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Abstract: Image deblurring models with a mean curvature functional has been widely used to
preserve edges and remove the staircase effect in the resulting images. However, the Euler-Lagrange
equations of a mean curvature model can be used to solve fourth-order non-linear integro-differential
equations. Furthermore, the discretization of fourth-order non-linear integro-differential equations
produces an ill-conditioned system so that the numerical schemes like Krylov subspace methods
(conjugate gradient etc.) have slow convergence. In this paper, we propose an augmented Lagrangian
method for a mean curvature-based primal form of the image deblurring problem. A new circulant
preconditioned matrix is introduced to overcome the problem of slow convergence when employing a
conjugate gradient method inside of the augmented Lagrangian method. By using the proposed new
preconditioner fast convergence has been observed in the numerical results. Moreover, a comparison
with the existing numerical methods further reveal the effectiveness of the preconditioned augmented
Lagrangian method.
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1. Introduction

Image deblurring or deconvolution is an important topic in image processing due to its wide range of
applications in astronomical imaging, robot vision, medical image processing, remote sensing, virtual
reality and many others. In the field of image deconvolution, the use of non-linear variational methods
have received a great amount of attention in the last few decades. While applying these methods to
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blurred and noisy images researchers have to face two main difficulties. One difficulty is non-linearity,
and the other is related to solve the underlying large matrix system. For this paper, our primary goal
is also to deal with these two computational difficulties for a high-order variational model. The total
variation (TV) model [1, 29, 36]

=(u) =
1
2
‖~Ku − z‖2 + α

∫
Ω

|5u|dx (1.1)

is the most famous non-linear variational model. It has so many desirable properties, but this model
transforms smooth functions into piecewise constant functions which generates staircase effects in the
deblurred images. That is why the resulting images look blocky. To overcome the problem of staircase
effects, one idea is to use mean curvature (MC)-based regularization models [12, 19, 31, 39–41],

=(u) =
1
2
‖~Ku − z‖2 +

α

2

∫
Ω

(
5 ·
5u
|5u|

)2dx. (1.2)

The MC-based regularization models not only remove the staircase effects but they also preserve the
edges in the deblurred images. However, the Euler-Lagrange equations of mean curvature models
can be used to solve non-linear fourth-order integro-differential equations. This non-linear high order
term comes from the MC functional. Furthermore the discretization of an integro-differential equation
results in a large ill-conditioned system that causes numerical algorithms like Krylov subspace methods
(e.g. conjugate gradient (CG) method) to slowly converge. The Jacobian matrix of the ill-conditioned
system has a block-banded structure with a large bandwidth. The efficient and robust numerical
solution is a key issue for MC-based regularization methods due to the ill-conditioned system and
high non-linearity.

In this paper, we propose an augmented Lagrangian method for an MC-based image deblurring
problem. The augmented Lagrangian methods have already been successfully applied to the
optimization problems in image processing and computer vision [9, 22, 32, 37]. In these works, the
augmented Lagrangian methods achieve much higher speeds than other numerical methods. The
augmented Lagrangian methods have been shown to decompose the original nontrivial minimization
problem into a number of subproblems that are easy and fast to solve. Some of them can be
solved by fast solvers like the fast Fourier transform (FFT), and others have ‘closed-form’ solutions.
Therefore, the construction of an efficient augmented Lagrangian method for the minimization of a
given functional depends on whether one can break down the original functional into simple ones.
In our proposed augmented Lagrangian method, we use the cell-centered finite difference scheme
along with the midpoint quadrature scheme for discretizing the subproblem for the primary variable
u (image) of the associated Lagrangian equations. However, this leads to a large non-linear matrix
system. The coefficient matrix of this system is symmetric positive definite (SPD). So the CG method
is suitable for the solution of this matrix system. But, the SPD matrix is quite dense which causes the
CG method to slowly converge. To overcome the problem of slow convergence due to the CG method,
we have introduced a new circulant preconditioned matrix. So, for the solution of the system, instead
of applying ordinary CG method, we use a preconditioned CG (PCG) method. By using the proposed
new preconditioner fast convergence can be observed in the numerical results.

The contributions of the paper are as follows: (i) we present a preconditioned augmented Lagrangian
method for an MC-based image deblurring model; (ii) we introduce a new circulant preconditioned
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matrix that overcomes the problem of slow convergence due to the CG method inside the augmented
Lagrangian scheme and (iii) we present a comparison with existing numerical methods to demonstrate
the efficiency of the preconditioned augmented Lagrangian method. The paper includes different
sections. The second section explains the image deblurring problem. The third section is about
our proposed augmented Lagrangian method for an MC-based image deblurring model. The cell
discretization and matrix system are also presented in third section. The fourth section describes
the proposed circulant preconditioner, and the fifth section discusses the numerical experiments. We
present the conclusions in the last section of the manuscript.

