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1. Introduction

The classical Banach fixed point theorem [1] is a very useful and effective tool of functional
analysis. This classical result has applications not only in different branches of Mathematics, such as
ordinary differential equations, partial differential equations, integral equations, optimization, and
variational analysis, but used as an effective tool in other subjects, such as economics, game theory,
and biology as well. This theorem provides the existence and uniqueness of the fixed point of a
self-map satisfies the contraction condition defined on a complete metric space. There are many
extensions of the Banach fixed point theorem, like Ciric theorem, Caristi theorem, Boyd-Wong
theorem, and Browder-Kirk theorem. One of the most interesting extensions of this classical result
was made by Perov [2]. In his work, Perov extended the Banach contraction principle to mappings
defined on product spaces. Many contributions related to fixed point theory in that context have been
made by different researchers, for example, Abbas et al. [3] investigated fixed points of Perov type
contractive mappings on a set endowed with a graphic structure, Filip and Petrusel [4] explored fixed
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point theorems on a set endowed with vector-valued metric. Many other researchers also showed keen
interest in this result, namely, Cretkovic and Rakocevic [5], Altun and Olgun [6], Ilic et al. [7], Vetro
and Radenovic [8], discussed this result under various circumstances to get fixed points.

Alam and Imdad [9] extended the Banach fixed point theorem to a complete metric space endowed
with a binary relation and discussed a more generalized way to get fixed points. In this work, we
extend the Perov-fixed point theorem for single-valued and multi-valued mappings in the framework
of a generalized metric space equipped with a binary relation. Here, the contractive inequality is
considerably weaker than the classical contractive inequality because it is needed that the contractive
inequality holds only on those elements which are related to each other under the respect binary relation
instead of the entire space.

2. Preliminaries

In this section, we recollect the material required to prove our results. Here, by N,W, Q and R, we
mean the set of all natural numbers, whole numbers, rational numbers and the set of all real numbers,
respectively. Let X be a non-empty set, R+ be the set of all non-negative real numbers and M(IR) be
the set consisting of all m × 1 real matrices. Let u, v ∈ M(IR), then these elements are of the form
u = (u1, u2, . . . , um)T and v = (v1, v2, . . . , vm)T , where T denotes the transpose of a matrix. Then by
u ≤ v (respectively u < v), we mean that ui ≤ vi (respectively ui < vi), ∀ i = 1, 2, · · · ,m.

The concept of generalized metric space, also known as vector-valued metric space, was discussed
by Perov in the following way.

Definition 2.1. [2] Let X be a non-empty set and let ρ : X × X → M(IR) be a map such that for all
a, b, c ∈ X the following axioms hold.

(M1) ρ(a, b) ≥ 0,

(M2) ρ(a, b) = 0⇔ a = b,

(M3) ρ(a, b) = ρ(b, a),

(M4) ρ(a, c) ≤ ρ(a, b) + ρ(b, c),
where 0 is the zero matrix of order m × 1. Then the map ρ is called a vector-valued metric on X and
the pair (X, ρ) is called a generalized metric space or vector-valued metric space.

The convergence and Cauchyness of a sequence in a generalized metric space are analogous to those
in a metric space.

Definition 2.2. [2] Let (X, ρ) be a generalized metric space and let {an} be a sequence in X. Then, we
say that

(1) {an} is convergent to a ∈ X if limn→∞ ρ(an, a) = 0.

(2) {an} is a Cauchy sequence if limn,m→∞ ρ(an, am) = 0.

Note that a generalized metric space (X, ρ) is said to be complete if each Cauchy sequence in it is
also convergent.

Throughout the paper, we denote the set of all square matrices of order m with non-negative entries
by Mm(R+), the zero matrix of order m × m by 0m, and the identity matrix by Im. Note that for any
A ∈ Mm(R+), we have A0 = Im.
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The concept of a matrix converges to zero is elaborated through the following definition and
example.

Definition 2.3. [2] Let A ∈ Mm(R+), then A is said to be a matrix convergent to a zero matrix, if
An → 0m as n→ ∞.

