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1. Introduction

Leibnitz developed a fraction in derivative, revealing that fractional calculus is better suited to
modelling real-world problems than classical calculus. Fractional calculus theory provides an effective
and systematic interpretation of nature’s reality [1–3]. It has recently attracted interest because to
its ability to provide accurate explanations for nonlinear complex systems. Fluid dynamics [4],
electrodynamics [5], nanotechnology, finance, neurophysiology [6], and other fields have given
fractional-order derivatives increasing attention. The concept of fractional calculus and its applications
has developed fast in recent years [7–10]. Fractional calculus, which deals with arbitrary order
derivatives and integrals [11], is important in many areas of applied science and engineering [12–14].

Because of its wide applications in the fields of physics and engineering, fractional differential
equations have attracted a lot of attention in recent years [15]. Fractional differential equations
accumulate the entire information of the function in a weighted form, as opposed to integer order
differential equations, in which derivatives depend only on the local behaviour of the function. The
memory effect [11,15] has numerous applications in physics, chemistry, and engineering. The solution
of fractional order differential equations is a complex task. Due to their precise description of nonlinear
phenomena, fractional differential equations have recently received a lot of interest. The broad
applicability of these equations is the main reason for their popularity among mathematicians and
physicists. Many mathematical models in mathematical biology, aerodynamics, rheology, diffusion,
electrostatics, electrodynamics, control theory, fluid mechanics, analytical chemistry, and other fields
have recently been successfully applied using nonlinear partial differential equations with fractional
order derivatives.

It is essential to get correct or approximate solutions of nonlinear fractional partial differential
equations in all of these scientific domains (NFPDEs). However, there is no approach that provides a
precise solution for NFPDEs, and the majority of the solutions produced are simply approximations. In
mathematical physics, engineering, and other sciences, the study of analytical or numerical solutions
to NFDEs is essential. As a result, finding effective and appropriate solutions is essential. To
solve NFPDEs, many analytical and numerical methods have been presented. Variational iteration
approach [16], modified Adomian decomposition method (MADM) [17], differential transformation
method (DTM) [18], optimal homotopy asymptotic method (OHAM) [19], and homotopy perturbation
transform method (HPTM) [20] are the most widely used ones.

Numerous analytical techniques, like generalized Taylor fractional series method [21] and Finite
difference method [22] have been implemented to solve CRDEs. Ali Khalouta used Aboodh variational
iteration method to to find the exact solution of CRDEs [23]. Şuayip Toprakseven [24] used a
weak Galerkin finite element method to solve CRDEs. Recently, Mounirah Areshi et al. the
iterative transformation method and homotopy perturbation transform method to obtain the solution
of CRDEs [25] and some other work are as [26,27]. In this paper we will suggest the Elzaki transform
in combination with the CFD and ABC operators to solve three special CRDEs problems. We consider
time-fractional convection-reaction-diffusion equation of the following

Dς
℘ϕ(µ, ℘) = ϕµµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘) (1.1)

having initial source
ϕ(µ, 0) = 1 + eµ (1.2)
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and
Dς
℘ϕ(µ, ℘) = ϕµµ(µ, ℘) − ϕµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘) (1.3)

having initial source
ϕ(µ, 0) = eµ (1.4)

and
Dς
℘ϕ(µ, ℘) = ϕµµ(µ, ℘) − (1 + 4µ2)ϕ(µ, ℘) (1.5)

having initial source
ϕ(µ, 0) = eµ

2
. (1.6)

In applied sciences, convection-reaction-diffusion problems are very helpful mathematical models.
Equations of this type are used to model a variety of phenomena. The convection-reaction-diffusion
equation, for example, is used to estimate river water quality by measuring the amount of organic
matter contained [28]. Measurements of biologic oxygen demand on a section of the river are used
to assess the location and intensity of pollution sources. An approach based on the minimization of a
Kohn and Vogelius type cost function is used to tackle this inverse problem. In the case of air pollution,
similar problems can be investigated [29]. Convection-reaction-diffusion equations have also been used
to represent a variety of real-world processes, including heat conduction, chemical reaction-diffusion,
and cancer tumour growth [30].

The following is a description of the paper’s structure. We provide some necessary definitions
and properties of fractional calculus theory in Section 2. The proposed method to solve CRDEs is
introduced in Section 3 using a general methodology. Three examples are shown in Section 4 to
demonstrate the efficiency and efficacy of the suggested approach. We present our results in the form
of graphs and tables. The conclusion of this research is presented in Section 5.

2. Preliminaries

Here we discuss the basic ideas of fractional calculus and Elzaki transform.

