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Abstract: With effective techniques like the homotopy perturbation approach and the Adomian
decomposition method via the Yang transform, the time-fractional vibration equation’s solution is
found for large membranes. In Caputo’s sense, the fractional derivative is taken. Numerical
experiments with various initial conditions are carried out through a few test examples. The findings
are described using various wave velocity values. The outcomes demonstrate the competence and
reliability of this analytical framework. Figures are used to discuss the solution of the fractional
vibration equation using the suggested strategies for different orders of memory-dependent derivative.
The suggested approaches reduce computation size and time even when the accurate solution of a
nonlinear differential equation is unknown. It is helpful for both small and large parameters. The
results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.
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1. Introduction

The study of fractional order derivatives and integrations is known as fractional calculus (FC).
When L’Hospital questioned Leibniz in 1965 about the fractional order derivative, he first proposed
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the concept of FC. The theory of FC was initially given as an apparent paradox, but as time passed,
it grew in popularity as a topic of study. Due to FC’s wide range of uses in several fields of study,
many mathematicians were attracted to it. Fractional order derivatives describe different real-world
processes and materials in terms of their inherited and memory-related characteristics [1]. The
analysis of fractional differential equations (FDEs) [2–5] in engineering and science like as biology [6],
viscoelasticity [7], signal processing [8], chemical engineering [9], modelling of diseases [10], seismic
wave propagation [11] etc. is a growing field of interest for the researchers.

Both partial differential equations (PDEs) and ordinary differential equations (ODEs) are frequently
employed in science and technology to express physical processes mathematically. The mathematical
representation of physical processes makes them freely understandable and easy to study. It also
conveniently explains the entire situation of the occurrences. Fractional differential equations have
mitigated this problem and, in comparison, provide the best and acceptable modeling of the presented
challenges [12–14]. Initially, these phenomena were not only modeled accurately by employing
integer-order differential equations.

Fractional order ODEs and PDEs have many uses in applied sciences and are more accurate at
describing some phenomena than non-fractional order ODEs and PDEs. The fractional-order ODEs
and PDEs are non-local and imply that a system’s future state depends on its present state and
past states. Therefore, the integration and fractional derivatives have a wide range of applications,
including the nonlinear oscillation of earth quack is molded with fractional-order derivatives [15],
fractional diabetes model [16], chaos theory [17], optics [18], fractional order Covid-19 Model [19],
effect of fractional order on ferromagnetic fluid [20], fractional model of cancer chemotherapy [21],
electrodynamics [22], signal processing phenomena [23], fractional model for tuberculosis [24],
fractional model for the dynamics of Hepatitis B Virus [25], fractional-order pine wilt disease model
[26], and some others references therein [27–31].

Science and engineering are very interested in and need to study massive membrane vibration.
Significant elements of acoustics and music are membranes. Membranes are also a part of speakers,
microphones, and other technology. Membranes can also be used to study the dynamics and
propagation of waves in two dimensions. Many human tissues are treated as membranes in
bioengineering. The eardrum’s vibrational properties aid in understanding hearing. Understanding
membrane vibration behavior is necessary for designing assistive technology for the deaf. The common
vibration model is provided by

1
`2

∂2V(w, ς)
∂ς2 =

∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

w ≥ 0, ς ≥ 0, (1.1)

where w is the spatial domain, ς is the time variable, ` is the wave velocity of free vibration and
component V is the displacement of the particle at the position w at the time instant ς.

In this paper, we will consider a more general form of vibration equation (VE) by replacing integer
order time derivative with fractional order Liouville-Caputo derivative as follows:

1
`2

∂℘V(w, ς)
∂ς℘

=
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

(1.2)

with initial source
V(w, 0) = w2,

∂

∂ς
V(w, 0) = `w.
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Numerous analytical techniques, such as the modified decomposition approach [32] and the homotopy
perturbation method [33], are available to solve vibration equations of fractional and integer
order vibration equations. For the solution of the fractional vibration equation (FVE), Das and
Gupta provided an analytical method based on the homotopy analysis method in [34]. Modified
decomposition and variational iteration techniques are employed in [35] to address this issue. Recently,
Srivastava et al. [36] attempted to achieve an analytical solution to VE using the q-homotopy analysis
transform technique and the Laplace decomposition technique. In the current study, we employ the
Adomian decomposition method and homotopy perturbation method along with the Yang transform
(YT) called homotopy perturbation transform method (HPTM) and Yang transform decomposition
method (YTDM).