Example 2.4. [4] The given below matrices are convergent to a zero matrix.

A :=
(

x x
y y

)
, where x, y ∈ R+ and x + y < 1;

B :=
(

x y
0 z

)
, where x, y, z ∈ R+ and max{x, z} < 1.

From Petrusel-Filip [4], we discuss other equivalent conditions of matrices converge to zero.

Theorem 2.5. [4] Let A ∈ Mm(R+). Then the following conditions are equivalent.

(a) A is convergent to zero.

(b) The set of all eigenvalues of A is contained in the open unit disc, that is, |λ| < 1 for every λ ∈ C
with det(A − λIm) = 0.

(c) The matrix Im − A is nonsingular (i.e. det(Im − A) , 0 ) and

(Im − A)−1 = Im + A + · · · + An + · · · .

(d) Anu→ 0 as n→ ∞, for all u ∈ M(IR).

(e) An → 0 as n→ ∞.

The following is another example of a matrix convergent to a zero matrix.

Example 2.6. If each a1, a2, . . . , am is less than 1, then

A :=


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

0 0 . . . am


m×m

inMm(R+) is convergent to zero.

We are now going to discuss some concepts regarding the binary relation.

Definition 2.7. [10] Let X be a non-empty set. Then the Cartesian product on X is defined as:

X2 = X × X = {(a, b) : a, b ∈ X}.

Any subset R of X2 is called a binary relation on X.

Note that for every pair (a, b) ∈ X2, one of the following two situations must hold:

(1) (a, b) ∈ R, which means that a is R-related to b or a relates to b under R. We also write (a, b) ∈ R
as aRb.
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(2) (a, b) < R, which means that a is not R-related to b or a doesn’t relates to b under R. We also write
(a, b) < R as a 6 Rb.

As X2 and φ are two trivial subsets of X2, we call them trivial binary relations on X. The binary relations
X2 and φ are called the universal relation (or the full relation) and empty relation, respectively. There
is another important and useful binary relation on X named as the equality relation or identity relation
(or the diagonal relation) and is defined as

dia(X) = ∆X := {(a, a) : a ∈ X}.

Throughout the paper, we denote R for a non-empty binary relation, but for our convenience, we write
it as “binary relation” instead of writing “non-empty binary relation”.

Alam and Imdad [9] presented the notion of R-Comparative in the following way.

Definition 2.8. [9] Let X be a non-empty set and R be a binary relation defined on X. Then we say
that any two elements a, b ∈ X are R-Comparative, if either (a, b) ∈ R or (b, a) ∈ R.
If a, b ∈ X are R-Comparative, then we denote them by [a, b] ∈ R.

A binary relation is classified into several types through the appropriate conditions. A few types of
binary relations are defined in the following definitions.

Definition 2.9. [10] Let X be a non-empty set and R be a binary relation on X. Then R is said to be:

(1) Reflexive if (a, a) ∈ R,∀a ∈ X.

(2) Irreflexive if (a, a) < R, ∀a ∈ X.

(3) Non-reflexive if (a, a) < R for some a ∈ X.

(4) Non-irreflexive if (a, a) ∈ R for some a ∈ X.

(5) Symmetric if (a, b) ∈ R implies (b, a) ∈ R, ∀a, b ∈ X.

(6) Anti-symmetric if (a, b) ∈ R and (b, a) ∈ R implies a = b, ∀a, b ∈ X.

(7) Transitive if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R, ∀a, b, c ∈ X.

(8) Complete or connected if [a, b] ∈ R, ∀a, b ∈ X.

(9) Weakly complete or weakly connected if [a, b] ∈ R or a = b, ∀a, b ∈ X.

Definition 2.10. [10] Let X be a non-empty set and R be a binary relation defined on X. Then the
binary relation R is called:

(1) Sharp order or strict order if R is irreflexive and transitive.

(2) Near order if R is anti-symmetric and transitive.

(3) Pre-order or quasi order if R is reflexive and transitive.

(4) Partial order if R is reflexive, anti-symmetric and transitive.

(5) Pseudo order if R is reflexive and anti-symmetric.

