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Abstract: Mathematical concepts have been used in the last decades to predict the behavior of
the spread of infectious diseases. Among them, the reproductive number concept has been used in
several published papers to study the stability of the mathematical model used to predict the spread
patterns. Some conditions were suggested to conclude if there would be either stability or instability.
An analysis was also meant to determine conditions under which infectious classes will increase or die
out. Some authors pointed out limitations of the reproductive number, as they presented its inability to
help predict the spread patterns. The concept of strength number and analysis of second derivatives of
the mathematical models were suggested as additional tools to help detect waves. This paper aims to
apply these additional analyses in a simple model to predict the future.
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1. Introduction

Mathematical models of the spread of disease have been used successfully with limitations to
predict future behaviors of the spread. The main aim is to have an asymptotic idea of what the
spread will look like early enough that measures can be taken to help control and eradicate the
spread of the virus. Several mathematical concepts have been suggested to help better analyze these
models. During the modeling process, mathematicians or modelers first translate the observed facts
into mathematical equations using either ordinary or partial differential equations [1–4]. The obtained
system of equations, either linear or non-linear, is further analyzed. The first analysis consists of
obtaining equilibrium points (disease-free and endemic). This analysis is often followed by an analysis
of stability that includes global and asymptotic global stability, conditions under which the infectious
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classes will decrease, increase, or stay constant. The reproductive number, which can be obtained
differently, for instance, using the next generation of the matrix, is obtained to help predict whether the
spread will be stable or not. Then, finally, the study of the sign of the first derivative of the Lyapunov
function is associated with the system to give a clear idea of the stability. In thousands of papers
published on this topic, similar analyses can be found; so far, no significant contribution has been
made after the idea of reproductive number was suggested. However, while checking with great care
predictions made using this analysis, one will quickly see that this analysis cannot help humans predict
waves in a spread. For example, several mathematical models have been suggested to predict the spread
of Covid-19, but no analysis helps to indicate the number of waves that humans will face by Covid-19
spread [5–12]. Some researchers showed that the reproductive number was insufficient to provide an
apparent behavior of the spread. However, no attention was paid to such analysis; one will agree that
suggested mathematical models and research done in the last decades have not helped to predict waves.
Very recently, additional sets of analyses were presented: first, an evaluation of the equilibrium point
of the second derivative of the model; an evaluation of conditions under which the second derivatives
of infections classes are positive, negative or zero, and a calculation of strength number using the
next-generation matrix and evaluation of the sign of the second derivative of the Lyapunov function
associated with the model. Additionally, it was also suggested that the model should be derived with
piecewise derivatives; in this paper, we will apply that analysis to a simple epidemiological model.

This study is organized as follows. In Section 2, we present a deep analysis, including
positiveness and boundedness of the solutions of an SEIR(Suscepted-Exposed-Infected-Recovered)
model, reproduction and strength number and the first and second derivatives of the Lyapunov function.
Moreover, using the second derivative, we aim to determine under what conditions waves are possible.
In Section 3, we present a numerical scheme based on Newton polynomials for an SEIR model with
a piecewise derivative, where the first part is a classical derivative, and the second part is a stochastic
Caputo-Fabrizio derivative, and the numerical simulation is depicted for such model. In Section 4, we
present the numerical solution of an SEIR model with piecewise derivative where the first part is a
classical derivative, and the second part is a stochastic Atangana-Baleanu derivative, and the numerical
simulation is performed for such model. In Section 5, the numerical solution of an SEIR model with
piecewise derivative is presented. Here, the model is constructed such that the first part is a classical
derivative and the second part is a stochastic Caputo derivative. The numerical simulation is also
depicted for such a model.

2. A SEIR model

The SEIR model has been used and analyzed in many research works to predict the spread of
some infectious diseases. This model has been used to calculate the so-called reproductive number;
also, researchers have calculated its respective equilibrium points, including disease-free and endemic
points. However, the model has not been used to check whether the model can predict waves or if the
equilibrium points are local maximums or local minimums. In this section, an SEIR model will be
subjected to a further analysis that may help determine if such a model is suitable for describing spread
with waves.
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dS (t)
dt

= µN − µS −
βS I
N

(2.1)

dE (t)
dt

=
βS I
N
− (τ + µ) E

dI (t)
dt

= τE − (γ + µ) I

dR (t)
dt

= γI − µR

where N = S + E + I + R. The SEIR model will be subjected to the following initial conditions:

S (0) = S 0, E (0) = E0, I (0) = I0,R (0) = R0. (2.2)

Here S (t) is the class of the susceptible individuals. E (t) is the class of the exposed individuals. I (t)
is the class of the infected individuals. R (t) is the class of the recovered individuals. µN is the death
rate, β is the contact rate, τ is the rate of progression from exposed to infectious, and γ is the recovery
rate of infectious individuals [13]. Note that

dN
dt

= µN − µN = 0. (2.3)

We should point out that this model does not consider the number of deaths, and it is assumed that the
total population is constant as a function of time.