Definition 2.1. The fractional derivative in Caputo manner (CFD) is stated as [11]:

C
0 Dς

℘(`(℘)) =

 1
Γ(m−ς)

∫ ℘

0
`m(η)

(℘−η)ς+1−m dη, m − 1 < ς < m,
dm

d℘m `(℘), ς = m.
(2.1)

Definition 2.2. For a function `(℘), the Riemann-Liouville integral of order fraction is stated as [31,32]

Iρ`(℘) =
1

Γ(ς)

∫ ℘

0
(℘ − η)ς−1`(η)dη, ς > 0, ℘ > 0,

and I0`(℘) =`(℘).
(2.2)

Definition 2.3. The fractional derivative in Atangana-Baleanu Caputo sense (ABC) is stated as [33]:

ABC
m Dς

℘(`(℘)) =
N(ς)
1 − ς

∫ ℘

m
`
′

(η)Eς

[
−
ς(℘ − η)ς

1 − ς

]
dη, (2.3)

where ` ∈ H1(α, β), β > α, ς ∈ [0, 1]. When ς = 0 and ς = 1 then normalisation function equal to 1
and is denoted by N(ς) as given in Eq (2.3).
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Definition 2.4. The integral having fractional-order of ABC operator is stated as [33]

ABC
m Iς℘(`(℘)) =

1 − ς
N(ς)

`(℘) +
ς

Γ(ς)N(ς)

∫ ℘

m
`(η)(℘ − η)ς−1dη. (2.4)

Definition 2.5. For exponential function, the Elzaki transform’s is stated as in set A [34]

A = {`(℘) : ∃G, p1, p2 > 0, |`(℘)| < Ge
|℘|
p j , i f ℘ ∈ (−1) j × [0,∞)}. (2.5)

In the set, G is a finite number for a certain function, but p1, p2 may be finite or infinite.

Definition 2.6. The Elzaki transform is stated as [35,36]

E {`(℘)} ($) = Ũ($) = $

∫ ∞

0
e−

℘
$ `(℘)d℘, (2.6)

where ℘ ≥ 0, p1 ≤ $ ≤ p2.

Theorem 2.7. (Convolution theorem, [37]) The given equality holds:

E{` ∗ v} =
1
$
E(`)E(v), (2.7)

where E{.} represents the Elzaki transform.

Definition 2.8. For the CFD operator C
0 Dς

℘(`(℘)), the Elzaki transform is stated as [38]

E{C0 Dς
℘(`(℘))}($) = $−ςŨ($) −

m−1∑
k=0

$2−ς+k`k(0), (2.8)

where m − 1 < ς < m.

Theorem 2.9. The Elzaki transform in terms of fractional ABC derivative ABC
m Dς

℘(`(℘)) is stated as

E{ABC
m Dς

℘(`(℘))}($) =
N(ς)$

ς$ς + 1 − ς

(
Ũ($)
$
−$`(0)

)
, (2.9)

where E{`(℘)}$ = Ũ($).
Proof. As we know by Definition 2.3, thus:

E{ABC
m Dς

℘(`(℘))}($) = E

{
N(ς)
1 − ς

∫ ℘

0
`
′

(η)Eς

[
−
ς(℘ − η)ς

1 − ς

]
dη

}
($). (2.10)

Hence by the definition and and convolution of the Elzaki transform, we have

E{ABC
m Dς

℘(`(℘))}($) =E

{
N(ς)
1 − ς

∫ ℘

0
`
′

(η)Eς

[
−
ς(℘ − η)ς

1 − ς

]
dη

}
=

N(ς)
1 − ς

1
$
E

{
`
′

(η)
}
E

{
Eς

[
−
ς℘ς

1 − ς

]
dη

}
=

N(ς)
1 − ς

[
Ũ($)
$
−$`(0)

] [∫ ∞

0
e−

1
$ Eς

[
−
ς℘ς

1 − ς

]
d℘

]
=

N(ς)$
ς$ς + 1 − ς

[
Ũ($)
$
−$`(0)

]
.

(2.11)
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3. General methodology

This section of the study will cover the most important technique used in this investigation. To
explore this methodology, we utilise the fractional nonlinear PDE general form:

Dς
℘ϕ(µ, ℘) + L(ϕ(µ, ℘)) + N(ϕ(µ, ℘)) = θ(µ, ℘),

(µ, ℘) ∈ [0, 1] × [0,T ], κ − 1 < ς < κ,
(3.1)

with initial source
∂zϕ

∂℘z (µ, 0) = `z(µ), z = 0, 1, · · · , κ − 1, (3.2)

and the boundary conditions

ϕ(0, ℘) = γ0(℘), ϕ(µ, ℘) = γ1(℘), ℘ ≥ 0, (3.3)

where known functions are `z, θ, γ0, and γ1. In Eq (3.1), the Caputo or ABC fractional derivatives are
represented by Dς

℘ϕ(µ, ℘) while the linear and non linear terms are denoted by L(.) and N(.). We study
E{ϕ(µ, ℘)}($) = ζ̃(µ,$) for Eq (3.1) by using CFD in Eq (2.8) and ABC in Eq (2.9) to perform the
Elzaki transform. The fractional Caputo derivative’s modified functions can then be obtained.

ζ̃(µ,$) = $ς(θ̃($,℘) − E[L(ϕ(µ, ℘)) + N(ϕ(µ, ℘))]) +$2ϕ(µ, 0). (3.4)

We also acquire the ABC derivative’s modified functions, which are as follows:

ζ̃(µ,$) =

(
ς$ς + 1 − ς

N(ς)

)
(θ̃(µ,$) − E[L(ϕ(µ, ℘)) + N(ϕ(µ, ℘))]) +$2ϕ(µ, 0), (3.5)

where E[θ(µ, ℘)] = θ̃(µ,$). Now by taking the Elzaki transform of the boundary conditions, have.