2. Problem description

We start the paper by presenting a concise description of the image debluring problem. The
mathematical relationship of u (original or true image) and z (blurred image) is

z = ~Ku + ε. (2.1)

The parameter ε represents a noise function which can be Gaussian noise, Brownian noise, salt-
and-pepper noise etc. In our experiments, we have only considered Gaussian noise. ~K represents the
blurring operator,

(~Ku)(x) =

∫
Ω

k(x, y)u(y) dy, x ∈ Ω, (2.2)

where k(x, y) = k(x − y) is known as translation-invariant kernel. Figure 1 depicts the process of
blurring.

Figure 1. (left) True image, (center-left) blurring kernel, (center-right) noise and (right) the
resulting image.

If ~K = I (identity operator), then Problem (2.1) becomes an image denoising problem. If the
blurring operator ~K is known then the technique is referred to non-blind deconvolution [14, 34, 38].
However, if the blurring operator is unknown, then it is called blind deconvolution [6, 19, 23]. Our
research will focus on non-blind deconvolution. ~K is a Fredholm-integral operator of the first kind, so
it is compact. That is why Problem (2.1) becomes ill-posed [1, 35, 36]. The image intensity function
u lies in a square Ω ⊂ R2. The position of the pixel in Ω is defined by x = (x, y). Additionally,
|x| =

√
x2 + y2 and ‖ · ‖ are the Euclidean norm and L2(Ω) norm respectively. The recovery of u

from z makes Problem (2.1) an unstable inverse problem [1, 35, 36]. The use of the MC regularization
functional [12, 31, 39, 41],
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J(u) =

∫
Ω

κ(u)2dx =

∫
Ω

(
5 ·
5u
|5u|

)2dx, (2.3)

makes Problem (2.1) a stable problem. The Problem (2.1) is then to find a u that minimizes the
functional

=(u) =
1
2
‖~Ku − z‖2 +

α

2
J(u), α > 0. (2.4)

In [41], Zhu and Chan explained the well-posedness of Problem (2.4) for the case of synthetic image
denoising. The Euler-Lagrange equations of Problem (2.4) are as follows:

~K∗(~Ku − z) + α 5 ·
( 5κ√
|5u|2 + β2

−
5κ · 5u

(
√
|5u|2 + β2)3

5 u
)

= 0 in Ω, (2.5)

∂u
∂n

=0 in ∂Ω, (2.6)

κ(u) =0 in ∂Ω, (2.7)

where ~K∗is the adjoint operator of ~K and n is the outward unit normal. β > 0 is added to make the MC
functional differentiable at zero. Equation (2.5) is a non-linear fourth order differential equation.

The MC-based regularization models not only remove the staircase effects but they also preserve
edges during the recovery of digital images. However, the Euler-Lagrange equations of the MC model
can be used to solve the non-linear fourth order integro-differential equation. The MC functional
generates a non-linear high-order term. When developing an efficient numerical method, one key issue
is determining a proper approximation of the MC functional. In the next section, the non-linearity of
MC is treated by introducing three new variables for the associated Lagrangian.

3. Augmented Lagrangian method

In the given literature [37, 40, 42, 43] one can find lot of work on the augmented Lagrangian
method (ALM) for the MC-based image denoising problem but not for the image deblurring problem.
In this paper, we have extended the ALM algorithm for application to the image deblurring problem.
To develop an ALM for the image deblurring model described by Problem (2.4), we introduce three
new variables, i.e., w,~v and ~t, and consider the following constrained minimization problem

minu,w,~v,~t

[1
2

∫
(~Ku − z)2 +

∫
Ω

|w|
]
, with w = 5 · ~v,~v =

~t√
|~t|2 + β

,~t = 5u. (3.1)

The associated augmented Lagrangian functional in Problem (3.1) is

L(u,w,~v,~t, λ1, ~λ2, λ3) =
1
2

∫
(~Ku − z)2 + α

∫
|w| (3.2)

+
r1

2

∫
(w − 5 · ~v)2 +

∫
λ1(w − 5 · ~v)
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+
r2

2

∫
|~v −

~t√
|~t|2 + β

|2 +

∫
~λ2 · (~v −

~t√
|~t|2 + β

)

+
r3

2

∫
(~t − 5u)2 +

∫
~λ3 · (~t − 5u),

where r1, r2 and r3 are the penalization parameters. λ1 ∈ R, ~λ2, ~λ3 ∈ R
3 are Lagrange multipliers and

~v,~t ∈ R3. One of the key issues with ALMs is related to handling the subproblems involving the term
~t√
|~t|2+β