2.1. Positiveness and boundedness of solutions

We start with a primary analysis, at least to show that the solutions are positive, since they depict
real-world problems with positive values. In this subsection, we examine the conditions under which
the positivity of the solutions of the considered model is satisfied. Let us start with the class E (t) that
verifies

E (t) ≥ E0e−(τ+µ)t, ∀t ≥ 0. (2.4)

For the function I (t) , we have the following inequalities:

I (t) ≥ I0e−(γ+µ)t, ∀t ≥ 0, (2.5)

and
R (t) ≥ R0e−µt, ∀t ≥ 0. (2.6)

We shall define the norm
‖λ‖∞ = sup

t∈Dλ

|λ (t)| (2.7)

where Dλ is the domain of λ. Using the above norm, we get the following inequality for the function
S (t) ,

·

S (t) = µN − µS −
βS I
N

, ∀t ≥ 0,
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≥ −

(
µ +

β |I|
|N|

)
S , ∀t ≥ 0, (2.8)

≥ −

(
µ +

β supt∈DI
|I|

supt∈DN
|N |

)
S , ∀t ≥ 0,

≥ −

(
µ +

β ‖I‖∞
‖N‖∞

)
S , ∀t ≥ 0.

This yields

S (t) ≥ S 0e−
(
µ+

β‖I‖∞
‖N‖∞

)
t, ∀t ≥ 0. (2.9)

2.2. Analysis of equilibrium points

In this subsection, we give a detailed analysis about equilibrium points. The disease-free
equilibrium for this model is

(N, 0, 0, 0, 0) . (2.10)

To get the endemic equilibrium points, we need to solve the following system:
µN − µS − βS I

N = 0
βS I
N − (τ + µ) E = 0
τE − (γ + µ) I = 0
γI − µR = 0

. (2.11)

Then, the endemic equilibrium points are

S ∗ =
N

(
µ2 + µτ + µγ + γτ

)
τβ

(2.12)

E∗ = −

(
µ2 + µτ + µγ − τβ + γτ

)
µN

τβ (τ + µ)

I∗ = −
Nµ

(
µ2 + µτ + µγ − τβ + γτ

)
β
(
µ2 + µτ + µγ + γτ

)
R∗ = −

Nγ
(
µ2 + µτ + µγ − τβ + γτ

)
β
(
µ2 + µτ + µγ + γτ

) .

The above endemic equilibrium points are valid if the following inequality holds:

− µ2 − µτ − µγ − γτ + τβ > 0, (2.13)

namely,

1 >
µ2 + µτ + µγ + γτ

τβ
. (2.14)
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2.3. Reproduction number

To proceed with our preliminary analysis, we shall present here the derivation of the so-called
reproductive number. This is an essential value in the field of epidemiological modeling, as it helps
to give an understanding of the stability conditions. It was documented that if this number is less
than 1, we can expect stability; however, if this number is greater than 1, we could expect instability.
Nonetheless, it was reported that the value is obtained in different ways. However, we will utilize the
next generation matrix approach to determine the reproductive value in this case.

·

E =
βS I
N
− (τ + µ) E (2.15)

·

I = τE − (γ + µ) I.

Using the next generation matrix approach [14], we calculate the matrices F and V−1 as

F =

[
0 0
βS
N 0

]
,V−1 =

 1
τ+µ

0
τ

(τ+µ)(γ+µ)
1
γ+µ

 . (2.16)

Then, the reproduction number is obtained as

R0 =
β

(γ + µ)
. (2.17)

2.4. Strength number

The reproductive number has been used in thousands of research papers in epidemiological
modeling with some success and significant limitations, but this concept has been employed to
determine whether the spread will be severe, some researchers have pointed out some significant
weaknesses. For example, they sadly realized that such value is not unique, as it can be obtained
via different methods. Another issue raised was that this number should have been a function of time,
not a constant value. It was also noticed that a reproductive number could not be used to indicate
whether a model will predict waves or not. Very recently, an alternative number was suggested and
was called the strength number; of course, this number will be subjected to several tests to see whether
it can be used to help detect some complexities in the spread, or at least if this number can help detect
waves in a spread [4,13]. The value was derived using the next-generation matrix by taking the second
derivative of the infectious classes. This section will present the strength number associated with the
SEIR model.

∂2

∂I2

(
βS I
N

)
= βS

∂

∂I


(
N −

.

NI
)

N2

 (2.18)

= −
βS
N2 .