(6) Equivalence order if R is reflexive, symmetric and transitive.

(7) Simple order if R is weakly complete strict order.

(8) Weak order if R is complete pre-order.
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(9) Total order, Chain or Linear order if R is complete partial order.

(10) Tolerance if R is reflexive and symmetric.

The following well-known proposition states that every universal relation is a complete equivalence
relation.

Proposition 2.11. [10] Let R be the full binary relation (universal relation) defined on a non-empty
set X. Then R is a complete equivalence relation.

The following proposition is an extended form of Proposition 2.3 presented in [9].

Proposition 2.12. Let (X, ρ) be a generalized metric space endowed with a binary relation R, and let
T : X → X be a mapping. Also assume that A ∈ Mm(R+) be a matrix convergent to zero, then the
following contractive conditions are equivalent:

(1) ρ(Ta,Tb) ≤ Aρ(a, b),∀a, b ∈ X with (a, b) ∈ R,

(2) ρ(Ta,Tb) ≤ Aρ(a, b),∀a, b ∈ X with [a, b] ∈ R.

Proof. It is trivial that if (2) holds, then (1) exists. Now, we show that the existence of (1) implies the
existence of (2).

Suppose (1) holds and a, b ∈ X with [a, b] ∈ R, that is either (a, b) ∈ R or (b, a) ∈ R.
If (a, b) ∈ R, then (2) holds directly from (1).
If (b, a) ∈ R, using M3, we get

ρ(Ta,Tb) = ρ(Tb,Ta) ≤ Aρ(b, a) = Aρ(a, b).

This implies that (2) holds. �

Alam and Imdad [9] stated the notion of R-preserving sequence as follows.

Definition 2.13. [9] Let R be a binary relation on a non-empty set X. A sequence (an) ⊆ X is called
R-preserving if

(an, an+1) ∈ R,∀n ∈W.

The concept of d-self closedness for an arbitrary binary relation defined on a metric space (X, d)
was presented by Alam and Imdad [9].

Definition 2.14. Let (X, ρ) be a generalized metric space endowed with a binary relation R. Then R
is said to be ρ-self-closed, if for each R-preserving sequence (an) with limit point a ∈ X, there exists a
subsequence (ank) of (an) with [ank , a] ∈ R, ∀k ∈ N.

The above definition is elaborated with the following example.

Example 2.15. Let X = R equipped with a generalized metric ρ defined by

ρ(a, b) =

[
|a − b|
|a − b|

]
and a binary relationR defined byR = {(a, b) : a, b ≥ 0}. Consider an arbitraryR-preserving sequence
(an) with limit point a ∈ X, that is limn→∞ ρ(an, a) = 0 and anRan+1 for each n ∈ N. By R-preserving
nature of (an), we get an, an+1 ≥ 0 for each n ∈ N. Also, the fact limn→∞ ρ(an, a) = 0 implies a ≥ 0,
since an ≥ 0 for each n ∈ N. Thus, an, a ≥ 0 for each n ∈ N, that is anRa for each n ∈ N. Hence, we
say that there exists a subsequence (ank) of (an) with [ank , a] ∈ R ∀k ∈ N.
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Alam and Imdad [9] stated the notions of T -closed binary relation and R-directed set as follows.

Definition 2.16. [9] Let X be a non-empty set and T : X → X be a mapping. Then a binary relation
R is called T-closed, if for each a, b ∈ X

(a, b) ∈ R ⇒ (Ta,Tb) ∈ R.

Definition 2.17. [9] Let X be a non-empty set and R be a binary relation on X. A subset E of X is
said to be R-directed if for every a, b ∈ E, there exists c ∈ X such that (a, c) ∈ R as well as (b, c) ∈ R.

The following definition presents the notion of a path between two points of a set endowed with a
binary relation.

Definition 2.18. Let R be a binary relation on a non-empty set X. For a, b ∈ X, a finite sequence
{c0, c1, . . . , cl} ⊆ X is called a path from a to b of length l in R, where l ∈ N, if:
(1) c0 = a and cl = b,
(2) [ci, ci+1] ∈ R ∀i = 0, 1, 2, · · · , l − 1.