E[γ0(℘)] = ζ̃(0, $), E[γ1(℘)] = ζ̃(1, $), $ ≥ 0. (3.6)

The perturbation approach is then used to derive the solution to Eqs (3.1)–(3.3)

ζ̃(µ,$) =

∞∑
E=0

XEζ̃E(µ,$), E = 0, 1, 2, · · · (3.7)

The nonlinear component in Eq (3.1) can be derived as

N[ϕ(µ, ℘)] =

∞∑
E=0

XEµE(µ, ℘), (3.8)

and the parts µE(µ, ℘) are define as

µE(ϕ0, ϕ1, · · · , ϕE) =
1
E!

∂E

∂νE

N  ∞∑
i=0

νiϕi


ν=0

, E = 0, 1, 2, · · · (3.9)
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We get the components of the Caputo operator’s solution by substituting Eqs (3.7) and (3.8) into
Eq (3.4),

∞∑
E=0

XEζ̃(µ,$) = − X$ς

E L  ∞∑
E=0

XEϕE(µ, ℘)

 +

∞∑
E=0

XEµE(µ, ℘)


+$ς(θ̃(µ,$)) +$2ϕ(µ, 0).

(3.10)

We possess the recursive relation that results in the solution of the Atangana-Baleanu operator by
sustituting Eqs (3.7) and (3.8) into Eq (3.5),

∞∑
E=0

XEζ̃(µ,$) = − X

(
ς$ς + 1 − ς

N(ς)

) E L  ∞∑
E=0

XEϕE(µ, ℘)

 +

∞∑
E=0

XEµE(µ, ℘)


+

(
ς$ς + 1 − ς

N(ς)

)
(θ̃(µ,$)) +$2ϕ(µ, 0).

(3.11)

Thus, when Eqs (3.10) and (3.11) are solved with regard to X, the following Caputo homotopies are
derived:

X0 : ζ̃0(µ,$) =$ς(θ̃(µ,$)) +$2ϕ(µ, 0),
X1 : ζ̃1(µ,$) = −$ςE

[
L(ϕ0(µ, ℘)) + µ0(µ, ℘)

]
,

X2 : ζ̃2(µ,$) = −$ςE
[
L(ϕ1(µ, ℘)) + µ1(µ, ℘)

]
,

...

Xn+1 : ζ̃n+1(µ,$) = −$ςE
[
L(ϕn(µ, ℘)) + µn(µ, ℘)

]
.

(3.12)

Furthermore, the ABC homotopies are determined as follows:

X0 : ζ̃0(µ,$) =

(
ς$ς + 1 − ς

N(ς)

)
θ̃(µ,$) +$2ϕ(µ, 0),

X1 : ζ̃1(µ,$) = −

(
ς$ς + 1 − ς

N(ς)

)
E

[
L(ϕ0(µ, ℘)) + µ0(µ, ℘)

]
,

X2 : ζ̃2(µ,$) = −

(
ς$ς + 1 − ς

N(ς)

)
E

[
L(ϕ1(µ, ℘)) + µ1(µ, ℘)

]
,

...

Xn+1 : ζ̃n+1(µ,$) = −

(
ς$ς + 1 − ς

N(ς)

)
E

[
L(ϕn(µ, ℘)) + µn(µ, ℘)

]
.

(3.13)

When X → 1 is used, we can assume that Eqs (3.12) and (3.13) are the approximate solutions to
Eqs (3.10) and (3.11), and that the solution is

ςn(µ,$) =

n∑
ς=0

ζ̃ς(µ,$). (3.14)

By taking the inverse ET to Eq (3.14), we can estimate the solution of Eq (3.1).

ϕ(µ,$) � ϕn(µ, ℘) = E−1|{ςn(µ,$)}. (3.15)
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4. Applications

Example 1. In this part, we’ll use the Elzaki transform to look at the problems in Eqs (1.1)–(1.6). To
solve problem (1.1) with an initial source, we first use the Elzaki transform technique with the help of
the Caputo derivative (1.2). We get by using the Elzaki transform.

ζ̃(µ,$) = $ςE
[
ϕµµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘)

]
+$2ϕ(µ, 0). (4.1)

To solve Eq (4.1), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =X$ςE


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)


 + X$ςE

 ∞∑
E=0

XEµE(µ, ℘)

 +$2ϕ(µ, 0).

(4.2)

By using the Elzaki inverse transform to Eq (4.2), we now have

∞∑
E=0

XEϕE(µ,$) = XE−1

$ςE


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)





+ XE−1

$ςE

 ∞∑
E=0

XEµE(µ, ℘)

 + E−1[$2ϕ(µ, 0)].

(4.3)

In Eq (4.3), the µE(.) represents the nonlinear terms assumed in Eq (3.10),

µ0(ϕ) =ϕ0(ϕ0)µ − (ϕ0)2,

µ1(ϕ) =ϕ0(ϕ1)µ + ϕ1(ϕ0)µ − 2ϕ0ϕ1,

µ2(ϕ) =ϕ0(ϕ2)µ + ϕ1(ϕ1)µ + ϕ2(ϕ0)µ − 2ϕ0ϕ2 − (ϕ2)2,

...

(4.4)

The terms of the Caputo operator solution are then obtained by evaluating the related powers of X:

X0 : ζ̃0(µ, ℘) =E−1[$21 + e(µ)] = 1 + e(µ),

X1 : ζ̃1(µ, ℘) =E−1[$ςE[L(ϕ0(µ, ℘))]] + E−1[$ςE[µ0(µ, ℘)]] = 1 + e(µ) ℘ς

Γ(ς + 1)
,

X2 : ζ̃2(µ, ℘) =E−1[$ςE[L(ϕ1(µ, ℘))]] + E−1[$ςE[µ1(µ, ℘)]] = 1 + e(µ) ℘2ς

Γ(2ς + 1)
,

...

