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1. Introduction and preliminaries

Axioms of metric have been modified to get more general distance functions (compare [8]). Among
the generalizations of metric, b-metric was initially considered by Bakhtin [11], Czerwik [14–16] and
Berinde [13] to generalize the well known Banach contraction principle (shortly as BCP) [12]. Due
to the useful applications of BCP, it has been attempted successfully by a long list of researchers to
generalize in various directions. Wardowski [26] set up a contraction termed as F-contraction and
obtained a generalization of BCP. After that, several authors have established different versions of
F-contractions to generalize the results of Wardowski, for instance, see [1, 2, 4–7, 10, 19, 20] and
references therein. For self mappings of metric spaces, Proinov [21] proved that some results including
Wardowski’s result are equivalent to a special case of a well-known fixed point theorem of Skof [23].
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Abbas et al. [3] obtained some coincidence point results for generalized set-valued ( f , L)-almost F-
contractions of metric spaces along with some applications. Recently, Karapınar et al. [17] provided a
survey on F-contractions in which a collection of various results of F-contractions are given.

Miculescu [18] introduced a sufficient condition for a sequence in a b-metric space (shortly as b-
MS) to be Cauchy and proved some results involving set-valued contractions of a b-MS. After this,
Suzuki [25] provided a sufficient condition (weaker than the one given by Miculescu) for a sequence
to be Cauchy in a b-MS and proved some fixed point theorems for set-valued F-contractions.

We present new generalized set-valued F-contractions of a b-MS and extend results given in [3,25]
and in some references therein. We provide with some examples to substantiate the main results and
to proclaim that the results in this paper are proper generalizations of some existing results in the
literature. We start by fixing some notations to be used in the sequel. The letters N, R, R+ and R+
represent the set of positive integers, real numbers, non-negative and positive real numbers, respectively
and X a non-empty set. Now we give some preliminary notions.

Definition 1.1. [14] Let d : X × X→ R+ be a function and s ≥ 1 a real number. Then (X, d) is termed
as b-MS if d satisfies

(1) d(r,w) = 0⇔ r = w,
(2) d(r,w) = d(w, r),
(3) d(r, z) ≤ sd(r,w) + sd(w, z),

for all r,w, z ∈ X, where s is a b-metric constant. For s = 1, d is a metric.

Throughout this article, s represent b-metric constant unless otherwise stated. Now consider the
following example.

Example 1.1. [11, 13] Consider

lp =

{r j

}
:
{
r j

}
⊂ R, and

∞∑
j=1

∣∣∣r j

∣∣∣p < ∞, 0 < p < 1

 .
For all r =

{
r j

}
and w =

{
w j

}
in lp, the mapping d : lp × lp −→ R defined as

d (r,w) =

 ∞∑
j=1

∣∣∣r j − w j

∣∣∣p
1
p
,

is a b-metric on lp for s = 2

1
p as

d (r, z) ≤ 2

1
p (d (r,w) + d (w, z)) ,

for all r, z, w in lp.
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Let (X, d) be a b-MS. A sequence {r j} in (X, d) is Cauchy if for any given ϵ > 0, there is a Jϵ ∈ N so
that d(r j, rm) < ϵ for all m, j ≥ Jϵ , or equivalently

lim
j→∞

d(r j+p, r j) = 0,

for all p ∈ N. A sequence {r j} in (X, d) is convergent if for any given ϵ > 0, there is Jϵ ∈ N and an r in
X so that d(r j, r) < ϵ for all j ≥ Jϵ , or equivalently

lim
j→∞

d(r j, r) = 0,

and we write r j → r as j→ ∞.
Further, a subset E ⊆ X is closed if for every sequence {r j} in E and r j → r as j→ ∞, implies r ∈ E

and E ⊆ X is bounded if
sup
z,w∈E

d(z,w)

is finite. A b-MS (X, d) is complete if every Cauchy sequence in X converges. An et al. [9] explored
some topological aspects of b-MS (X, d) and asserted that d is not necessarily continuous in both
arguments. However, if d is continuous in one variable then it is continuous in the other variable as
well. Moreover, the subset

Bϵ(r0) = {r ∈ X : d(r0, r) < ϵ},

in (X, d) is not an open set (in general) but if d is continuous in one variable then Bϵ(r0) is open in X.
Throughout in this paper b-metric d is continuous.

Let (X, d) be a b-MS and CB(X) and P(X) the set of non-empty, closed, bounded, and the set of
non-empty subsets of X, respectively. For E,G ∈ CB(X), the mapping H : CB(X) × CB(X) → R+

defined as
H(E,G) = max {δ(E,G), δ(G, E)} ,

is Hausdorff metric on CB(X) generated by d, where

δ(E,G) = sup
r∈E

d(r,G) and d(r,G) = inf
w∈G

d(r,w).

The following lemma provides important tools in connection with a b-MS.