The rest of the paper is organized as follows: Introduction is included in Section 1. The fundamental
definitions of FC, the Yang transform and its properties are given in Section 2. The notion of HPTM
is presented in Section 3, whereas the idea of YTDM is presented in Section 4. Its application to the
fractional vibration equation is demonstrated in Section 5. We summarise the conclusion in Section 6.

2. Preliminaries

In this section, we give some basic notions about fractional calculus, Yang transform and Yang
transform of fractional derivatives, which are used further in this paper.

Definition 2.1. The Caputo fractional-order derivative as

D℘
ςV(w, ς) =

1
Γ(k − ℘)

∫ ς

0
(ς − ℘)k−℘−1V(k)(w, ℘)d℘, k − 1 < ℘ ≤ k, k ∈ N. (2.1)

Definition 2.2. The function V(ς) having Yang transform is defined as

Y(V(ς)) = M(u) =

∫ ∞

0
e
−ς
u V(ς)dς, ς > 0, u ∈ (−ς1, ς2), (2.2)

considering inverse Yang transform as

Y−1{M(u)} = V(ς). (2.3)

Definition 2.3. The Yang transform of the function having nth derivatives is defined as

Y(Vn(ς)) =
M(u)

un −

n−1∑
k=0

Vk(0)
un−k−1 (2.4)

for all n ∈ N.

Definition 2.4. The Yang transform of the function having fractional derivatives is defined as

Y(V℘(ς)) =
M(u)

u℘
−

n−1∑
k=0

Vk(0)
u℘−(k+1) , 0 < ℘ ≤ n. (2.5)
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3. Implementation of HPTM

To illustrate the basic idea of this method, we consider the general fractional nonlinear partial
differential equations of the form

D℘
ςV(w, ς) = P1[w]V(w, ς) + Q1[w]V(w, ς), 0 < ℘ ≤ 2 (3.1)

with the initial conditions

V(w, 0) = ξ(w),
∂

∂ς
V(w, 0) = ζ(w),

where D℘
ς = ∂℘

∂ς℘
is the Caputo operator, P1[w],Q1[w] are linear, nonlinear differential operators.

By taking YT and by applying its differentiation property, we have

Y
(
D℘
ςV(w, ς)

)
= Y (P1[w]V(w, ς) + Q1[w]V(w, ς)) , (3.2)

and
1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y (P1[w]V(w, ς) + Q1[w]V(w, ς)) . (3.3)

After simplification, we have

M(u) = uV(0) + u2V
′

(0) + u℘Y (P1[w]V(w, ς) + Q1[w]V(w, ς)) . (3.4)

Using inverse YT both sides, we get

V(w, ς) = V(0) + V
′

(0) + Y−1 {u℘Y (P1[w]V(w, ς) + Q1[w]V(w, ς))} . (3.5)

On utilizing the HPM

V(w, ς) =

∞∑
k=0

εkVk(w, ς), (3.6)

with perturbation parameter ε ∈ [0, 1].
The nonlinear operator is

Q1[w]V(w, ς) =

∞∑
k=0

εkHn(V), (3.7)

and He’s polynomials Hk(V) are stated as

Hn (V0,V1, . . . ,Vn) =
1

Γ(n + 1)
Dk
ε

Q1

 ∞∑
k=0

ε iVi


ε=0

, (3.8)

where Dk
ε = ∂k

∂εk .