In this case, we can have the following:

FA =

[
0 0
−βS
N2 0

]
. (2.19)
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Then,
det

(
FAV−1 − λI

)
= 0 (2.20)

yields

A0 = −
S βτ

N2 (τ + µ) (γ + µ)
< 0. (2.21)

Having the strength number be less than zero will lead us to a conclusion that will further be confirmed
using a different analysis in finding the local minimum, local maximum, and inflection points. Thus,
having a negative strength number is an indication that the SEIR model will have a single magnitude,
either a maximum point with two inflection points, indicating a single wave, or an infection that will
decrease rapidly from the disease-free equilibrium. With the renewal process, the infection will rise
after a minimum point and then be stabilized or stopped later on. This will be confirmed while studying
the sign of the second derivative of infectious classes.

2.5. First derivative of Lyapunov

For the endemic equilibrium point (S ∗, E∗, I∗,R∗) , the associated Lyapunov function is analyzed
below.
Theorem 1. When the reproductive number R0 > 1, the endemic equilibrium points E∗ of the SEIR
model are globally asymptotically stable.
Proof. For proof, the Lyapunov function can be written as

L (S ∗, E∗, I∗,R∗) =

(
S − S ∗ − S ∗ log

S ∗

S

)
+

(
E − E∗ − E∗ log

E∗

E

)
(2.22)

+

(
I − I∗ − I∗ log

I∗

I

)
+

(
R − R∗ − R∗ log

R∗

R

)
.

Therefore, applying the derivative with respect to t on both sides yields

dL
dt

=
·

L =

(
S − S ∗

S

)
·

S +

(
E − E∗

E

)
·

E

+

(
I − I∗

I

)
·

I +

(
R − R∗

R

)
·

R. (2.23)

Now, we can write their values for derivatives as follows:

dL
dt

=

(
S − S ∗

S

) (
µN − µS −

βS I
N

)
+

(
E − E∗

E

) (
βS I
N
− (τ + µ) E

)
(2.24)

+

(
I − I∗

I

)
(τE − (γ + µ) I)

+

(
R − R∗

R

)
(γI − µR) .
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Putting S = S − S ∗, E = E − E∗, I = I − I∗, R = R − R∗ leads to

dL
dt

=

(
S − S ∗

S

) (
µN − µ (S − S ∗) −

β (S − S ∗) (I − I∗)
N

)
+

(
E − E∗

E

) (
β (S − S ∗) (I − I∗)

N
− (τ + µ) (E − E∗)

)
(2.25)

+

(
I − I∗

I

)
(τ (E − E∗) − (γ + µ) (I − I∗))

+

(
R − R∗

R

)
(γ (I − I∗) − µ (R − R∗)) .

We can organize the above as follows:

dL
dt

= µN − µN
S ∗

S
−

(S − S ∗)2

S
µ −

(S − S ∗)2

S
βI
N

+
(S − S ∗)2

S
βI∗

N

−
E∗

E
β

N
S I +

E∗

E
β

N
S I∗ +

E∗

E
β

N
S ∗I −

E∗

E
β

N
S ∗I∗ (2.26)

−
(E − E∗)2

E
(τ + µ) −

(I − I∗)2

I
(γ + µ) + τE − τE∗

−
I∗

I
τE +

I∗

I
τE∗ + γI − γI∗ −

R∗

R
γI +

R∗

R
γI∗ −

(R − R∗)2

R
µ.

To avoid the complexity, the above can be written as

dL
dt

= Σ −Ω (2.27)

where

Σ = µN +
(S − S ∗)2

S
βI∗

N
+

E∗

E
β

N
S I∗ +

E∗

E
β

N
S ∗I (2.28)

+τE +
I∗

I
τE∗ + γI +

R∗

R
γI∗

and

Ω = µN
S ∗

S
+

(S − S ∗)2

S
µ +

(S − S ∗)2

S
βI
N

+
E∗

E
β

N
S I +

E∗

E
β

N
S ∗I∗ (2.29)

+
(E − E∗)2

E
(τ + µ) +

(I − I∗)2

I
(γ + µ) + τE∗

+
I∗

I
τE + γI∗ +

R∗

R
γI +

(R − R∗)2

R
µ.

It is concluded that if Σ < Ω, this yields dL
dt < 0; however, when S = S ∗, E = E∗, I = I∗,R = R∗

0 = Σ −Ω ⇒
dL
dt

= 0. (2.30)
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We can see that the largest compact invariant space(Γ) for the suggested model in{
(S ∗, E∗, I∗,R∗) ∈ Γ :

dL
dt

= 0
}

(2.31)

is the point {E∗} the endemic equilibrium of the considered model. By the help of LaSalle’s invariance
principle [15], it follows that E∗ is globally asymptotically stable in Γ if Σ < Ω.