(4.5)

Thus, we get

ϕ(µ, ℘) =

(
1 + e(µ) + 1 + e(µ) ℘ς

Γ(ς + 1)
+ 1 + e(µ) ℘2ς

Γ(2ς + 1)
+ · · ·

)
, (4.6)

ϕ(µ, ℘) = 1 + e(µ)
(
1 +

℘ς

Γ(ς + 1)
+

℘2ς

Γ(2ς + 1)
+ · · ·

)
,
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which provides the problem’s integer-order (ς = 1) solution, ϕ(µ, ℘) = 1 + e(µ+℘).
On the other side, we solve the problem using the Elzaki transform in connection with the Atangana-

Baleanu operator. To begin, we solve the problem using the Elzaki transform:

ζ̃(µ,$) =

(
ς$ς + 1 − ς

N(ς)

)
E

[
ϕµµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘)

]
+$2ϕ(µ, 0). (4.7)

To solve Eq (4.7), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =X

(
ς$ς + 1 − ς

N(ς)

)
E


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)


 +

X

(
ς$ς + 1 − ς

N(ς)

)
E

 ∞∑
E=0

XEµE(µ, ℘)

 +$2ϕ(µ, 0).

(4.8)

By using the Elzaki inverse transform to Eq (4.8), we now have

∞∑
E=0

XEϕE(µ, ℘) =XE−1


(
ς$ς + 1 − ς

N(ς)

)
E


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

−

 ∞∑
E=0

XEϕE(µ, ℘)



 +

XE−1

(ς$ς + 1 − ς
N(ς)

)
E

 ∞∑
E=0

XEµE(µ, ℘)

 + E−1[$2ϕ(µ, 0)].

(4.9)

Equation (4.9) contains µE(.) terms, which are nonlinear polynomials specified in Eq (3.9). By
repeating the methods for nonlinear polynomials, we obtain:

X0 : ϕ0(µ, ℘) =E−1[$21 + e(µ)] = 1 + e(µ),

X1 : ϕ1(µ, ℘) =E−1[
(
ς$ς + 1 − ς

N(ς)

)
E[L(ϕ0(µ, ℘))]] + E−1[

(
ς$ς + 1 − ς

N(ς)

)
E[µ0(µ, ℘)]] =(

1 + eµ

N(ς)

) (
ς℘ς

Γ(ς + 1)
+ 1 − ς

)
,

X2 : ϕ2(µ, ℘) =E−1[
(
ς$ς + 1 − ς

N(ς)

)
E[L(ϕ1(µ, ℘))]] + E−1[

(
ς$ς + 1 − ς

N(ς)

)
E[µ1(µ, ℘)]] =(

1 + eµ

N2(ς)

) (
(ς℘ς)2

Γ(2ς + 1)
+

2ς(1 − ς)℘ς

Γ(ς + 1)
+ (1 − ς)2

)
,

...

(4.10)

Hence by means of ABC operator, the obtained solution is as follows:

ϕ(µ, ℘) =

n∑
ς=0

ϕς(µ, ℘)

= 1 + eµ +
1 + eµ

N(ς)

(
℘ς

Γ(ς)
+ 1 − ς

)
+

1 + eµ

N2(ς)

(
ς2℘2ς

Γ(2ς + 1)
+

(1 − ς)ς℘2ς

Γ(ς + 1)
+ (1 − ς)2

)
+ · · · ,

(4.11)

which provides the problem’s integer-order (ς = 1) solution, ϕ(µ, ℘) = 1 + e(µ+℘).
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Example 2. Second, to address problem (1.3) with an initial source (1.4), we employ the Elzaki
transform technique with the help of the Caputo derivative. We get the following results by applying
the Elzaki transform:

ζ̃(µ,$) = $ςE
[
ϕµµ(µ, ℘) − ϕµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘)

]
+$2ϕ(µ, 0). (4.12)

To solve Eq (4.12), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =X$ςE


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)

 −  ∞∑
E=0

XEϕE(µ, ℘)


µ

 +

X$ςE

 ∞∑
E=0

XEµE(µ, ℘)

 +$2ϕ(µ, 0).

(4.13)

By using the Elzaki inverse transform to Eq (4.13), we now have

∞∑
E=0

XEϕE(µ,$) = XE−1

$ςE


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)

 −  ∞∑
E=0

XEϕE(µ, ℘)


µ




+ XE−1

$ςE

 ∞∑
E=0

XEµE(µ, ℘)

 + E−1[$2ϕ(µ, 0)].

(4.14)

In Eq (4.3), the µE(.) represents the nonlinear terms assumed in Eq (3.10),

µ0(ϕ) =ϕ0(ϕ0)µ − (ϕ0)2,

µ1(ϕ) =ϕ0(ϕ1)µ + ϕ1(ϕ0)µ − 2ϕ0ϕ1,

µ2(ϕ) =ϕ0(ϕ2)µ + ϕ1(ϕ1)µ + ϕ2(ϕ0)µ − 2ϕ0ϕ2 − (ϕ2)2,

...