On substituting (3.7) and (3.8) in (3.5), we obtain

∞∑
k=0

εkVk(w, ς) = V(0) + V
′

(0) + ε

Y−1

u℘Y

P1

∞∑
k=0

εkVk(w, ς) +

∞∑
k=0

εkHk(V)



 . (3.9)
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On comparing the ε coefficients, we have

ε0 : V0(w, ς) = V(0) + V
′

(0),
ε1 : V1(w, ς) = Y−1 {u℘Y(P1[w]V0(w, ς) + H0(V))} ,
ε2 : V2(w, ς) = Y−1 {u℘Y(P1[w]V1(w, ς) + H1(V))} ,

...

εk : Vk(w, ς) = Y−1 {u℘Y(P1[w]Vk−1(w, ς) + Hk−1(V))}

(3.10)

for k ∈ N.
Finally, the approximate solution is calculated as

V(w, ς) = lim
M→∞

M∑
k=1

Vk(w, ς). (3.11)

4. Implementation of YTDM

To illustrate the basic idea of this method, we consider the general fractional nonlinear partial
differential equations of the form

D℘
ςV(w, ς) = P1(w, ς) + Q1(w, ς), 0 < ℘ ≤ 1 (4.1)

with the initial conditions
V(w, 0) = ξ(w),

∂

∂ς
V(w, 0) = ζ(w),

where D℘
ς = ∂℘

∂ς℘
is the Caputo operator, P1,Q1 are linear, nonlinear differential operators.

By taking YT and by applying its differentiation property, we have

Y
(
D℘
ςV(w, ς)

)
= Y (P1(w, ς) + Q1(w, ς)) ,

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y (P1(w, ς) + Q1(w, ς)) .
(4.2)

After simplification, we have

M(u) = uV(0) + u2V
′

(0) + u℘Y (P1(w, ς) + Q1(w, ς)) . (4.3)

Using inverse YT both sides, we get

V(w, ς) = V(0) + V
′

(0) + Y−1 {u℘Y (P1(w, ς) + Q1(w, ς))} . (4.4)

The YTDM series form solution for V(w, ς) is determined as

V(w, ς) =

∞∑
m=0

Vm(w, ς), (4.5)

and the nonlinear terms Q1 decomposition are defined as

Q1(w, ς) =

∞∑
m=0

Am, (4.6)
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where

Am =
1

m!

 ∂m

∂`m

Q1

 ∞∑
k=0

`kwk,

∞∑
k=0

`kςk




`=0

.

On putting (4.5) and (4.6) into (4.4), we get

∞∑
m=0

Vm(w, ς) = V(0) + V
′

(0) + Y−1

u℘
Y P1

 ∞∑
m=0

wm,

∞∑
m=0

ςm

 +

∞∑
m=0

Am


 . (4.7)

Thus, the given terms are obtained:

V0(w, ς) = V(0) + ςV
′

(0),
V1(w, ς) = Y−1 {u℘Y (P1(w0, ς0) +A0)} .

Generally for m ≥ 1, we can write

Vm+1(w, ς) = Y−1 {u℘Y (P1(wm, ςm) +Am)} .

5. Examples

In this section, we implemented HPTM and YTDM to solve different fractional-order vibration
equations.

Example 1. Consider the fractional-order vibration equation

1
`2

∂℘V(w, ς)
∂ς℘

=
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

(5.1)

with the initial conditions
V(w, 0) = w2,

∂

∂ς
V(w, 0) = `w.

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.2)

and by applying its differentiation property, we have

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.3)

Thus, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.4)

Using inverse YT both sides, we get

V(w, ς) = Y−1[uV(0) + u2V
′

(0)] + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
,

V(w, ς) = (w2 + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
.