2.6. Second derivative of Lyapunov

While the sign of the first derivative of a Lyapunov function helps to describe the stability, one
should note that the analysis of the first derivative of a given function could not fully help one
to understand the variabilities of the function under study; for example, one will need the second
derivative analysis to find inflection points, local maximums, and minimums. Further research is
required on all the particularities of the variations. We thus present an analysis of the second derivative
of the associated Lyapunov function of our model.

d
·

L
dt

=
d
dt


(
1 − S ∗

S

) ·
S +

(
1 − E∗

E

) ·
E +

(
1 − I∗

I

) ·
I

+
(
1 − R∗

R

) ·
R

 (2.32)

=


·

S
S


2

S ∗ +


·

E
E


2

E∗ +


·

I
I


2

I∗ +


·

R
R


2

R∗ +

(
1 −

S ∗

S

)
··

S

+

(
1 −

E∗

E

)
··

E +

(
1 −

I∗

I

)
··

I +

(
1 −

R∗

R

)
··

R.

Here, considering
·

N = 0, we have

··

S = µ
·

N − µ
·

S − β


(
·

S I +
·

IS
)

N

 (2.33)

··

E = β


(
·

S I +
·

IS
)

N

 − (τ + µ)
·

E

··

I = τ
·

E − (γ + µ)
·

I
··

R = γ
·

I − µ
·

R.

Then, we have

d
·

L
dt

=


·

S
S


2

S ∗ +


·

E
E


2

E∗ +


·

I
I


2

I∗ +


·

R
R


2

R∗ (2.34)

+

(
1 −

S ∗

S

) −µ ·S − β

(
·

S I +
·

IS
)

N
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+

(
1 −

E∗

E

) β

(
·

S I +
·

IS
)

N

 − (τ + µ)
·

E


+

(
1 −

I∗

I

) (
τ
·

E − (γ + µ)
·

I
)

+

(
1 −

R∗

R

) (
γ
·

I − µ
·

R
)

and

d2L
dt2 =

·

Π (S , E, I,R) − µ
(
1 −

S ∗

S

)
·

S (2.35)

−β

(
1 −

S ∗

S

) 
(
·

S I +
·

IS
)

N


+

(
1 −

E∗

E

)
β


(
·

S I +
·

IS
)

N

 −
(
1 −

E∗

E

)
(τ + µ)

·

E

+

(
1 −

I∗

I

)
τ
·

E − (γ + µ)
(
1 −

I∗

I

)
·

I

+

(
1 −

R∗

R

)
γ
·

I −
(
1 −

R∗

R

)
µ
·

R.

After replacing
·

S (t) ,
·

E (t) ,
·

I (t) and
·

R (t) by their formulas from the considered model and putting it
all together, we can get

d2L
dt2 =

·

Π (S , E, I,R) − µ
(
1 −

S ∗

S

) (
µN − µS −

βS I
N

)
(2.36)

−β

(
1 −

S ∗

S

) 
((
µN − µS − βS I

N

)
I + (τE − (γ + µ) I) S

)
N


+

(
1 −

E∗

E

)
β


((
µN − µS − βS I

N

)
I + (τE − (γ + µ) I) S

)
N


−

(
1 −

E∗

E

)
(τ + µ)

(
βS I
N
− (τ + µ) E

)
+

(
1 −

I∗

I

)
τ
(
βS I
N
− (τ + µ) E

)
− (γ + µ)

(
1 −

I∗

I

)
(τE − (γ + µ) I)

+

(
1 −

R∗

R

)
γ (τE − (γ + µ) I) −

(
1 −

R∗

R

)
µ (γI − µR) .

For simplicity, we can write
d2L
dt2 = Ω1 −Ω2 (2.37)
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where

Ω1 =
·

Π (S , E, I,R) + µ2S + µ
βS I
N

+ µ2 S ∗

S
N + β

S ∗

S
µI (2.38)

+β
S ∗

S
τES

N
+
β2S I2

N2 + β
µS I + (γ + µ) IS

N
+ βµI + β

τES
N

+
E∗

E
β2S I2

N2 + β
E∗

E
(µS I + (γ + µ) IS )

N
+

E∗

E
(τ + µ)

βS I
N

+ (τ + µ)2 E

+τ
βS I
N

+
I∗

I
τ (τ + µ) E + (γ + µ)2 I + (γ + µ)

I∗

I
τE

+γτE +
R∗

R
γ (γ + µ) I +

R∗

R
γIµ + µ2R

and

Ω2 = µ2N + µ2S ∗ + µS ∗
βI
N

+ βµI + β
τES

N
+ β

S ∗

S

(
βS I2

N2 +
µS I + (γ + µ) IS

N

)
(2.39)

+

(
β2S I2

N2 + β
µS I + (γ + µ) IS

N

)
+

E∗

E
β
(
µI +

τES
N

)
+ (τ + µ)

βS I
N

+
E∗

E
(τ + µ)

βS I
N

+ τ (τ + µ) E +
I∗

I
τ
βS I
N

+ (γ + µ) τE +
I∗

I
(γ + µ)2 I + (γ (γ + µ) I)

+
R∗

R
γτE + µγI +

R∗

R
µ2R.