(4.15)

The terms of the Caputo operator solution are then obtained by evaluating the related powers of X:

X0 : ζ̃0(µ, ℘) =E−1[$21 + e(µ)] = e(µ),

X1 : ζ̃1(µ, ℘) =E−1[$ςE[L(ϕ0(µ, ℘))]] + E−1[$ςE[µ0(µ, ℘)]] = e(µ) ℘ς

Γ(ς + 1)
,

X2 : ζ̃2(µ, ℘) =E−1[$ςE[L(ϕ1(µ, ℘))]] + E−1[$ςE[µ1(µ, ℘)]] = e(µ) ℘2ς

Γ(2ς + 1)
,

...

(4.16)

Thus, we get

ϕ(µ, ℘) =

(
e(µ) + e(µ) ℘ς

Γ(ς + 1)
+ e(µ) ℘2ς

Γ(2ς + 1)
+ · · ·

)
, (4.17)

ϕ(µ, ℘) = e(µ)
(
1 +

℘ς

Γ(ς + 1)
+

℘2ς

Γ(2ς + 1)
+ · · ·

)
,
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which provides the problem’s integer-order (ς = 1) solution, ϕ(µ, ℘) = e(µ+℘).
On the other side, we solve the problem using the Elzaki transform in connection with the Atangana-

Baleanu operator. To begin, we solve the problem using the Elzaki transform:

ζ̃(µ,$) =

(
ς$ς + 1 − ς

N(ς)

) (
E

[
ϕµµ(µ, ℘) − ϕµ(µ, ℘) + ϕ(µ, ℘) + ϕ(µ, ℘)ϕµ(µ, ℘) − ϕ2(µ, ℘)

])
+$2ϕ(µ, 0).

(4.18)
To solve Eq (4.18), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =X

(
ς$ς + 1 − ς

N(ς)

)
E


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)

 −  ∞∑
E=0

XEϕE(µ, ℘)


µ

 +

X

(
ς$ς + 1 − ς

N(ς)

)
E

 ∞∑
E=0

XEµE(µ, ℘)

 +$2ϕ(µ, 0).

(4.19)

By using the Elzaki inverse transform, we now have

∞∑
E=0

XEζ̃E(µ, ℘) =XE−1


(
ς$ς + 1 − ς

N(ς)

)
E


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

+

 ∞∑
E=0

XEϕE(µ, ℘)

 −  ∞∑
E=0

XEϕE(µ, ℘)


µ


 +

XE−1

(ς$ς + 1 − ς
N(ς)

)
E

 ∞∑
E=0

XEµE(µ, ℘)

 + E−1[$2ϕ(µ, 0)].

(4.20)

Thus on comparing both sides

X0 : ϕ0(µ, ℘) =E−1[$2eµ] = eµ,

X1 : ϕ1(µ, ℘) =E−1[
(
ς$ς + 1 − ς

N(ς)

)
E[L(ϕ0(µ, ℘))]] + E−1[

(
ς$ς + 1 − ς

N(ς)

)
E[µ0(µ, ℘)]] =

=
eµ

N(ς)

(
℘ς

Γ(ς)
+ 1 − ς

)
,

X2 : ϕ2(µ, ℘) =E−1[
(
ς$ς + 1 − ς

N(ς)

)
E[L(ϕ1(µ, ℘))]] + E−1[

(
ς$ς + 1 − ς

N(ς)

)
E[µ1(µ, ℘)]] =

=
eµ

N2(ς)

(
ς2℘2ς

Γ(2ς + 1)
+

(1 − ς)ς℘2ς

Γ(ς + 1)
+ (1 − ς)2

)
(4.21)

Hence by means of ABC operator, the obtained solution is as follows:

ϕ(µ, ℘) = eµ +
eµ

N(ς)

(
℘ς

Γ(ς)
+ 1 − ς

)
+

eµ

N2(ς)

(
ς2℘2ς

Γ(2ς + 1)
+

(1 − ς)ς℘2ς

Γ(ς + 1)
+ (1 − ς)2

)
+ · · · , (4.22)

which provides the problem’s integer-order (ς = 1) solution, ϕ(µ, ℘) = e(℘+µ).
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Example 3. Finally, to address problem (1.5) with an initial source (1.6), we employ the Elzaki
transform technique with the help of the Caputo and ABC derivative. To Eqs (1.5) and (1.6), we
first employ the Elzaki transform along with the aid of Caputo derivative:

ζ̃(µ,$) = $ςE
[
ϕµµ(µ, ℘) − (1 + 4µ2)ϕ(µ, ℘)

]
+$2ϕ(µ, 0). (4.23)

To solve Eq (4.23), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =X$ςE


 ∞∑
E=0

XEϕE(µ,$)


µµ

− (1 + 4µ2)

 ∞∑
E=0

XEϕE(µ,$)


 +$2ϕ(µ, 0). (4.24)

By using the Elzaki inverse transform to Eq (4.24), we now have

∞∑
E=0

XEϕE(µ, ℘) =XE−1

$ςE

 ∞∑
E=0

XEϕE(µ, ℘)

 − (1 + 4µ2)

 ∞∑
E=0

XEϕE(µ,$)

 + E−1
[
$2ϕ(µ, 0)

]
.

(4.25)

The terms of the Caputo operator solution are then obtained by evaluating the related powers of X:

X0 : ϕ0(µ, ℘) =E−1[$2eµ
2
] = eµ

2
,

X1 : ϕ1(µ, ℘) =E−1[$ςE[L(ϕ0(µ, ℘))]],

=eµ
2 ℘ς

Γ(ς + 1)
,

X2 : ϕ1(µ, ℘) =E−1[$ςE[L(ϕ1(µ, ℘))]],

=eµ
2 ℘2ς

Γ(2ς + 1)
,

...