(5.5)
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On utilizing the HPM, we get

∞∑
k=0

εkVk(w, ς) = (w2 + `wς) + ε

Y−1

u℘Y

`2

 ∞∑
k=0

εkVk(w, ς)


ww

+
`2

w

 ∞∑
k=0

εkVk(w, ς)


w



 . (5.6)

On comparing the ε coefficients, we have

ε0 : V0(w, ς) = (w2 + `wς),

ε1 : V1(w, ς) = Y−1
{

u℘Y
(
`2∂

2V0(w, ς)
∂w2 +

`2

w
∂V0(w, ς)

∂w

)}
=
`2ς℘(`ς + 4w(1 + ℘))

wΓ(2 + ℘)
,

ε2 : V2(w, ς) = Y−1
{

u℘Y
(
`2∂

2V1(w, ς)
∂w2 +

`2

w
∂V1(w, ς)

∂w

)}
=

`5ς1+2℘

w3Γ(2 + 2℘)
,

ε3 : V3(w, ς) = Y−1
{

u℘Y
(
`2∂

2V2(w, ς)
∂w2 +

`2

w
∂V2(w, ς)

∂w

)}
=

9`7ς1+3℘

w5Γ(2 + 3℘)
,

...

The HPTM solution is

V(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) = (w2 + `wς) +
`2ς℘(`ς + 4w(1 + ℘))

wΓ(2 + ℘)
+

`5ς1+2℘

w3Γ(2 + 2℘)
+

9`7ς1+3℘

w5Γ(2 + 3℘)
+ · · · .

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.7)

and by applying its differentiation property, we have

1
u℘
{M(u) − uV(0) − u2V

′

(0)} = Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.8)

Thus, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.9)

Using inverse YT both sides, we get

V(w, ς) = Y−1[uV(0) + u2V
′

(0)] + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
,

V(w, ς) = (w2 + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
.

(5.10)

The YTDM series form solution for V(w, ς) is determined as

V(w, ς) =

∞∑
m=0

Vm(w, ς). (5.11)
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Then, we have

∞∑
m=0

Vm(w, ς) = (w2 + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.12)

Thus, by comparing both sides, we obtain

V0(w, ς) = (w2 + `wς).

On m = 0, we have

V1(w, ς) =
`2ς℘(`ς + 4w(1 + ℘))

wΓ(2 + ℘)
.

On m = 1, we have

V2(w, ς) =
`5ς1+2℘

w3Γ(2 + 2℘)
.

On m = 2, we have

V3(w, ς) =
9`7ς1+3℘

w5Γ(2 + 3℘)
.

The YTDM solution is

V(w, ς) =

∞∑
m=0

Vm(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) = (w2 + `wς) +
`2ς℘(`ς + 4w(1 + ℘))

wΓ(2 + ℘)
+

`5ς1+2℘

w3Γ(2 + 2℘)
+

9`7ς1+3℘

w5Γ(2 + 3℘)
+ · · · .
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Figure 1. The behavior of V(w, ς) with respect to w and ς for different values ℘ within the
domain 0 ≤ w, ς ≤ 5. (a) Behavior of the V(w, ς) solution, when ℘ = 1.25. (b) Behavior of
the V(w, ς) solution, when ℘ = 1.50. (c) Behavior of the V(w, ς) solution, when ℘ = 1.75.
(d) Behavior of the V(w, ς) solution, when ℘ = 2.

Table 1. Suggested methods solution at different values of ℘ and ` = 5 of Example 1.

ς = 0.001 HPTM solution YTDM solution Solution at Solution at Solution at
w ℘ = 2 ℘ = 2 ℘ = 1.9 ℘ = 1.8 ℘ = 1.7

0.5 0.25250833 0.25250833 0.25251882 0.25254240 0.25259522
1.0 1.00500416 1.00500416 1.00500941 1.00502120 1.00504761
1.5 2.25750277 2.25750277 2.25750627 2.25751413 2.25753174
2.0 4.01000208 4.01000208 4.01000470 4.01001060 4.01002380
2.5 6.26250166 6.26250166 6.26250376 6.26250848 6.26251904
3.0 9.01500138 9.01500138 9.01500313 9.01500706 9.01501587
3.5 12.26750119 12.26750119 12.26750269 12.26750606 12.26751360
4.0 16.02000104 16.02000104 16.02000235 16.02000530 16.02001190
4.5 20.27250093 20.27250093 20.27250209 20.27250471 20.27251058
5.0 25.02500083 25.02500083 25.02500188 25.02500424 25.02500952
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Example 2. Consider the fractional-order vibration equation

1
`2

∂℘V(w, ς)
∂ς℘

=
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

(5.13)

with the initial conditions

V(w, 0) = w,
∂

∂ς
V(w, 0) = `w.