It can be seen that

If Ω1 > Ω2 then
d2L
dt2 > 0,

If Ω1 < Ω2 then
d2L
dt2 < 0, (2.40)

If Ω1 = Ω2 then
d2L
dt2 = 0.

2.7. Equilibrium points for second order

Since the equilibrium points also help one to get information on curvatures, in this subsection, we
aim to find the equilibrium points of the second-order derivative of our solutions. Thus, we write

··

S = −µ2N + µ2S − βµI + 2βµ
S I
N

+ β2S
( I
N

)2

− βτ
S E
N

+ (γ + µ) β
S I
N

(2.41)

··

E = βµI − βµ
S I
N
− β2S

( I
N

)2

+ β
S
N
τE − β

S
N

(γ + µ) I − (τ + µ)
βS I
N

+ (τ + µ)2 E

··

I = τ
βS I
N
− τ (τ + µ) E − (γ + µ) τE + (γ + µ)2 I

··

R = γτE − γ (γ + µ) I − µγI + µ2R.
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The disease-free equilibrium point of the second order derivative of the model is

E∗◦ = (N, 0, 0, 0) . (2.42)

The endemic equilibrium points of the second order derivative of the model are

S ∗◦ =
N

(
µ2 + µτ + µγ + γτ

)
τβ

(2.43)

E∗◦ = −

(
µ2 + µτ + µγ − τβ + γτ

)
µN

τβ (τ + µ)

I∗◦ = −
Nµ

(
µ2 + µτ + µγ − τβ + γτ

)
β
(
µ2 + µτ + µγ + γτ

)
R∗◦ = −

Nγ
(
µ2 + µτ + µγ − τβ + γτ

)
β
(
µ2 + µτ + µγ + γτ

) .

For the classes I (t) , E (t) to increase, we need

.

E (t) =
βS I
N
− (τ + µ) E (2.44)

.

I (t) = τE − (γ + µ) I.

Indeed, for the endemic process, we can consider the following:
.

E (t) > 0⇒ βS I
N > (τ + µ) E

.

I (t) > 0⇒ τE > (γ + µ) I,
(2.45)

and since S
N < 1, {

βI > (τ + µ) E
τ
γ+µ

> I
E

. (2.46)

Thus,  I
E > (τ+µ)

β
τ
γ+µ

> I
E
⇒

(τ + µ)
β

<
I
E
<

τ

γ + µ
. (2.47)

The E (t) and I (t) classes will increase if the following conditions hold:

(τ + µ)
β

<
I
E
<

τ

γ + µ
. (2.48)

We are now checking local maximum, local minimum, or inflection points. We have two equilibrium
points, including the disease-free and endemic. To achieve this, we consider the second derivative of
the infectious classes

..

E (t) = β

 .

S IN +
.

IS N −
.

NS I
N2

 − (τ + µ)
.

E (2.49)
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..

I (t) = τ
.

E − (γ + µ)
.

I.

At E0, we have that
..

E (t) = 0 (2.50)
..

I (t) = 0

which can be considered as an inflection point of the spread. This means that, at this point, we could
see any increase in the number of infectious classes. Also, at E0∗, endemic equilibrium

.

S (t) =
.

E (t) =
.

I (t) = 0. Thus,
..

E (t) =
..

I (t) = 0 also. The model predicts two inflection points; therefore, it is expected
to have a maximum and a minimum point.

We shall evaluate the sign of the
..

E and
..

I functions.

β

 .

S IN +
.

IS N −
.

NS I
N2

 − (τ + µ)
.

E > 0 (2.51)

τ
.

E − (γ + µ)
.

I > 0.

β


(
µN − µS − βS I

N

)
I + (τE − (γ + µ) I) S

N

 > (τ + µ)
βS I
N
− (τ + µ) E (2.52)

τ
βS I
N
− (γ + µ)2 I > (γ + 2µ + τ) τE .

βµI − βµS I −
β2S I2

N2 +
βS τE

N
−
β (γ + µ) IS

N
> (τ + µ)

βS I
N
− (τ + µ)2 E (2.53)(

βτ + (γ + µ)2
)

I > (γ + 2µ + τ) τE ,

and

βµI +
βS τE

N
+ (τ + µ)2 E > (τ + µ)

βS I
N

+ βµS I +
β2S I2

N2 +
β (γ + µ) IS

N
(2.54)(

βτ + (γ + µ)2
)

I > (γ + 2µ + τ) τE .