Note that every path of length l contains l + 1 elements of X, but not necessarily distinct.

3. Main results

Before moving toward the results of this section, we denote the set of all fixed points of T in X by
f ixX(T ) and the family of all finite paths from a to b (where a, b ∈ X) in R by CR(a, b).

We are now going to state and prove our first result that is a generalized form of the result presented
by Perov [2].

Theorem 3.1. Let (X, ρ) be a complete vector-valued metric space endowed with a binary relation R
and T : X → X be a mapping. Suppose that:

(i) There exists a ∈ X such that (a,Ta) ∈ R;

(ii) R is T -closed, that is, for each a, b ∈ X with (a, b) ∈ R, we have (Ta,Tb) ∈ R;

(iii) Either T is continuous or R is ρ-self-closed;

(iv) There exists a matrix A ∈ Mm(R+) convergent to zero such that

ρ (Ta,Tb) ≤ Aρ(a, b), ∀a, b ∈ X with (a, b) ∈ R.

Then T has a fixed point.

(v) Further, if CR(a, b) , φ,∀a, b ∈ X, then T has a unique fixed point.

Proof. Using hypothesis (i), we get an element a0 ∈ X with (a0,Ta0) ∈ R. Define a Picard iterative
sequence (an) in the following way:

a0, a1 = Ta0, a2 = Ta1 = T 2a0, · · · , an = T na0, · · · .

As (a0, a1) ∈ R, thus, using hypothesis (ii) we reach the fact that

(an, an+1) ∈ R ∀n ∈W. (3.1)
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That is, the sequence (an) is R-preserving. By using (iv) and (3.1), we get

ρ(an+1, an+2) ≤ Aρ(an, an+1) ≤ A2ρ(an−1, an) · · · ≤ An+1ρ(a0, a1)∀n ∈W.

From the above and triangular inequality, for all n,m ∈W with m > n and m ≥ 2, we get

ρ(an+1, an+m) ≤ ρ(an+1, an+2) + ρ(an+2, an+3) + · · · + ρ(an+m−1, an+m)
≤ (An+1 + An+2 + · · · + An+m−1)ρ(a0, a1)
= An+1(Im + A + A2 + · · · + Am−2)ρ(a0,Ta0)
≤ An+1(Im + A + A2 + · · · )ρ(a0,Ta0)

= An+1(Im − A)−1ρ(a0,Ta0)→ 0 as n→ ∞,

which implies that the sequence (an) is a Cauchy in X. As (X, ρ) is a complete space, there exists a ∈ X
such that

an
ρ
−→ a or lim

n→∞
an = a.

Now, in lieu of (i), if T is continuous then we have T (an)
ρ
−→ T (a), that is,

a = lim
n→∞

an+1 = lim
n→∞

T (an) = T (a).

Hence, T has a fixed point.
On the other hand, if R is ρ-self-closed then for the above defined R-preserving (an) (with

limn→∞ an = a), there exists a subsequence (ank) of (an) with [ank , a] ∈ R ∀k ∈ N. Using this fact in
lieu of (iv), we get

ρ(ank+1,Ta) = ρ(Tank ,Ta) ≤ Aρ(ank , a)→ 0 as k → ∞.

This implies that
lim
k→∞

ank+1 = T (a).

But
T (a) = lim

k→∞
ank+1 = lim

k→∞
ank = lim

n→∞
an = a.

Hence, a is a fixed point of T .
To prove the uniqueness, suppose that (v) holds and a, b ∈ f ixX(T ), i.e., T (a) = a, T (b) = b.
By assumption (v), there exists a finite path from a to b (say {c0, c1, . . . , cl}) of length l in R such

that
c0 = a, cl = b, [ci, ci+1] ∈ R, ∀i = 0, 1, · · · , l − 1. (3.2)

Since R is T -closed, thus, we get

[T n(ci),T n(ci+1)] ∈ R, ∀i = 0, 1, · · · , l − 1, and ∀n ∈ N. (3.3)

By the triangular inequality, (3.3) and assumption (iv), we reach to

ρ(a, b) = ρ(T n(c0),T n(cl)) ≤ ρ(T n(c0),T n(c1)) + ρ(T n(c1),T n(c2)) + · · · + ρ(T n(cl−1),T n(cl))
≤ Aρ(T n−1(c0),T n−1(c1)) + Aρ(T n−1(c1),T n−1(c2)) + · · · + Aρ(T n−1(cl−1),T n−1(cl))

· · · ≤ Anρ(c0, c1) + Anρ(c1, c2) + · · · + Anρ(cl−1, cl) → 0 as n→ ∞.