= 5u√
|5u|2+β

. This type of term appears due to the mean curvature functional 5 · 5u
|5u| . One remedy

is to introduce a variable ~t = 〈5u, 1〉 instead of ~t = 5u for the curvature term. Accordingly, we will use
~v = 〈5u,1〉√

|〈5u,1〉|2+β
. Then, our MC model becomes

minu,w,~v,~t

[1
2

∫
(~Ku − z)2 +

∫
Ω

|w|
]
, with w = 5 · ~v,~v =

~t√
|~t|2 + β

,~t = 〈5u, 1〉. (3.3)

Then, the associated augmented Lagrangian functional is

L(u,w,~v, ~n,~t, λ1, ~λ2, λ3, ~λ4) =
1
2

∫
(~Ku − z)2 + α

∫
|w| (3.4)

+r1

∫
(|~t| − ~t · ~n) +

∫
λ1(|~t| − ~t · ~n)

+
r2

2

∫
|~t − 〈5u, 1〉|2 +

∫
~λ2 · (~t − 〈5u, 1〉)

+
r3

2

∫
(w − ∂xv1 − ∂yv2)2 +

∫
λ3 · (w − ∂xv1 − ∂yv2)

+
r4

2

∫
|~v − ~n|2 +

∫
~λ4 · (~v − ~n) + δR(~n),

where r1, r2, r3 and r4 are the penalty parameters. λ1, λ3, ∈ R, ~λ2, ~λ4 ∈ R
3 are Lagrange multipliers and

~v, ~n,~t ∈ R3. Here, we have introduced ~n to relax the variable ~v. R = {~n ∈ L2(Ω) : |~n| ≤ 1 a.e. n ∈ Ω}

and δR(~n) is a characteristic function on R that can be expressed as

δR(~n) =

{
0, ~n ∈ R

+∞, otherwise.
(3.5)

To make the term |~t| − ~t · ~n always non-negative, we need ~n ∈ R. To find the saddle points of the
minimization given by Problem (3.3), we need to find the saddle points of the augmented Lagrangian
functional given by Eq (3.4). So, we have to fix all variables in Eq (3.4) except one particular variable.
Then, we find a critical point of the induced functional to update that particular variable. We repeat the
same process for all variables in Eq (3.4). The Lagrangian multipliers will automatically be advanced
once all variables are updated. The process will continue until all variables in Eq (3.4) converge to a
steady state. The ALM is summarized in the following algorithm.
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————————————————————————————————————————–
Algorithm 1: The Augmented Lagrangian method for MC model
————————————————————————————————————————–

Step-I: Initialize u0,w0,~v0, ~n0,~t0, and λ0
1,
~λ0

2, λ
0
3,
~λ0

4.
Step-II: For k = 0, 1, 2, ... : Compute (uk,wk,~vk, ~nk,~tk) as an (approximate) minimizer of the

augmented Lagrangian functional with the Lagrange multiplier λk−1
1 , ~λk−1

2 , λk−1
3 , ~λk−1

4 , i.e.,

(uk,wk,~vk, ~nk,~tk) ≈ argminL(u,w,~v, ~n,~t, λk−1
1 , ~λk−1

2 , λk−1
3 , ~λk−1

4 ). (3.6)

Step-III: Update the Lagrangian multipliers

λk
1 = λk−1

1 + r1(|~tk| − ~tk · ~nk), (3.7)
~λk

2 = ~λk−1
2 + r2(|~tk| − 〈5uk, 1〉), (3.8)

λk
3 = λk−1

3 + r3(wk − ∂vk
1 − ∂vk

2), (3.9)
~λk

4 = ~λk−1
4 + r4(~vk − ~nk), (3.10)

where ~n = 〈n1, n2, n3〉.
Step-IV: Stop the iteration if relative residuals are smaller than a threshold εr.

————————————————————————————————————————–
Now we consider the following subproblems and find their critical points

f1(u) =
1
2

∫
(~Ku − z)2 +

r2

2

∫
|~t − 〈5u, 1〉|2 +

∫
~λ2.(~t − 〈5u, 1〉), (3.11)

f2(w) = α

∫
|w| +

r3

2

∫
(w − ∂xv1 − ∂yv2)2 +

∫
λ3 · (w − ∂xv1 − ∂yv2), (3.12)

f3(~t) = r1

∫
(|~t| − ~t · ~n) +

∫
λ1(|~t| − ~t.~n) +

r2

2

∫
|~t − 〈5u, 1〉|2 +

∫
~λ2.(~t − 〈5u, 1〉), (3.13)

f4(~v) =
r3

2

∫
(w − ∂xv1 − ∂yv2)2 +

∫
λ3 · (w − ∂xv1 − ∂yv2) +

r4

2

∫
|~v − ~n|2 +

∫
~λ4.(~v − ~n), (3.14)

f5(~n) = r1

∫
(|~t| − ~t · ~n) +

∫
λ1(|~t| − ~t · ~n) +

r4

2

∫
|~v − ~n|2 +

∫
~λ4 · (~v − ~n) + δR(~n). (3.15)