Since S
N < 1, we can write βµI + βτE + (τ + µ)2 E > βS

N

[
µI +

βI2

N + (γ + µ) I + (τ + µ) I
](

βτ + (γ + µ)2
)

I > (γ + 2µ + τ) τE
, (2.55)

 βµ I
E + βτ + (τ + µ)2 > βS

N

[
µ I

E +
βI2

NE + (γ + µ) I
E + (τ + µ) I

E

]
I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)
, (2.56)

 βτ + (τ + µ)2 > βS I
NE

[
γ + 3µ + τ

]
− βµ I

E
I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)
, (2.57)
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E

[
βS
N (γ + 3µ + τ) − βµ

]
I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)
. (2.58)


βτ+(τ+µ)2

βS
N (γ+3µ+τ)−βµ

> I
E

I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)
(2.59)

with S
N > µ

(γ+3µ+τ) . Thus we have the following condition

(γ + 2µ + τ) τ(
βτ + (γ + µ)2

) < I
E
<

βτ + (τ + µ)2

βS
N (γ + 3µ + τ) − βµ

. (2.60)

On the other hand, we write the following:

..

E (t) < 0 (2.61)
..

I (t) < 0.

βµI + (τ + µ)2 E < (τ + µ) βI + βµI + β2I2 + β (γ + µ) I (2.62)
(γ + µ)2 I < (γ + 2µ + τ) τE ,

and 
(τ+µ)2

(β2N+β(γ+µ)) <
I
E

I
E < (γ+2µ+τ)τ

(γ+µ)2

. (2.63)

Therefore, 
..

E (t) < 0
..

I (t) < 0
⇒

(τ + µ)2(
β2N + β (γ + µ)

) < I
E
<

(γ + 2µ + τ) τ
(γ + µ)2 . (2.64)

3. Numerical solution of the model with exponential decay process

This section presents a numerical scheme based on the Newton polynomial for the numerical
solution of the considered model with piecewise differential and integral operators [16]. While the
Caputo Fabrizio differential operator helps to capture processes exhibiting fading memory behaviors,
the stochastic, on the other hand, helps capture processes with randomness. There are processes in
nature that exhibit both fading memory and randomness. It is worth noting that such methods cannot
be accurately modelled either with Caputo-Fabrizio differential operator or with the random, and thus
a combination of both is needed. Indeed this comparison is not at all a new calculus or theory but
a mathematical tool to replicate this scenario. This behavior has been observed in data collected for
different infectious diseases; therefore, in this section, we provide a mathematical tool to capture such
behaviors. We start with the piecewise SEIR model with the classical and stochastic Caputo-Fabrizio
case, which is given by
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X′ = F (t, X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
CF
T1

Dα
t X = F (t, X) dt + σiXiBi′ (t) ,

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

(3.1)

where σi and Bi (t) indicate the stochastic constant and Brownian function, respectively. Also, some
notation is presented as below.

X =


S
E
I
R

 , F (t, X) =


f1 (t, X)
f2 (t, X)
f3 (t, X)
f4 (t, X)

 =


µN − µS − βS I

N
βS I
N − (τ + µ) E
τE − (γ + µ) I
γI − µR

 . (3.2)

Applying the associated integral, we can have

X = Xi (0) +
∫ t

0
F (τ, X) dτ, if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

 Xi (T1) + 1−α
M(a) F (t, X) + α

M(a)

∫ t

0
F (τ, X) dτ

+ 1−α
M(a)σiXiBi′ (t) + α

M(a)

∫ t

0
σiXiBi′ (τ) dτ

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, i = 1, .., 4, 0 < α ≤ 1

. (3.3)

We divide [0,T ] in two:

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2. (3.4)

Interpolating fi (t, Xi) using the Newton polynomial within [tn, tn+1] yields

Xn1
i = Xi (0) +

∑n1
j1=2


23
12 F

(
t j1 , X j1

)
−4

3 F
(
t j1−1, X j1−1

)
+ 5

12 F
(
t j1−2, X j1−2

)
 ∆t

, 0 ≤ t ≤ T1

Xn2
i = Xi (T1) +

(1−α)
M(α) F

(
tn2 , Xn2

)

+ α∆t
M(α)

∑n2
j2=n1+3



23
12 f

(
t j1 , X j1

)
+σiX j1

(
Bi

(
t j1+1

)
− Bi

(
t j1

))
−4

3 f
(
t j1−1, X j1−1

)
+σiX j1

(
Bi

(
t j1

)
− Bi

(
t j1−1

))
+ 5

12 f
(
t j1−2, X j1−2

)
+σiX j1

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))


,T1 ≤ t ≤ T2

. (3.5)

The parameters and initial conditions are given as
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X1 (0) = 1000, X2 (0) = 1, X3 (0) = 0, X4 (0) = 0, X1 (T1) = 999.2, (3.6)
X2 (T2) = 0.4924, X1 (T3) = 0.1847, X1 (T4) = 0.1109,

and

N = 1000,T1 = 50, β = 64/30, µ = 0.5, τ = 0.3, γ = 0.3,
σ1 = 0.2, σ2 = 0.12, σ3 = 0.2, σ4 = 0.24. (3.7)

The simulation of the numerical solution of the model is depicted in Figure 1.