That is ρ(a, b) = 0⇒ a = b. Hence, a is the unique fixed point of T . �
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Remark 3.2. Note that if R is a complete order or X is a R-directed set, then CR(a, b) , φ ∀a, b ∈ X.

If R is complete order, then each a, b ∈ X is R-Comparative, i.e., [a, b] ∈ R ∀a, b ∈ X, which implies
that {a, b} is a path from a to b of length 1 in R. Hence, CR(a, b) , φ ∀a, b ∈ X.

If X is R-directed set, then for each a, b ∈ X, there exists c ∈ X such that (a, c) ∈ R as well as
(b, c) ∈ R. This shows that for each a, b ∈ X, we have a path {a, c, b} from a to b of length 2 in R.
Hence, CR(a, b) , φ ∀a, b ∈ X.

By considering the above remark and Theorem 3.1, one can conclude the following corollary.

Corollary 3.3. If the hypotheses (i)–(iv) of Theorem 3.1 are true with either R as a complete order or
X as a R-directed set. Then T has a unique fixed point.

Theorem 3.1 deduces to several well-known fixed point theorems of the existing literature by
considering the following special cases.

(1) Under the full binary relation (i.e. R = X2), Theorem 3.1 yields the Perov-fixed point theorem [2].

(2) By taking m = 1 and the universal relation, Theorem 3.1 yields the Banach contraction
principle [1].

(3) By setting m = 1 and R as the partial order � in Theorem 3.1, we get the Theorems 2.1–2.3
of Nieto and Rodriguez-Lopez [11]. Here, the property “� is T -closed” is equivalent to the
increasing property of T .

(4) Putting m = 1 and R =�, the dual binary relation associated with a partial order � in Theorem 3.1,
we obtain Theorems 2.4 and 2.5 of Nieto and Rodriguez-Lopez [11].

(5) On setting R by pre-order � with m = 1 in Theorem 3.1, we have Theorem 1 of Turinici [12].

(6) By choosing R as the transitive binary relation � in Theorem 3.1 with m = 1, we can obtain
Theorems 2.2 and 2.4 of Ben-El-Mechaiekh [13].

(7) Particularizing m = 1 and choosing R by the tolerance relation ≺� associated with a partial order
� in Theorem 3.1, we can obtain Theorem 2.1 of Turinici [14] and Theorem 2.1 of Turinici [15].

To elaborate Theorem 3.1, we provide the following examples.

Example 3.4. Let X = R and ρ(a, b) =

[
|a − b|
|a−b|

2

]
, then clearly (X, ρ) is complete vector-valued metric

space. Define a binary relation R and a self mapping T : X → X as follows:

R =
{
(a, b) ∈ X2 : a, b ∈ Q

}
,

T (a) = a
2 + 4 ∀a ∈ X.

As for each a ∈ Q, we get T (a) ∈ Q, thus (a,Ta) ∈ R. Also, (a, b) ∈ R implies that (Ta,Tb) ∈ R (i.e.,
R is T -closed). Further, T is continuous map. Furthermore, for each (a, b) ∈ R, we get

ρ(Ta,Tb) = ρ(
a
2

+ 4,
b
2

+ 4) =

[
|a−b|

2
|a−b|

4

]
=

[
1/2 0
0 1/2

] [
|a − b|
|a−b|

2

]
<

[
3/4 0
0 3/4

]
ρ(a, b).

