ∆(G1,G2)(t),

which is impossible. So, assume that v1, v2 ∈ G2. Strict convexity of X implies that there exists
θ0 ∈ (0, 1) for which G2 3 W(v1, v2, θ0) < {v1, v2}. Proximinality of (G1,G2) deduces that there are
u1, u2 ∈ G1 for which M(u1, v1, t) = %AB(t) = M(u2, v2, t) for any t > 0. If u1 = u2, then by the condition
(]),

M(u1,W(v1, v2, θ0), t) > min
{
M(u1, v1, t),M(u2, v2, t)

}
= %AB(t),

which is impossible. Thus u1 , u2. Again from the strict convexity of X there exists θ1 ∈ (0, 1) such
that G2 3 W(u1, u2, θ1) < {u1, u2}. Since G2 is compact and M

(
W(u1, u2, θ1), . , t

)
is continuous on G2,

there exists an element v3 ∈ G2 for which

M(W(u1, u2, θ1), v3, t) = ∆(
W(u1,u2,θ1),G2

)(t) = ∆(G1,G2)(t), ∀t > 0.

Besides, from the condition (]) we have

∆(G1,G2)(t) = M
(
W(u1, u2, θ1

)
, v3, t) > min{M(u1, v3, t),M(u2, v3, t)},

which is a contradiction.
By an equivalent manner if ∆(G1,v)(t) = ∆(G1,G2)(t) for all v ∈ G2 and t > 0, then we get a contradiction

and the result follows. �
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The next result is a generalization of Theorem 1.24 and Corollary 3.8.

Corollary 4.7. Let (A, B) be a nonempty, compact, convex pair in a strongly convex fuzzy metric space
(X,M, ∗;W) which is strictly convex and satisfies the condition (]). Assume that T : A ∪ B → A ∪ B
is a noncyclic relatively nonexpansive mapping. Then BestA×B(T ) , ∅.

As a consequence of Corollary 4.7 we obtain the following best proximity pair theorem which is a
main result of [14].

Corollary 4.8. Let (A, B) be a nonempty, compact, convex pair in a strictly convex Banach space X.
Assume that T : A∪B→ A∪B is a noncyclic relatively nonexpansive mapping. Then BestA×B(T ) , ∅.

5. Conclusions

In this article, we have considered the concept of fuzzy projection operator and used to ensure the
nonemptiness of proximal pairs of F-bounded, closed and convex pair of subsets of a strictly convex
fuzzy metric space. Then we have established a best proximity pair theorem for noncyclic contractions.
Finally by using a geometric property of fuzzy proximal normal structure, we have presented a new
extension of Kirk’s fixed point theorem ( [2]) for noncyclic relatively nonexpansive mappings in the
framework of strictly convex fuzzy metric spaces.
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