(4.26)

Thus, we get

ϕ(µ, ℘) = eµ
2
+ eµ

2 ℘ς

Γ(ς + 1)
+ eµ

2 ℘2ς

Γ(2ς + 1)
+ · · · (4.27)

which provides the problems integer-order (ς = 1) solution ϕ(µ, ℘) = eµ
2+℘.

On the other side, we solve the problem using the Elzaki transform in connection with the Atangana-
Baleanu operator. To begin, we solve the problem using the Elzaki transform:

ζ̃(µ,$) =

(
ς$ς + 1 − ς

N(ς)

) (
E

[
ϕµµ(µ, ℘) − (1 + 4µ2)ϕ(µ, ℘)

])
+$2ϕ(µ, 0). (4.28)

To solve Eq (4.28), we employ the Elzaki perturbation transform method

∞∑
E=0

XEζ̃E(µ,$) =

(
ς$ς + 1 − ς

N(ς)

) (
E


 ∞∑
E=0

XEϕE(µ, ℘)


µµ

− (1 + 4µ2)

 ∞∑
E=0

XEϕE(µ, ℘)



)

+$2ϕ(µ, 0).

(4.29)
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By using the Elzaki inverse transform, we now have

∞∑
E=0

XEϕE(µ, ℘) = XE−1

(ς$ς + 1 − ς
N(ς)

)
E

 ∞∑
E=0

XEϕE(µ, ℘)

 − (1 + 4µ2)

 ∞∑
E=0

XEϕE(µ,$)

+E−1[$2ϕ(µ, 0)].

(4.30)
Thus on comparing both sides

X0 : ϕ0(µ, ℘) =E−1[$2 sin µ] = eµ
2
,

X1 : ϕ1(µ, ℘) =E−1
[(
ς$ς + 1 − ς

N(ς)

)
E

[
L(ϕ0(µ, ℘))

]]
=

eµ
2

N(ς)

(
℘ς

Γ(ς)
+ 1 − ς

)
,

X2 : ϕ2(µ, ℘) =E−1
[(
ς$ς + 1 − ς

N(ς)

)
E

[
L(ϕ1(µ, ℘))

]]
=

eµ
2

N2(ς)

(
ς2℘2ς

Γ(2ς + 1)
+

(1 − ς)ς℘2ς

Γ(ς + 1)
+ (1 − ς)2

)
(4.31)

Hence by means of ABC operator, the obtained solution is as follows:

ϕ(µ, ℘) = eµ
2
+

eµ
2

N(ς)

(
℘ς

Γ(ς)
+ 1 − ς

)
+

eµ
2

N2(ς)

(
ς2℘2ς

Γ(2ς + 1)
+

(1 − ς)ς℘2ς

Γ(ς + 1)
+ (1 − ς)2

)
+ · · · , (4.32)

which provides the problems integer-order (ς = 1) solution, ϕ(µ, ℘) = eµ
2+℘.

5. Results and discussion

The graphs of the exact and approximate solutions are depicted in Figure 1a and b, whereas the
nature of the proposed method solution at various fractional-orders is shown in Figure 1c and d for
problem 1. Figure 2a and b illustrate the nature of the exact and proposed method solution while
Figure 2c and d demonstrates the behavior of the proposed technique at various fractional-orders.
Similarly, Figure 3a and b gives the proposed method comparison with the exact solution and Figure 3c
and d shows the layout of the suggested technique at different fractional-orders. In addition, we gives
the error comparison in terms of two different fractional derivatives with the aid of various fractional
derivatives for CRDEs in Tables 1–3. It is clearly observed from the figures and tables that the proposed
method solution are in good agreement with the exact solution and converges quickly towards the exact
solution. Also from the figures and tables we can conclude that proposed method solution converges
towards exact solution as we tends from fractional-orders towards integer-order.
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Figure 1. The behavior of the accurate solution, proposed method solution and proposed
method solution at different fractional-orders of ς ,y = 0.5 of problem 1.

Table 1. Example 1 error comparison at various fractional-order of ς.
℘ µ ς = 0.4 ς = 0.6 ς = 0.8 ς = 1(ET MCFD) ς = 1(ET MABC)