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.14)

and by applying its differentiation property, we have

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.15)

Then, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.16)

Using inverse YT both sides, we get

V(w, ς) = Y−1
{
uV(0) + u2V

′

(0)
}

+ Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
, (5.17)

or

V(w, ς) = (w + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.18)

On utilizing the HPM, we get

∞∑
k=0

εkVk(w, ς) = (w + `wς) + ε

Y−1

u℘Y

`2

 ∞∑
k=0

εkVk(w, ς)


ww

+
`2

w

 ∞∑
k=0

εkVk(w, ς)


w



 . (5.19)

On comparing the ε coefficients, we have

ε0 : V0(w, ς) = (w + `wς),

ε1 : V1(w, ς) = Y−1
{

u℘Y
(
`2∂

2V0(w, ς)
∂w2 +

`2

w
∂V0(w, ς)

∂w

)}
=
`2ς℘(1 + `ς + ℘)

wΓ(2 + ℘)
,

ε2 : V2(w, ς) = Y−1
{

u℘Y
(
`2∂

2V1(w, ς)
∂w2 +

`2

w
∂V1(w, ς)

∂w

)}
=
`2ς2℘(1 + `ς + 2℘)

w3Γ(2 + 2℘)
,

ε3 : V3(w, ς) = Y−1
{

u℘Y
(
`2∂

2V2(w, ς)
∂w2 +

`2

w
∂V2(w, ς)

∂w

)}
=

9`6ς3℘(1 + `ς + 3℘)
w5Γ(2 + 3℘)

,

...

AIMS Mathematics Volume 7, Issue 11, 19739–19757.



19749

The HPTM solution is

V(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) =
`2ς℘(1 + `ς + ℘)

wΓ(2 + ℘)
+
`2ς2℘(1 + `ς + 2℘)

w3Γ(2 + 2℘)
+

9`6ς3℘(1 + `ς + 3℘)
w5Γ(2 + 3℘)

+ · · · .

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.20)

and by applying its differentiation property, we have

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.21)

Thus, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.22)

Using inverse YT both sides, we get

V(w, ς) = Y−1
{
uV(0) + u2V

′

(0)
}

+ Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
, (5.23)

or

V(w, ς) = (w + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.24)

The YTDM series form solution for V(w, ς) is determined as

V(w, ς) =

∞∑
m=0

Vm(w, ς). (5.25)

Then, we obtain

∞∑
m=0

Vm(w, ς) = (w + `wς) + Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.26)

Thus by comparing both sides, we obtain

V0(w, ς) = (w + `wς).

On m = 0, we have

V1(w, ς) =
`2ς℘(1 + `ς + ℘)

wΓ(2 + ℘)
.

On m = 1, we have

V2(w, ς) =
`2ς2℘(1 + `ς + 2℘)

w3Γ(2 + 2℘)
.
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On m = 2, we have

V3(w, ς) =
9`6ς3℘(1 + `ς + 3℘)

w5Γ(2 + 3℘)
.

The YTDM solution is

V(w, ς) =

∞∑
m=0

Vm(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) =
`2ς℘(1 + `ς + ℘)

wΓ(2 + ℘)
+
`2ς2℘(1 + `ς + 2℘)

w3Γ(2 + 2℘)
+

9`6ς3℘(1 + `ς + 3℘)
w5Γ(2 + 3℘)

+ · · · .

Figure 2. The behavior of V(w, ς) with respect to w and ς for different values ℘ within the
domain 0 ≤ w, ς ≤ 5. (a) Behavior of the V(w, ς) solution, when ℘ = 1.25. (b) Behavior of
the V(w, ς) solution, when ℘ = 1.50. (c) Behavior of the V(w, ς) solution, when ℘ = 1.75.
(d) Behavior of the V(w, ς) solution, when ℘ = 2.
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Table 2. Suggested methods solution at different values of ℘ and ` = 5 of Problem 2.