The standard procedure gives us the following Euler-Lagrange equations for the functionals f1(u)
and f4(~v):

K∗Ku − 4u = K∗z − (r2t1 + λ21)x − (r2t2 + λ22)y, (3.16)

r4v1 − r3(∂xv1 + ∂yv2)x = r4n1 − λ41 − (r3w − λ3)x, (3.17)
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r4v2 − r3(∂xv1 + ∂yv2)y = r4n2 − λ42 − (r3w − λ3)y, (3.18)
r4v3 = r4n3 − λ43, (3.19)

respectively, where ~v = 〈v1, v2, v3〉,~t = 〈t1, t2, t3〉, ~n = 〈n1, n2, n3〉, ~λ2 = 〈λ21, λ22, λ23〉 and ~λ4 =

〈λ41, λ42, λ43〉. To update the functionals f2(w), f3(t) and f5(~n), we need the following equations:

argminw f2(w) = max
{
0, 1 −

α

r3|w̃|

}
w̃, w̃ = ∂xv1 + ∂yv2 −

λ3

r3
, (3.20)

argmin~t f3(~t) = max
{
0, 1 −

r1 + λ1

r2|t̃|

}
t̃, t̃ = 〈5u, 1〉 −

~λ2

r2
+

r1 + λ1

r2
~n, (3.21)

argmin~n f5(~n) = max
{

ñ, |ñ| ≤ 1
ñ/|ñ|, otherwise,

ñ = ~v +
~λ4

r4
+

r1 + λ1

r4
~t. (3.22)

To update the Lagrangian multipliers, we have the following equations:

λnew
1 = λold

1 + r1(|~t| − ~t · ~n), (3.23)
~λnew

2 = ~λold
2 + r2(~t − 〈5u, 1〉), (3.24)

λnew
3 = λold

3 + r3(w − ∂v1 − ∂v2), (3.25)
~λnew

4 = ~λold
4 + r4(~v − ~n). (3.26)

3.1. Cell discretization

Since the MC regularizer κ(u)2 = (5 · 5u
|5u| )

2 of the image deblurring problem is not homogeneous
in u, we need a spatial kind of discretization especially for the terms that involve derivatives. This is
because the role of the spatial mesh size is quite important to the numerical performance of the MC
model. So, we partitioned the domain Ω = (0, 1) × (0, 1) by δx × δy. Additionally,

δx : 0 = x1/2 < x3/2 < ... < xnx+1/2 = 1,
δy : 0 = y1/2 < y3/2 < ... < ynx+1/2 = 1,

where the number of equispaced partitions in the direction of x or y is equal to nx and (xi, y j) represents
the centers of the cells. Additionally,

xi =
(2ih − h)

2
for i = 1, 2, 3, ..., nx,

y j =
(2 jh − h)

2
for j = 1, 2, 3, ..., nx,

where h = 1
nx

; (xi± 1
2
, y j) and (xi, y j± 1

2
) represent the midpoints of cell edges:

xi± 1
2

= xi ±
h
2

for i = 1, 2, 3, ..., nx,

y j± 1
2

= y j ±
h
2

for j = 1, 2, 3, ..., nx.
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For each i = 1, 2, ..., nx, and j = 1, 2, ..., nx, define

Ωi, j = (xi−1/2, xi+1/2) × (y j−1/2, y j+1/2).

For the function θ(x, y), let θk,l denote θ(xl, ym), where k and l may take values of i − 1, i, or i + 1 and
j − 1, j, or j + 1 respectively, for integers i, j ≥ 0. For backward and forward discrete functions, we
need values at proper discrete points, so we define

[d+
x θ]i, j =

θi+1, j − θi, j

h
, [d−x θ]i, j =

θi, j − θi−1, j

h
,

[d+
y θ]i, j =

θi, j+1 − θi, j

h
, [d−y θ]i, j =

θi, j − θi, j−1

h
.

Then the central difference discrete functions and discrete gradient are

[dc
xθ]i, j =

[d−x θ]i, j + [d+
x θ]i, j

2
, [dc

yθ]i, j =
[d−y θ]i, j + [d+

y θ]i, j

2
,

and
[5+θ]i, j = 〈[d+

x θ]i, j, [d+
y θ]i, j〉, [5−θ]i, j = 〈[d−x θ]i, j, [d−y θ]i, j〉,

respectively. By applying midpoint quadrature approximation, we have that

(Ku)(xi, y j) � [KhU](i j).