Figure 1. Numerical simulation of SEIR model for α = 0.7.

In this example, some parameters of the model are chosen such that τβ

(γ+µ)(τ+µ) = 1, which can be
observed from Eq (2.48).

4. Numerical solution of the model with Mittag-Leffler process

In this section, we adopt the numerical scheme for the model where the first part is classical, and the
second part is the fractional derivative with the generalized Mittag-Leffler kernel [17]. It is important
to note that a model with the generalized Mittag-Leffler kernel helps capture processes, with a passage
from stretched exponential to power-law with no steady-state.

X′ = F (t, X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
ABC
T1

Dα
t X = F (t, X) dt + σiXiBi′ (t) ,

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (4.1)
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Applying the Atangana-Baleanu integral, we obtain the following equality:

X = Xi (0) +
∫ t

0
F (τ, X) dτ, if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

 Xi (T1) + 1−α
AB(a) F (t, X) + α

AB(a)Γ(a)

∫ t

0
F (τ, X) (t − τ)α−1 dτ

+ 1−α
AB(a)σiXiBi′ (t) + α

AB(a)Γ(a)

∫ t

0
σiXiBi′ (τ) (t − τ)α−1 dτ

,

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1.

(4.2)

We divide [0,T ] in three:

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2. (4.3)

Replacing the functions fi (t, Xi) by their Newton polynomials within [tn, tn+1] , the following numerical
scheme is obtained: 

Xn1
i = Xi (0) +

∑n1
j1=2


23
12 F

(
t j1 , X j1

)
−4

3 F
(
t j1−1, X j1−1

)
+ 5

12 F
(
t j1−2, X j1−2

)
 ∆t,

if 0 ≤ t ≤ T1

xn2 = x (T1) +
(1−α)∆t
AB(α) f

(
tn2 , Xn2

)
+ α∆t

AB(α)Γ(α+1)

∑n2
j2=n1+3 F

(
t j2−2, X j2−2

)
Λ1

+ α∆t
AB(α)Γ(α+2)

∑n2
j2=n1+3

 F
(
t j2−1, X j2−1

)
−F

(
t j2−2, X j2−2

)  Λ2

+ α∆t
2AB(α)Γ(α+3)

∑n2
j2=n1+3


F

(
t j2 , X j2

)
−2F

(
t j2−1, X j2−1

)
+F

(
t j2−2, X j2−2

)
 Λ3

(4.4)



+ α∆t
AB(α)Γ(α+1)

∑n2
j2=n1+3 σiX j1

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))
Λ1

+ α∆t
AB(α)Γ(α+2)

∑n2
j2=n1+3

 σiX j2−1

(
Bi

(
t j1

)
− Bi

(
t j1−1

))
−σiX j2−2

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))  Λ2

+ α∆t
2AB(α)Γ(α+3)

∑n2
j2=n1+3


σiX j2

(
Bi

(
t j1+1

)
− Bi

(
t j1

))
−2σiX j2−1

(
Bi

(
t j1

)
− Bi

(
t j1−1

))
+σiX j2−2

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))
 Λ3

, (4.5)

if T1 ≤ t ≤ T2

where

Λ1 = (n2 − j2 + 1)α − (n2 − j2)α (4.6)

Λ2 =

{
(n2 − j2 + 1)α (n2 − j2 + 3 + 2α)
− (n2 − j2)α (n2 − j2 + 3 + 3α)

}
,
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Λ3 =


(n2 − j2 + 1)α

[
2 (n2 − j2)2 + (3α + 10) (n2 − j2)

+2α2 + 9α + 12

]
− (n2 − j2)α

[
2 (n2 − j2)2 + (5α + 10) (n2 − j2)

+6α2 + 18α + 12

]
 .

For this model, the parameters and initial conditions are considered as follows:

X1 (0) = 1000, X2 (0) = 1, X3 (0) = 0, X4 (0) = 0, X1 (T1) = 1000, (4.7)
X2 (T1) = 4.642 × 10−5, X1 (T1) = 2.315 × 10−5, X1 (T1) = 0.0069

and

N = 1000,T1 = 50, β = 0.001, µ = 0.1, τ = 0.1, γ = 0.3,
σ1 = 0.0000025, σ2 = 0.011, σ3 = 0.0091, σ4 = 0.017. (4.8)

The simulation of the numerical solution of the model is shown in Figure 2.