ς = 0.001 HPTM solution YTDM solution Solution at Solution at Solution at
w ℘ = 2 ℘ = 2 ℘ = 1.9 ℘ = 1.8 ℘ = 1.7

0.5 0.50250833 0.50250833 0.50251882 0.50254240 0.50259522
1.0 1.00500416 1.00500416 1.00500941 1.00502120 1.00504761
1.5 1.50750277 1.50750277 1.50750627 1.50751413 1.50753174
2.0 2.01000208 2.01000208 2.01000470 2.01001060 2.01002380
2.5 2.51250166 2.51250166 2.51250376 2.51250848 2.51251904
3.0 3.01500138 3.01500138 3.01500313 3.01500706 3.01501587
3.5 3.51750119 3.51750119 3.51750268 3.51750605 3.51751360
4.0 4.02000104 4.02000104 4.02000235 4.02000530 4.02001190
4.5 4.52250092 4.52250092 4.52250209 4.52250471 4.52251058
5.0 5.02500083 5.02500083 5.02500188 5.02500424 5.02500952

Example 3. Consider the fractional-order vibration equation

1
`2

∂℘V(w, ς)
∂ς℘

=
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

(5.27)

with the initial conditions

V(w, 0) =
√

w,
∂

∂ς
V(w, 0) =

`
√

w
.

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.28)

and by applying its differentiation property, we have

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.29)

Then, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.30)

Using inverse YT both sides, we get

V(w, ς) = Y−1
{
uV(0) + u2V

′

(0)
}

+ Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.31)

Then, we obtain

V(w, ς) =

(
√

w +
`ς
√

w

)
+ Y−1

{
u℘

[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.32)

AIMS Mathematics Volume 7, Issue 11, 19739–19757.



19752

On utilizing the HPM, we get

∞∑
k=0

εkVk(w, ς) =

(
√

w +
`ς
√

w

)
+ ε

Y−1

u℘Y

`2

 ∞∑
k=0

εkVk(w, ς)


ww

+
`2

w

 ∞∑
k=0

εkVk(w, ς)


w



 .

(5.33)
On comparing the ε coefficients, we have

ε0 : V0(w, ς) =

(
√

w +
`ς
√

w

)
,

ε1 : V1(w, ς) = Y−1
{

u℘Y
(
`2∂

2V0(w, ς)
∂w2 +

`2

w
∂V0(w, ς)

∂w

)}
=
`2ς℘(w + `ς + w℘)

4w 5
2 Γ(2 + ℘)

,

ε2 : V2(w, ς) = Y−1
{

u℘Y
(
`2∂

2V1(w, ς)
∂w2 +

`2

w
∂V1(w, ς)

∂w

)}
=
`4ς2℘ {25`ς + 9w(1 + 2℘)}

16w 9
2 Γ(2 + 2℘)

,

ε3 : V3(w, ς) = Y−1
{

u℘Y
(
`2∂

2V2(w, ς)
∂w2 +

`2

w
∂V2(w, ς)

∂w

)}
=

9`6ς3℘{225`ς + 49w(1 + 3℘)}

64w 13
2 Γ(2 + 3℘)

,

...

The HPTM solution is

V(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) =

(
√

w +
`ς
√

w

)
+
`2ς℘(w + `ς + w℘)

4w 5
2 Γ(2 + ℘)

+
`4ς2℘{25`ς + 9w(1 + 2℘)}

16w 9
2 Γ(2 + 2℘)

+
9`6ς3℘{225`ς + 49w(1 + 3℘)}

64w 13
2 Γ(2 + 3℘)

+· · · .