3.2. Matrix system

Here, we consider the cell-centered finite-difference (CCFD) method for the MC-based image
deblurring problem. The CCFD approximations {Ui, j} to {u(xi, j)} are chosen. So from Eq (3.16) we
have that

[K∗KU]i, j + r2[div− 5+ U]i, j = [K∗Z]i, j − [d−x (r2t1 + λ21)]i, j − [d−y (r2t2 + λ22)]i, j,

[K∗KU]i, j + r2[div− 5+ U]i, j = [K∗Z]i, j + g(i, j), (3.27)

where g(i, j) = −[d−x (r2t1 + λ21)]i, j − [d−y (r2t2 + λ22)]i, j. According to the lexicographical ordering of the
unknowns, U = [U11 U12 ... Unxnx]

t. Then, from Eq (3.27), we have the following matrix system:

(K∗hKh + r2B∗hBh)U =K∗hZ + Gh. (3.28)

Here Kh is a matrix of size n2
x × n2

x and Bh is a matrix of size 2nx(nx − 1)× n2
x. The matrices K∗hZ and Gh

are of size n2
x × 1. K∗hKh is symmetric positive semidefinite. The matrix Kh is a block Toeplitz matrix

with Toeplitz blocks (BTTB). The structure of the matrix Bh is

Bh =
1
h

[
B1

B2

]
,

where the size of both B1 and B2 is nx(nx − 1) × n2
x , and

B1 = C ⊗ I, B2 = I ⊗C.
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The size of

C =



1 −1
1 −1

. . .
. . .
. . . −1

1 −1


is (nx − 1) × nx and I is an identity matrix. To get the value of u, one has to solve the large matrix
system (3.28).

Now given Eqs (3.17) and (3.18), after discretizing, we have that

r4v1(i, j) − r3([d+
x d−x v1]i, j + [d+

x d−y v2]i, j) = r4n1(i, j) − λ41(i, j) − [d+
x d+

x (r3w − λ3)]i, j, (3.29)

r4v2(i, j) − r3([d+
x d−x v1]i, j + [d+

x d−y v2]i, j) = r4n2(i, j) − λ42(i, j) − [d+
x d+

y (r3w − λ3)]i, j. (3.30)

Then, applying a discrete Fourier transformation followed by a discrete inverse Fourier
transformation to Eqs (3.29) and (3.30), one can get v1 and v2, and v3 can be obtained directly from
Eq (3.19). To update the variables w,~t, ~n and Lagrange multipliers λ1, ~λ2, λ3, ~λ4, we have to discretize
Eqs (3.20)–(3.26) on grid points (i, j). So we need the following equations:

w(i, j) = max
{
0, 1 −

α

r3|w̃(i, j)|

}
w̃(i, j), w̃(i, j) = ∂xv1(i, j) + ∂yv2(i, j) −

λ3

r3
, (3.31)

~t(i, j) = max
{
0, 1 −

r1 + λ1

r2|t̃(i, j)|

}
t̃(i, j), (3.32)

t̃(i, j) = 〈d+
x u(i, j), d+

y u(i, j), 1〉 −
〈λ21, λ22, λ23〉(i, j)

r2
+

r1 + λ1

r2
〈n1, n2, n3〉(i, j),

~n(i, j) = max
{

ñ(i, j), |ñ| ≤ 1
ñ(i, j)/|ñ(i, j)|, otherwise,

(3.33)

ñ(i, j) = ~v(i, j) +
~λ4(i, j)

r4
+

r1 + λ1

r4
~t(i, j).

To update the Lagrangian multipliers, we have the following equations:

λnew
1 (i, j) = λold

1 (i, j) + r1(|~t(i, j)| − ~t(i, j).~n(i, j)), (3.34)
~λnew

21 (i, j) = ~λold
21 (i, j) + r2(t1(i, j) − d−x u(i, j)), (3.35)

~λnew
22 (i, j) = ~λold

22 (i, j) + r2(t2(i, j) − d−y u(i, j)), (3.36)
~λnew

23 (i, j) = ~λold
23 (i, j) + r2(t3(i, j) − 1), (3.37)

λnew
3 (i, j) = λold

3 (i, j) + r3(w(i, j) − d−x v1(i, j) − d−y v2(i, j)), (3.38)
~λnew

41 (i, j) = ~λold
41 (i, j) + r4(v1(i, j) − n1(i, j)) (3.39)

~λnew
42 (i, j) = ~λold

42 (i, j) + r4(v2(i, j) − n2(i, j)) (3.40)
~λnew

43 (i, j) = ~λold
43 (i, j) + r4(v3(i, j) − n3(i, j)). (3.41)
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4. Preconditioned matrix