It is clear by Example 2.4 that the matrix
[

3/4 0
0 3/4

]
is a convergent to zero matrix. Thus,

Theorem 3.1 ensures that T has a fixed point in X.
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Example 3.5. Let X = [0, 2] with ρ(a, b) =
(
|a − b|, |a−b|

2

)T
. Clearly, (X, ρ) is a complete vector-

valued metric space. Define a binary relation on X by

R = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}.

Consider a mapping T : X −→ X by

T (a) =

{
0, 0 ≤ a ≤ 1.
1, 1 < a ≤ 2.

Clearly, T is not continuous but it is not difficult to check that R is ρ-self-closed. Take an arbitrary
R-preserving sequence (an) such that an

ρ
−→ a and (an, an+1) ∈ R ∀n ∈ W this implies that an, a ∈

{0, 1} ∀n ∈ W, thus, we have [an, a] ∈ R. Hence, R is ρ-self-closed. Also, R is T -closed and for
1 ∈ X, we have (1,T (1)) = (1, 0) ∈ R. Further, hypothesis (iv) of Theorem 3.1 also holds with

A =

[
1/2 0
0 1/2

]
. Hence, T has a fixed point (which is a = 0).

We have defined the Perov-fixed point theorem endowed with an arbitrary binary relation for single-
valued mappings. We are now moving to extend this result to multi-valued mappings.

Theorem 3.6. Let (X, ρ) be a complete vector-valued metric space endowed with a binary relation R
and T : X → CL(X) be a multi-valued mapping. Suppose that:

(i) There exists a ∈ X such that (a, u) ∈ R for some u ∈ Ta;

(ii) R is T -closed, that is, for each a, b ∈ X with (a, b) ∈ R, we have (u, v) ∈ R for all u ∈ Ta and
v ∈ Tb;

(iii) R is strongly ρ-self-closed, that is, for each sequence (an) in X with (an, an+1) ∈ R for all n ∈ N
and an

ρ
−→ a, we have (an, a) ∈ R for all n ≥ k.

(iv) For each (a, b) ∈ R and u ∈ Ta, there exists an element v ∈ Tb such that

ρ(u, v) ≤ Aρ(a, b)

where A ∈ Mm(R+) is a matrix convergent to zero.

Then T has a fixed point.

Proof. By axiom (i), we have elements a0 ∈ X and a1 ∈ Ta0 with (a0, a1) ∈ R. Also, by (iv), for
(a0, a1) ∈ R and a1 ∈ Ta0, there exists a2 ∈ Ta1 such that

ρ(a1, a2) ≤ Aρ(a0, a1).

Since R is T -closed, by (ii), thus we have (a1, a2) ∈ R. Again, by (iv) and (ii), for (a1, a2) ∈ R and
a2 ∈ Ta1, ∃a3 ∈ Ta2 such that

ρ(a2, a3) ≤ Aρ(a1, a2) ≤ A2ρ(a0, a1)
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and (a2, a3) ∈ R. Thus, by continuing this, we get a sequence (an) in X defined by an ∈ Tan−1 such that

ρ(an, an+1) ≤ Anρ(a0, a1) ∀n ∈ N (3.4)

and (an, an+1) ∈ R for all n ∈ N. This shows that (an) is an R-preserving sequence. Now, we show that
this sequence (an) is a Cauchy sequence. For this consider arbitrary m, n ∈ N with m > n. Also, by
using triangular inequality and (3.4), we have

ρ(an, am) ≤ ρ(an, an+1) + ρ(an+1, an+2) + · · · + ρ(am−1, am)
≤ (An + An+1 + · · · + Am−1)ρ(a0, a1)
= An(Im + A + A2 + · · · + Am−n−1)ρ(a0, a1)
≤ An(Im + A + A2 + · · · )ρ(a0, a1)

= An(Im − A)−1ρ(a0, a1)→ 0 as n→ ∞.

Hence, (an) is a Cauchy sequence. As X is complete, there exists a ∈ X such that an
ρ
−→ a. Since R is

strongly ρ-self-closed, by (iii), we get (an, a) ∈ R ∀n ≥ k, for some natural k. By using (iv), for each
(an, a) ∈ R, and an+1 ∈ Tan, there exists a∗n ∈ Ta such that

ρ(an+1,Ta) ≤ ρ(an+1, a∗n) ≤ Aρ(an, a) ∀n ≥ k.