By taking YT, we get

Y
(
∂℘V

∂ς℘

)
= Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
, (5.34)

and by applying its differentiation property, we have

1
u℘

{
M(u) − uV(0) − u2V

′

(0)
}

= Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.35)

Then, we obtain

M(u) = uV(0) + u2V
′

(0) + u℘Y
(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))
. (5.36)

Using inverse YT both sides, we get

V(w, ς) = Y−1
{
uV(0) + u2V

′

(0)
}

+ Y−1
{

u℘
[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
, (5.37)

or

V(w, ς) =

(
√

w +
`ς
√

w

)
+ Y−1

{
u℘

[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.38)
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The YTDM series form solution for V(w, ς) is determined as

V(w, ς) =

∞∑
m=0

Vm(w, ς). (5.39)

Thus, we obtain

∞∑
m=0

Vm(w, ς) =

(
√

w +
`ς
√

w

)
+ Y−1

{
u℘

[
Y

(
`2

(
∂2V(w, ς)
∂w2 +

1
w
∂V(w, ς)
∂w

))]}
. (5.40)

Thus by comparing both sides, we obtain

V0(w, ς) =

(
√

w +
`ς
√

w

)
.

On m = 0, we have

V1(w, ς) =
`2ς℘(w + `ς + w℘)

4w 5
2 Γ(2 + ℘)

.

On m = 1, we have

V2(w, ς) =
`4ς2℘{25`ς + 9w(1 + 2℘)}

16w 9
2 Γ(2 + 2℘)

.

On m = 2, we have

V3(w, ς) =
9`6ς3℘{225`ς + 49w(1 + 3℘)}

64w 13
2 Γ(2 + 3℘)

.

The YTDM solution is

V(w, ς) =

∞∑
m=0

Vm(w, ς) = V0(w, ς) + V1(w, ς) + V2(w, ς) + V3(w, ς) + · · · ,

or

V(w, ς) = (
√

w+
`ς
√

w
)+
`2ς℘(w + `ς + w℘)

4w 5
2 Γ(2 + ℘)

+
`4ς2℘{25`ς + 9w(1 + 2℘)}

16w 9
2 Γ(2 + 2℘)

+
9`6ς3℘{225`ς + 49w(1 + 3℘)}

64w 13
2 Γ(2 + 3℘)

+· · · .
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Figure 3. The behavior of V(w, ς) with respect to w and ς for different values ℘ within the
domain 0 ≤ w, ς ≤ 5. (a) Behavior of the V(w, ς) solution, when ℘ = 1.25. (b) Behavior of
the V(w, ς) solution, when ℘ = 1.50. (c) Behavior of the V(w, ς) solution, when ℘ = 1.75.
(d) Behavior of the V(w, ς) solution, when ℘ = 2.

Table 3. Suggested methods solution at different values of ℘ and ` = 5 of Problem 3.

ς = 0.001 HPTM solution YTDM solution Solution at Solution at Solution at
w ℘ = 2 ℘ = 2 ℘ = 1.9 ℘ = 1.8 ℘ = 1.7

0.5 0.71418374 0.71418374 0.71419116 0.71420783 0.71424518
1.0 1.00500104 1.00500104 1.00500235 1.00500530 1.00501190
1.5 1.22882773 1.22882773 1.22882820 1.22882927 1.22883167
2.0 1.41774928 1.41774928 1.41774951 1.41775003 1.41775120
2.5 1.58430121 1.58430121 1.58430134 1.58430164 1.58430231
3.0 1.73493762 1.73493762 1.73493771 1.73493789 1.73493832
3.5 1.87350135 1.87350135 1.87350140 1.87350153 1.87350182
4.0 2.00250003 2.00250003 2.00250007 2.00250016 2.00250037
4.5 2.12367739 2.12367739 2.12367742 2.12367749 2.12367764
5.0 2.23830406 2.23830406 2.23830408 2.23830414 2.23830425
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6. Conclusions

In this innovative research, the time fractional vibration equation is effectively examined using the
HPTM and YTDM. The results show that the generated results are reliable and the found solution
is convergent. These strategies are capable of lowering the time and the size of computation. Using
it is simpler for both small and large parameters. The derived solutions are positive and bounded.
Additionally, the suggested methods make it simple to manage the non-linear term. It is encouraging
to see that both approaches effectively function even when the actual solution is unknown. Thus,
these schemes are quite exact, fair, systematic, and effective. Numerous fractional order mathematical
models of physics, biology and society can be studied and their solutions may be obtained.
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