To find the value of our main variable u, one has to solve the matrix system given by Eq (3.28).
The Hessian matrix K∗hKh + r2B∗hBh of the system given by Eq (3.28) is extremely large for practical
application and tends to be quite ill-conditioned when r2 is small. This happens because of the
eigenvalues of the blurring operator K̄ are very small and close to zero [36]. K∗hKh is a full matrix,
but an FFT can be used to evaluate K∗hKhu in O(nxlognx) operations [36] because the blurring operator
K̄ is translation-invariant. The good thing is that the Hessian matrix is SPD.
Theorem 4.1. The inner product 〈ĀU,U〉 is positive for any matrix U , 0, where Ā = K∗hKh + r2B∗hBh

is the Hessian matrix of the system given by Eq (3.28).
Proof. For any matrix U , 0, consider that

〈ĀU,U〉 = 〈(K∗hKh + r2B∗hBh)U,U〉

= 〈K∗hKhU,U〉 + r2〈B∗hBhU,U〉

= 〈KhU,KhU〉 + r2〈BhU, BhU〉

= ‖KhU‖2 + r2‖BhU‖2 > 0.

This completes the proof.
The CG method is suitable for the solution of the system given by Eq (3.28) owing to the above-

mentioned properties. But, the CG method have a quite slow convergence rate due to the system being
large and ill-conditioned system. So, we use a PCG method [7, 8, 10, 24–26, 30]. The preconditioning
matrix P must be SPD so that we get an effective solution for our system [2–4, 11, 36]. Here, we
introduce our SPD circulant preconditioned matrix P of the Strang-type [27].

P = K̃∗h K̃h + γIh, (4.1)

where K̃h is a circulant approximation of Matrix Kh and γ > 0. Ih is an identity matrix. While applying
the PCG to Eq (3.28), one of the requirements is to take the inverse of the preconditioned matrix P.
Since the second term in P is an identity matrix Ih, inversion is not a problem. For the inversion of the
first term K̃∗h K̃h, we need to apply FFTs to O(nxlognx) floating-point operations [36].

Now, let Ā = K∗hKh + r2B∗hBh be the Hessian matrix of the system given by Eq (3.28). Let the
eigenvalues of K∗hKh and B∗hBh be λK

i and λB
i respectively such that λK

i → 0 and λB
i → ∞. Then the

eigenvalues of P−1Ā are

θi =
λK

i + r2λ
B
i

λK
i + γ

. (4.2)

One can notice that clearly θi →
λB

i
γ

as i → ∞. Hence, for λB
i ≤ γ, the spectrum of P−1Ā is more

favorable than the Hessian matrix Ā. This can also be observed in the numerical examples when we
use the PCG algorithm.

5. Numerical experiments

Here, we present numerical examples for the image deblurring problem. In all experiments, we
have used different values of nx, and the resulting matrix system has n2

x unknowns. Then the mesh
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size is h = 1/nx. The numerical computations were performed using MATLAB software on an Intel(R)

Core(T M) i7-4510U CPU @ 2.00 GHz 2.60 GHz. In all experiments, we have taken the initial guess to
be the zero vector. The value of the parameters α and β were set by referencing [5,41]. To observe the
optimum value of γ, we have done numerical experiments by using Goldhills image. We found that
the value of the peak signal-to-noise ratio (PSNR) does not show much improvement after γ = 1. So,
one can use optimum value of γ close to one. The results of the experiments are given in Figure 2.

Figure 2. γ vs PSNR.

The PSNR is used to measure the quality of the restored images. For numerical calculations, we
have used the ke−gen(nx, r, σ) kernel [13, 16, 17, 28]. It is a circular Gaussian filter of size nx × nx with
a standard deviation σ and radius r. Figure 3 depicts the ke−gen(120, 40, 4) kernel.

Figure 3. ke−gen(120, 40, 4) kernel.

Example 1.
For this example, we have used three different types of images. These are Goldhills, Kids and

Peppers images (see [33]). The Goldhills image is a real image and Peppers image is a nontexture
image. The Kids image is a complicated image, because it contains a small scale texture part (shirt)
and a large scale cartoon part (face). The different aspects of all images can be seen in Figure 5. Each
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subfigure has a pixel of 256 × 256. Here, we have also compared our MC-based ALMs, i.e., ALM
and preconditioned ALM (PALM) with the TV-based method (TVM) [1, 29, 36]. The Hessian matrix
of the TV-based model is SPD, so for the numerical calculation we have used the CG method . The
parameters of ALM and PALM were established by referencing [42,43]. The parameters for the ALM
and PALM were α = 8e − 9, r1 = 9.5e − 7, r2 = 1e − 6, r3 = 1e − 8, r4 = 1e − 5, β = 1 and γ = 1. For
the TVM algorithm (CG), we have used α = 1e − 6 and β = 1, as according to [36]. For the numerical
calculations, the ke−gen(nx, 300, 10) kernel was used. The stopping criteria for the numerical methods
is based on the tolerance tol = 1e−7. The Tables 1–3 contain all of the information of this experiment.
A performance comparison of the TVM, ALM and PALM is depicted in Figure 7. The relative residues
and eigenvalues of the ALM and PALM are depicted in Figures 4 and 6, respectively.
Remarks:

(1) From Figure 5 one can notice that the deblurred images produced via our methods (ALM and
PALM) are much better than those produced via the TVM.