By using the above inequality and the triangular inequality, we get

ρ (a,Ta) ≤ ρ (a, an+1) + ρ (an+1,Ta)

≤ ρ (a, an+1) + Aρ (an, a)→ 0 as n→ ∞.

Hence, a ∈ Ta, that is T has a fixed point. �

In the following example, the existence of a fixed point of a multi-valued mapping will be discussed.

Example 3.7. Let X = R with ρ(a, b) =

[
|a − b|
|a − b|

]
. Clearly, (X, ρ) is a complete vector-valued metric

space. Define a binary relation on X by

R = {(n,m) : n,m ∈W}.

Define a map T : X −→ CL(X) by

T (a) =

{a}, a < 0
{0, 1}, a ≥ 0.

It is easy to check that the axioms of Theorem 3.6 hold. Hence, T has a fixed point.

The following result is an extended version of the above result.

Theorem 3.8. Let (X, ρ) be a complete vector-valued metric space with an arbitrary binary relation R
and let T : X → CL(X) be a multi-valued map. Suppose that:

(i) There exists a ∈ X such that (a, u) ∈ R for some u ∈ Ta;
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(ii) R is T -closed, that is, for each a, b ∈ X with (a, b) ∈ R, we have (u, v) ∈ R for all u ∈ Ta and
v ∈ Tb;

(iii) R is strongly ρ-self-closed, that is, for each sequence (an) in X with (an, an+1) ∈ R for all n ∈ N
and an

ρ
−→ a, we have (an, a) ∈ R for all n ≥ k.

(iv) For each (a, b) ∈ R and u ∈ Ta, there exists an element v ∈ Tb such that

ρ(u, v) ≤ Aρ(a, b) + Bρ(b, u) (3.5)

where A, B ∈ Mm(R+) and A is a matrix convergent to zero.

Then T has a fixed point.

Proof. Using hypothesis (i), we can say that a0 ∈ X and a1 ∈ Ta0 such that (a0, a1) ∈ R. Also, by (iv),
for (a0, a1) ∈ R and a1 ∈ Ta0, there exists a2 ∈ Ta1 such that

ρ(a1, a2) ≤ Aρ(a0, a1) + Bρ(a1, a1) = Aρ(a0, a1).

As R is T -closed, by (ii), we get (a1, a2) ∈ R. Again, by (iv) and (ii), for (a1, a2) ∈ R and a2 ∈ Ta1,
∃a3 ∈ Ta2 such that

ρ(a2, a3) ≤ Aρ(a1, a2) + Bρ(a2, a2) = Aρ(a1, a2) ≤ A2ρ(a0, a1).

and (a2, a3) ∈ R. By repeating these steps, we get a sequence (an) in X defined by an ∈ Tan−1 such that
(an, an+1) ∈ R and

ρ(an, an+1) ≤ Anρ(a0, a1) ∀n ∈ N. (3.6)

By considering the above inequality and the proof of Theorem 3.6, we say that (an) is a Cauchy
sequence in X and there exists a ∈ X such that an

ρ
−→ a. As R is strongly ρ-self-closed, we have

(an, a) ∈ R ∀n ≥ k, for some natural k. By using (ii), for each (an, a) ∈ R, and an+1 ∈ Tan, there exists
a∗n ∈ Ta such that

ρ(an+1,Ta) ≤ ρ(an+1, a∗n) ≤ Aρ(an, a) + Bρ(a, an+1). (3.7)

By letting n→ ∞, we get ρ(a,Ta) = 0. Hence a ∈ Ta, which shows that T has a fixed point. �

4. Application

In this section, we will discuss the existence of a solution for the system of integral equations given
below:

p(t) = g(t) + λ

∫ b

a
f1(t, s, p(s), q(s))ds

q(t) = g(t) + λ

∫ b

a
f2(t, s, p(s), q(s))ds, (4.1)

for each t ∈ J = [a, b], where λ > 0 and g : J → R, f j : J × J × R × R → R+, for each j = 1, 2, are
continuous functions. Here, (C[a, b],R) presents the collection of all continuous real-valued functions
defined on [a, b].