0.2 6.6652990000E-03 4.4438650000E-03 2.2224310000E-03 9.9900000000E-07 9.9900000000E-07

0.4 7.4765770000E-03 4.9847170000E-03 2.4928580000E-03 1.0010000000E-06 1.0010000000E-06

0.1 0.6 8.4674710000E-03 5.6453130000E-03 2.8231550000E-03 9.9900000000E-07 9.9900000000E-07

0.8 9.6777550000E-03 6.4521680000E-03 3.2265820000E-03 1.0000000000E-06 1.0000000000E-06

1 1.1155997000E-02 7.4376630000E-03 3.7193290000E-03 9.9900000000E-07 9.9900000000E-07

0.2 6.6663790000E-03 4.4449190000E-03 2.2234580000E-03 2.0000000000E-06 2.0000000000E-06

0.4 7.4776670000E-03 4.9857770000E-03 2.4938880000E-03 2.0010000000E-06 2.0010000000E-06

0.2 0.6 8.4685730000E-03 5.6463810000E-03 2.8241890000E-03 1.9990000000E-06 1.9990000000E-06

0.8 9.6788700000E-03 6.4532450000E-03 3.2276210000E-03 1.9990000000E-06 1.9990000000E-06

1 1.1157131000E-02 7.4387530000E-03 3.7203740000E-03 2.0000000000E-06 2.0000000000E-06

0.2 6.6674550000E-03 4.4459700000E-03 2.2244850000E-03 3.0000000000E-06 3.0000000000E-06

0.4 7.4787510000E-03 4.9868340000E-03 2.4949170000E-03 3.0000000000E-06 3.0000000000E-06

0.3 0.6 8.4696690000E-03 5.6474460000E-03 2.8252230000E-03 2.9990000000E-06 2.9990000000E-06

0.8 9.6799800000E-03 6.4543200000E-03 3.2286600000E-03 3.0000000000E-06 3.0000000000E-06

1 1.1158258000E-02 7.4398390000E-03 3.7214190000E-03 3.0000000000E-06 3.0000000000E-06

0.2 6.6685300000E-03 4.4470180000E-03 2.2255090000E-03 4.0000000000E-06 4.0000000000E-06

0.4 7.4798360000E-03 4.9878890000E-03 2.4959450000E-03 4.0000000000E-06 4.0000000000E-06

0.4 0.6 8.4707650000E-03 5.6485080000E-03 2.8262540000E-03 3.9990000000E-06 3.9990000000E-06

0.8 9.6810900000E-03 6.4553910000E-03 3.2296950000E-03 3.9990000000E-06 3.9990000000E-06

1 1.1159384000E-02 7.4409200000E-03 3.7224590000E-03 3.9990000000E-06 3.9990000000E-06

0.2 6.6696010000E-03 4.4480680000E-03 2.2265320000E-03 5.0000000000E-06 5.0000000000E-06

0.4 7.4809150000E-03 4.9889440000E-03 2.4969690000E-03 5.0000000000E-06 5.0000000000E-06

0.5 0.6 8.4718560000E-03 5.6495700000E-03 2.8272820000E-03 5.0000000000E-06 5.0000000000E-06

0.8 9.6821930000E-03 6.4564620000E-03 3.2307280000E-03 5.0000000000E-06 5.0000000000E-06

1 1.1160503000E-02 7.4420020000E-03 3.7234970000E-03 4.9990000000E-06 4.9990000000E-06
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Figure 2. The behavior of the accurate solution, proposed method solution and proposed
method solution at different fractional-orders of ς ,y = 0.5 of problem 2.

Table 2. Example 2 error comparison at various fractional-order of ς.
℘ µ ς = 0.4 ς = 0.6 ς = 0.8 ς = 1(ET MCFD) ς = 1(ET MABC)