(2) From Tables 1–3, one can observe that the PSNR values of the ALM and PALM methods were
quite higher than those for the TVM for all images. Although the TVM generates its PSNR value
in much less computational time as compared to the ALM and PALM, its PSNR value is quite low.
For example, for the Goldhills image with a pixel size of 128×128, the TVM took 37.1002 seconds
to generate its 48.5749 PSNR, but the ALM and PALM generated higher PSNR values of 56.3756
and 56.3654 in 40.8027 seconds and 30.5428 seconds respectively. For the Kids image with a pixel
size of 256× 256, the TVM took 133.0289 seconds to generate a 40.5482 PSNR, but the ALM and
PALM generated higher PSNR values of 46.0595 and 46.9837 in 189.2586 seconds and 141.2561
seconds respectively. Similarly, for the Peppers image with a pixel size of 256 × 256, the TVM
took 118.5327 seconds to generate 49.2863 PSNR, but the ALM and PALM generated higher
PSNR values of 51.0284 and 51.4522 in 190.3504 seconds and 146.3177 seconds respectively.
Similar behavior was observed for other sizes. So, the proposed ALM and PALM tend to generate
high-quality deblurred images as compared to the TVM.

Figure 4. Convergence of CG (original) and PCG (preconditioned) for the inner iteration
count for the Goldhills image. Pixel size of (left) 128 × 128 and (right) 256 × 256.
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Figure 5. (first row) Blurry images, (second row) TVM deblurred images, (third row) ALM
deblurred images and (last row) PALM deblurred images.

Figure 6. (left) Eigenvalues of Ā and (right) eigenvalues of P−1Ā.
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Figure 7. Performance of TVM, ALM and PALM on different images. Pixel size of (left)
128 × 128 and (right) 256 × 256.

Table 1. Comparison of TVM, ALM and PALM performance on the Goldhills image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Goldhills 128 × 128 22.9784 TVM 48.5749 37.1002
128 × 128 22.9784 ALM 56.3756 40.8027
128 × 128 22.9784 PALM 56.3654 30.5428
256 × 256 22.2335 TVM 42.3448 146.2581
256 × 256 22.2335 ALM 51.9872 195.2980
256 × 256 22.2335 PALM 51.8512 126.7891

Table 2. Comparison of TVM, ALM and PALM performance on the Kids image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Kids 128 × 128 20.4859 TVM 45.2541 21.0522
128 × 128 20.4859 ALM 52.1174 40.1252
128 × 128 20.4859 PALM 52.0586 23.5469
256 × 256 20.4147 TVM 40.5482 133.0289
256 × 256 20.4147 ALM 46.0595 189.2586
256 × 256 20.4147 PALM 46.9837 141.2561
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Table 3. Comparison of TVM, ALM and PALM performance on the Peppers image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Peppers 128 × 128 20.5545 TVM 46.2567 30.2596
128 × 128 20.5545 ALM 49.7693 37.2904
128 × 128 20.5545 PALM 49.1567 32.2563
256 × 256 20.5531 TVM 49.2863 118.5327
256 × 256 20.5531 ALM 51.0284 190.3504
256 × 256 20.5531 PALM 51.4522 146.3177

Example 2.
Here, we have compared our MC-based ALMs, i.e., the ALM and PALM with the MC-based

method proposed by Fairag et al. [18], who developed a One-Level method (OLM) and Two-Level
method (TLM) for the MC-based image deblurring problem. For this experiment, we used three
different types of images, i.e., the images of Goldhills (real), Cameraman (complicated) and Moon
(non-texture). The different aspects of all images can be seen in Figure 8. Each subfigure has apixel
size of 256 × 256.

The parameters for ALM and PALM were α = 1e−9, r1 = 9.5e−7, r2 = 1e−6, r3 = 1e−8, r4 = 1e−5,
β = 1 and γ = 1. For the MC-based algorithms (OLM and TLM) we used α = 8e − 9 and β = 1.
The Level-II parameter α̃ of the TLM was calculated by referencing the formula presented in [18].
For the numerical calculations, the ke−gen(nx, 300, 10) kernel was used. The stopping criteria for the
numerical methods is based on the tolerance tol = 1e − 8. Tables 4–6 contain all of the information
on this experiment. A performance comparison of the ALM, PALM, OLM and TLM is depicted in
Figure 9.