The following theorem ensures the existence of a solution to the system (4.1).
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Theorem 4.1. Let X = (C[a, b],R). Consider the operator Ti : X × X → X defined by

T j(p(t), q(t)) = g(t) + λ

∫ b

a
f j(t, s, p(s), q(s))ds

where g : J → R, f j : J × J × R × R → R+, for each j = 1, 2, are continuous functions and λ > 0.
Assume that, for each t, s ∈ [a, b] and p, q,w, x ∈ X with p ≥ g, q ≥ g, w ≥ g and x ≥ g, the following
inequality exists

| f j(t, s, p(s), q(s)) − f j(t, s,w(s), x(s))| ≤ c j1 max
s∈J
|p(s) − w(s)| + c j2 max

s∈J
|q(s) − x(s)| for j = 1, 2.

Also, assume that the matrix A = (λb−λa)
[

c11 c12

c21 c22

]
converges to zero matrix. Then, the system (4.1)

possesses a solution.

Proof. Using the given hypothesis, for each t, s ∈ [a, b] and p, q,w, x ∈ X with p ≥ g, q ≥ g, w ≥ g
and x ≥ g, we can obtain the following inequality:

|T j(p(t), q(t)) − T j(w(t), x(t))| ≤ λ

∫ b

a
| f j(t, s, p(s), q(s)) − f j(t, s,w(s), x(s))|ds

≤ λ

∫ b

a
[c j1 max

s∈J
|p(s) − w(s)| + c j2 max

s∈J
|q(s) − x(s)|]ds

≤ λ(b − a)[c j1 max
s∈J
|p(s) − w(s)| + c j2 max

s∈J
|q(s) − x(s)|],

for each j = 1, 2.
Consider an operator T : X × X → X × X defined by

T (p) = T (p1, p2) = (T1(p1, p2),T2(p1, p2)) for each p = (p1, p2) ∈ X × X,

and consider a vector-valued metric ρ : X2 × X2 → M(IR) defined by

ρ(p(t), q(t)) =

[
maxt∈J |p1(t) − q1(t)|
maxt∈J |p2(t) − q2(t)|

]
for each p = (p1, p2), q = (q1, q2) ∈ X2. Also, define a binary relation R on X × X as

R = {(p, q) : p = (p1, p2) ≥ (g, g) = g, q = (q1, q2) ≥ (g, g) = g}

where (a1, a2) ≥ (b1, b2) means a1 ≥ b1, a2 ≥ b2, and g is the function given in (4.1). Now, for the
above defined operator, vector-valued metric space and the binary relation, we can obtain the following
inequality:

ρ(T p,Tq) ≤ Aρ(p, q) ∀p, q ∈ X × X with (p, q) ∈ R.

Note that for the function g we have T j(g(t), g(t)) ≥ g(t) ∀t ∈ [a, b] for j = 1, 2, thus, we say that
(g,T (g)) ∈ R, where g = (g, g). It is now easy to see that the other axioms of Theorem 3.1 also exist.
Hence, T has a fixed point, that is, p ∈ X × X such that T p = T (p1, p2) = (T1(p1, p2),T2(p1, p2)) =

(p1, p2). This implies that p1 = T1(p1, p2) and p2 = T2(p1, p2). Therefore, we conclude that the
system (4.1) possesses a solution. �
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5. Conclusions

In this manuscript, we have presented a new modification of the classical Perov-fixed point theorem
for single-valued and multi-valued mappings in a complete generalized metric space endowed with a
binary relation, which under trivial relation (universal) reduces to Perov-fixed point theorems. During
this process, we have made a detailed discussion that, instead of choosing several types of binary
relations, such as partial order, pre-order, connected, weakly connected, transitive relation, tolerance,
strict order, symmetrical closure, etc. which are used by numerous authors, we can choose binary
relations to obtain several well-known metrical-fixed point theorems.
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