Figure 2. Numerical simulation of SEIR model for α = 0.6.

In this example, the parameters of the model are chosen such that τβ

(γ+µ)(τ+µ) < 1, which is seen from
Eq (2.48).

5. Numerical solution of the model with power-law process

In this section, we consider the following model:

X′ = F (t, X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
C
T1

Dα
t X = F (t, X) dt + σiXiBi′ (t) ,

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

(5.1)
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where the first part is classical, and second part is the fractional derivative with the generalized Mittag-
Leffler kernel. Applying the associated integral, we obtain the following equality:

X = Xi (0) +
∫ t

0
F (τ, X) dτ, if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

 Xi (T1) + 1
Γ(a)

∫ t

0
F (τ, X) (t − τ)α−1 dτ

+ 1
Γ(a)

∫ t

0
σiXiBi′ (τ) (t − τ)α−1 dτ

,

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (5.2)

We divide [0,T ] in three:

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2. (5.3)

Replacing the functions fi (t, Xi) by their Newton polynomials within [tn, tn+1] , the associated model
can be solved by the following algorithm:

Xn1
i = Xi (0) +

∑n1
j1=2


23
12 F

(
t j1 , X j1

)
−4

3 F
(
t j1−1, X j1−1

)
+ 5

12 F
(
t j1−2, X j1−2

)
 ∆t,

if 0 ≤ t ≤ T1

Xn2
i = Xi (T1) + ∆t

Γ(α+1)

∑n2
j2=n1+3 F

(
t j2−2, X j2−2

)
Λ1

+ ∆t
Γ(α+2)

∑n2
j2=n1+3

 F
(
t j2−1, X j2−1

)
−F

(
t j2−2, X j2−2

)  Λ2

+ ∆t
2Γ(α+3)

∑n2
j2=n1+3


F

(
t j2 , X j2

)
−2F

(
t j2−1, X j2−1

)
+F

(
t j2−2, X j2−2

)
 Λ3

(5.4)



+ ∆t
Γ(α+1)

∑n2
j2=n1+3 σiX j2

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))
Λ1

+ ∆t
Γ(α+2)

∑n2
j2=n1+3

 σiX j2−1

(
Bi

(
t j1

)
− Bi

(
t j1−1

))
−σiX j2−2

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))  Λ2

+ ∆t
2Γ(α+3)

∑n2
j2=n1+3


σiX j2

(
Bi

(
t j1+1

)
− Bi

(
t j1

))
−2σiX j2−1

(
Bi

(
t j1

)
− Bi

(
t j1−1

))
+σiX j2−2

(
Bi

(
t j1−1

)
− Bi

(
t j1−2

))
 Λ3

, (5.5)

if T1 ≤ t ≤ T2.

The parameters and initial conditions are given as

X1 (0) = 1000, X2 (0) = 1, X3 (0) = X4 (0) = 0, X1 (T1) = 28.03, (5.6)
X2 (T1) = 78.01, X3 (T1) = 593.1, X4 (T1) = 301.4,
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and

N = 1000,T1 = 50, β = 0.6, µ = 0.01, τ = 0.2, γ = 0.03,
σ1 = 0.000005, σ2 = 0.008, σ3 = 0.0071, σ4 = 0.017. (5.7)

The simulation of the numerical solution of the model is presented in Figure 3.

Figure 3. Numerical simulation of SEIR model for α = 0.75.

In this example, the parameters of the model are chosen such that τβ

(γ+µ)(τ+µ) > 1, which is seen from
Eq (2.48).

6. Conclusions

In classical calculus, analysis of the first derivative of a given function helps one to understand
the change in such a function. In addition, this formula calculates the velocity of a moving object.
However, analysis using the first derivative does not always a priori provide a clear indication of the
variation of a function. Therefore, an analysis of the second derivative is required. The study of the
second derivative includes information on inflection points, local maximums, and minimums. These
elementary analyses can better show spread patterns in epidemiological modeling. A new concept
was recently introduced and named strength number, which is obtained by considering the second
derivative of the non-linear part of a given infectious disease model. Then, the next-generation matrix
methodology is used to obtain the strength number. It was argued that such numbers could help detect
waves or instability in a model. This work applies such a concept, together with a second derivative
analysis, in a simple SEIR problem. The obtained strength number was negative, with one equilibrium
point for the model with second derivatives, indicating that such a model could have only one wave and
then die out. We have used piecewise differential operators to add stochastic behavior to the model.
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