Remarks:

(1) From Figure 8, one can notice that the ALM and PALM methods both generated slightly higher
quality results.

(2) From Tables 4–6, it can be observed that the PSNR values of the ALM and PALM were higher than
the OLM and TLM for all images. The TLM generated its PSNR in much less time than the OLM
and ALM, but not the PALM. For example, for the Goldhills image with a pixel size of 256 × 256,
the OLM, TLM and ALM took 248.5400, 128.4097 and 195.2980 seconds, respectively, to deblur
the image. But, the PALM only required 126.7891 seconds for deblurring. For the Cameraman
image with a pixel size of 128×128, the OLM, TLM and ALM took 24.5327, 19.7541 and 38.4161
seconds, respectively, to deblurred image. But, the PALM only required 18.2997 seconds for
deblurring. Similarly, for Moon image with a pixel size of 128 × 128, the OLM, TLM and ALM
took 34.3866, 24.8366 and 25.3032 seconds, respectively, to deblur image. But, the PALM only
required 16.4356 seconds for deblurring. Similar behavior was observed for other sizes. So, our
PALM consumed much less CPU time than other methods, and it also generated high-quality
deblurred images.
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Figure 8. (first row) Blurry images, (second row) OLM deblurred images, (third row)
TLM deblurred images, (fourth row) ALM deblurred images and (last row) PALM deblurred
images.
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Figure 9. Performance of OLM, TLM, ALM and PALM on different images. Pixel size of
(left) 128 × 128 and (right) 256 × 256.

Table 4. Comparison of OLM, TLM, ALM and PALM performance on the Goldhills image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Goldhills 128 × 128 22.9784 OLM 50.2303 47.9473
128 × 128 22.9784 TLM 54.6042 31.0442
128 × 128 22.9784 ALM 56.3756 40.8027
128 × 128 22.9784 PALM 56.3654 30.5428
256 × 256 22.2335 OLM 45.1287 248.5400
256 × 256 22.2335 TLM 49.2369 128.4097
256 × 256 22.2335 ALM 51.9872 195.2980
256 × 256 22.2335 PALM 51.8512 126.7891

Table 5. Comparison of OLM, TLM, ALM and PALM performance on the Cameraman
image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Cameraman 128 × 128 18.6322 OLM 43.8732 24.5327
128 × 128 18.6322 TLM 44.1709 19.7541
128 × 128 18.6322 ALM 48.7714 38.4161
128 × 128 18.6322 PALM 48.9437 18.2997
256 × 256 17.8172 OLM 38.8709 197.7316
256 × 256 17.8172 TLM 40.7359 112.5587
256 × 256 17.8172 ALM 40.1991 164.2474
256 × 256 17.8172 PALM 40.9556 108.2873
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Table 6. Comparison of OLM, TLM, ALM and PALM performance on the Moon image.

Image Pixel size Blurred Method Deblurred CPU time
PSNR PSNR

Moon 128 × 128 26.1840 OLM 55.2128 34.3866
128 × 128 26.1840 TLM 56.5319 24.8366
128 × 128 26.1840 ALM 60.2041 25.3032
128 × 128 26.1840 PALM 60.1598 16.4356
256 × 256 26.4905 OLM 52.3328 179.7899
256 × 256 26.4905 TLM 55.4471 125.3007
256 × 256 26.4905 ALM 56.9144 148.3155
256 × 256 26.4905 PALM 56.7752 119.1213

6. Conclusions

An ALM for the primal form of the image deblurring problem with MC regularizational functional
has been presented. A new SPD circulant preconditioned matrix has been introduced to overcome
the problem of slow convergence due to the CG method inside of the ALM. Numerical experiments
were conducted using different kinds of images (synthetic, real, complicated and nontexture) by our
proposed PALM with a new preconditioned matrix. We have compared the TV (total variation) based
algorithm with our mean curvature based (ALM and PALM) algorithm. The proposed ALMs, i.e.,
the ALM and PALM were also compared with the latest MC-based techniques i.e., the OLM and
TLM. The numerical experiments showed the effectiveness of our proposed PALM method with a new
preconditioned matrix.

In the future, we will work on developing an ALM for other computationally expensive
regularization functionals like the fractional TV regularized tensor [21]. Furthermore, the matrix B∗hBh

was also constructed to have a block Toeplitz matrix structure in the system given by Eq (3.28), so, a
single term preconditioner like tau preconditioner [15,20] can be used to approximate both the matrices
B∗hBh and K∗hKh in order to increase the convergence rate of the CG method inside the ALM.
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