0.2 3.6674050000E-03 2.4449250000E-03 1.2224550000E-03 7.0000000000E-09 7.0000000000E-09

0.4 4.4793800000E-03 2.9862390000E-03 1.4931110000E-03 8.0000000000E-09 8.0000000000E-09

0.1 0.6 5.4711270000E-03 3.6474010000E-03 1.8236890000E-03 9.0000000000E-09 9.0000000000E-09

0.8 6.6824480000E-03 4.4549450000E-03 2.2274590000E-03 1.2000000000E-08 1.2000000000E-08

1 8.1619620000E-03 5.4412820000E-03 2.7206250000E-03 1.4000000000E-08 1.4000000000E-08

0.2 3.6700710000E-03 2.4466910000E-03 1.2233250000E-03 2.4000000000E-08 2.4000000000E-08

0.4 3.6700710000E-03 2.9883960000E-03 1.4941740000E-03 2.9000000000E-08 2.9000000000E-08

0.2 0.6 5.4751020000E-03 13.6500330000E-03 1.8249860000E-03 3.7000000000E-08 3.7000000000E-08

0.8 6.6873050000E-03 4.4581610000E-03 2.2290440000E-03 4.5000000000E-08 4.5000000000E-08

1 8.1678930000E-03 5.4452100000E-03 2.7225600000E-03 5.5000000000E-08 5.5000000000E-08

0.2 3.6725270000E-03 2.4483130000E-03 1.2241190000E-03 5.5000000000E-08 5.5000000000E-08

0.4 4.4856350000E-03 2.9903770000E-03 1.4951430000E-03 6.7000000000E-08 6.7000000000E-08

0.3 0.6 5.4787660000E-03 3.6524530000E-03 1.8261710000E-03 8.2000000000E-08 8.2000000000E-08

0.8 6.6917800000E-03 4.4611160000E-03 2.2304900000E-03 1.0100000000E-07 1.0100000000E-07

1 8.1733600000E-03 5.4488200000E-03 2.7243270000E-03 1.2200000000E-07 1.2200000000E-07

0.2 3.6748440000E-03 2.4498380000E-03 1.2248580000E-03 9.8000000000E-08 9.8000000000E-08

0.4 4.4884650000E-03 2.9922400000E-03 1.4960450000E-03 1.1900000000E-07 1.1900000000E-07

0.4 0.6 5.4822230000E-03 3.6547290000E-03 1.8272730000E-03 1.4600000000E-07 1.4600000000E-07

0.8 6.6960020000E-03 4.4638960000E-03 2.2318360000E-03 1.7900000000E-07 1.7900000000E-07

1 8.1785150000E-03 5.4522150000E-03 2.7259710000E-03 2.1800000000E-07 2.1800000000E-07

0.2 3.6770560000E-03 2.4512910000E-03 1.2255540000E-03 1.5300000000E-07 1.5300000000E-07

0.4 4.4911670000E-03 2.9940140000E-03 1.4968960000E-03 1.8600000000E-07 1.8600000000E-07

0.5 0.6 5.4855220000E-03 3.6568950000E-03 1.8283110000E-03 2.2900000000E-07 2.2900000000E-07

0.8 6.7000330000E-03 4.4665420000E-03 2.2331050000E-03 2.7900000000E-07 2.7900000000E-07

1 8.1834390000E-03 5.4554470000E-03 2.7275210000E-03 3.4000000000E-07 3.4000000000E-07
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Table 3. Example 3 error comparison at various fractional-order of ς.
℘ µ ς = 0.4 ς = 0.6 ς = 0.8 ς = 1(ET MCFD) ς = 1(ET MABC)

0.2 3.1251570000E-03 2.0834290000E-03 1.0417080000E-03 5.0000000000E-09 5.0000000000E-09

0.4 3.5236050000E-03 2.3490590000E-03 1.1745220000E-03 6.0000000000E-09 6.0000000000E-09

0.1 0.6 4.3037410000E-03 2.8691470000E-03 1.4345650000E-03 7.0000000000E-09 7.0000000000E-09

0.8 5.6944070000E-03 3.7962540000E-03 1.8981150000E-03 1.0000000000E-08 1.0000000000E-08

1 8.1619620000E-03 5.4412820000E-03 2.7206250000E-03 1.4000000000E-08 1.4000000000E-08

0.2 3.1274280000E-03 2.0849320000E-03 1.0424490000E-03 2.1000000000E-08 2.1000000000E-08

0.4 3.5261650000E-03 2.3507540000E-03 1.1753580000E-03 2.4000000000E-08 2.4000000000E-08

0.2 0.6 4.3068690000E-03 2.8712190000E-03 1.4355860000E-03 2.8000000000E-08 2.8000000000E-08

0.8 5.6985460000E-03 3.7989950000E-03 1.8994660000E-03 3.8000000000E-08 3.8000000000E-08

1 8.1678930000E-03 5.4452100000E-03 2.7225600000E-03 5.5000000000E-08 5.5000000000E-08

0.2 3.1295210000E-03 2.0863150000E-03 1.0431260000E-03 4.7000000000E-08 4.7000000000E-08

0.4 3.5285250000E-03 2.3523130000E-03 1.1761210000E-03 5.3000000000E-08 5.3000000000E-08

0.3 0.6 4.3097510000E-03 2.8731220000E-03 1.4365170000E-03 6.4000000000E-08 6.4000000000E-08

0.8 5.7023590000E-03 3.8015130000E-03 1.9006980000E-03 8.6000000000E-08 8.6000000000E-08

1 8.1733600000E-03 5.4488200000E-03 2.7243270000E-03 1.2200000000E-07 1.2200000000E-07

0.2 3.1314950000E-03 2.0876140000E-03 1.0437550000E-03 8.4000000000E-08 8.4000000000E-08

0.4 3.5307520000E-03 2.3537790000E-03 1.1768310000E-03 9.4000000000E-08 9.4000000000E-08

0.4 0.6 4.3124700000E-03 2.8749120000E-03 1.4373850000E-03 1.1400000000E-07 1.1400000000E-07

0.8 5.7059570000E-03 3.8038820000E-03 1.9018460000E-03 1.5200000000E-07 1.5200000000E-07

1 8.1785150000E-03 5.4522150000E-03 2.7259710000E-03 2.1800000000E-07 2.1800000000E-07

0.2 3.1333800000E-03 2.0888520000E-03 1.0443480000E-03 1.3100000000E-07 1.3100000000E-07

0.4 3.5328770000E-03 2.3551740000E-03 1.1775000000E-03 1.4700000000E-07 1.4700000000E-07

0.5 0.6 4.3150660000E-03 2.8766170000E-03 1.4382020000E-03 1.7800000000E-07 1.7800000000E-07

0.8 5.7093910000E-03 3.8061360000E-03 1.9029270000E-03 2.3800000000E-07 2.3800000000E-07

1 8.1834390000E-03 5.4554470000E-03 2.7275210000E-03 3.4000000000E-07 3.4000000000E-07

Figure 3. The behavior of the accurate solution, proposed method solution and proposed
method solution at different fractional-orders of ς ,y = 0.5 of problem 3.
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6. Conclusions

The main concern of this work is to propose an efficient algorithm for the solution of nonlinear
fractional convection-diffusion problems. The approximate solutions of some particular time-fractional
convection-reaction-diffusion (CRD) equation are found in this paper using a new integral transform
technique known as the Elzaki transformation. The proposed approaches are consisted of two steps.
The given problems are first simplified using the Elzaki transform, and then the perturbation technique
is employed to get the solutions. The proposed method is applied with the aid of two different fractional
derivatives named Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative
(ABFD). The solutions of fractional order problems are investigated and fall into the best representation
of the actual dynamics of the problems. To ensure the validity of the proposed method, we showed
the results through graphs and tables. The suggested approach main benefit is the series form solution,
which quickly converges to the exact solution. The current procedure is found to be very simple and
an effective tool for the fractional partial differential equations and therefore can be extended to solve
other problems in sciences.
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