Lemma 1.1. [14–16, 22] For a b-MS (X, d), r,w ∈ X and E,G ∈ CB(X), the following statements
hold:

(1) (CB(X),H) is a b-MS.
(2) For all r ∈ E, d(r,G) ≤ H(E,G).
(3) For all r,w in X, d(r, E) ≤ sd(r,w) + sd(w, E).
(4) For k > 1 and c ∈ E, there is a w ∈ G so that d(c,w) ≤ kH(E,G).
(5) For every k > 0 and c ∈ E, there is a w ∈ G so that d(c,w) ≤ H(E,G) + k.
(6) c ∈ E = E if and only if d(c, E) = 0, where E is the closure of E in (X, d).
(7) For any sequence {r j} in X,

d(r0, r j) ≤ sd(r0, r1) + s2d(r1, r2) + · · · + s j−1
(
d(r j−2, r j−1) + d(r j−1, r j)

)
.
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Now consider a mapping F : R+ −→ R that satisfies:

(A1) If λ1 < λ2, then F(λ1) < F (λ2), for all λ1, λ2 ∈ R+;

(A2) For each sequence {λ j}, lim
j→∞
λ j = 0 if and only if lim

j→∞
F(λ j) = −∞;

(A3) There is k ∈ (0, 1) such that lim
λ→0+
λkF (λ) = 0;

(A4) F(inf E) = inf F(E) for all E ⊂ (0,∞) and inf E ∈ (0,∞) ;

(A5) F is upper semicontinuous;

(A6) F is continuous.

Note that under (A1), (A4) and (A5) are equivalent (compare [25]). Wardowski [26] initiated the
idea of F-contraction.

Definition 1.2. [26] Let (X, d) be a metric space. A mapping f : X → X is F-contraction if

d( f r, f w) > 0 implies τ + F (d ( f r, f w)) ≤ F(d(r,w)),

for all r,w ∈ X and for some τ > 0, where F : R+ −→ R satisfies A1–A3.

Further, they obtained the existence and uniqueness of fixed point of the F−contraction f of a
complete metric space (X, d). Throughout this paper, for mappings f : X → X and S : X → CB(X), we
use the notations F ix( f ) and F ix(S ) for the set of fixed points of f and S , respectively.

Remark 1.1. For different choices of the function F in Definition 1.2, one can get different
contractions, for instance if F(κ) = ln(κ) for κ > 0, then the mapping f becomes Banach contraction
(compare [26] for details).

Definition 1.3. [25] Let a sequence {a j} be in R+ and {b j} a sequence in R+. If there is a real number
C > 0 such that

a j ≤ Cb j,

for all j ∈ N, then we say
{a j} ∈ O(b j).

Lemma 1.2. [24, 25] Let {r j} be a sequence in a b-MS (X, d). If for β > 1 + log2 s,{
d
(
r j, r j+1

)}
∈

⋃{
O

(
j−β

)}
holds. Then {r j} is a Cauchy sequence.

Lemma 1.3. [25] Let
{
t j

}
be a sequence in R+. If there is a function F : R+ −→ R, a real number

c ∈ (0, 1) and τ ∈ R+ satisfying (A2), (A3) and

jτ + F
(
t j+1

)
≤ F (t1) ,

then {
t j

}
∈ O

 j
−

1
c


holds.
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Theorem 1.1. [25] Let (X, d) be a complete b-MS and S : X −→ CB(X) a mapping. Suppose there is
a function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A2), (A3), and for any r,w ∈ X and η ∈ S r, there is µ ∈ S w such that either
η = µ or

τ + F (d (η, µ)) ≤ F (d (r,w))

holds. Then F ix(S ) is non-empty.

Theorem 1.2. [25] Let (X, d) be a complete b-MS and a mapping S : X −→ CB(X). Suppose there is
a function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A1)–(A3), (A5), and for any r,w ∈ X with S r , S w,

τ + F (H (S r, S w)) ≤ F (d (r,w))

holds. Then F ix(S ) is non-empty.

Let f : X → X be single valued mapping and S : X → CB(X) a set-valued mapping. For r,w ∈ X,
η ∈ S r and µ ∈ S w, we use the following notations in the sequel.

M1 (r,w) = max {d (r,w) , d (r, η) , d (w, η) , (d (r, η) d (w, η))} ,
N1 (r,w) = min {d (r, η) , d (w, µ) , d (r, µ) , d (w, η)} ,

and

M2 (r,w) = max {d (r,w) , d (r,Tr) , d (w,Tr) , (d (r,Tr) d (w,Tr))} ,

M3 (r,w) = max


d (r,w) , d (r,Tr) , d (w,Tw) , d (r,Tr) d (w,Tr) , d (r,Tw) d (w,Tr)
d (r,Tw) + d (w,Tr)

2s
,

[
d (r,Tw) + d (w,Tr)

s (1 + d (r,Tr) + d (w,Tw))

]
d (r,w)

 ,
M4 (r,w) = max


d (r,w) , d (r,Tr) , d (w,Tw) , d (r,Tr) d (w,Tr) , d (r,Tw) d (w,Tr)
d (r,Tw) + d (w,Tr)

2
,

[
d (r,Tw) + d (w,Tr)

1 + d (r,Tr) + d (w,Tw)

]
d (r,w)

 ,
M5 (r,w) = max

{
d (r,w) , d (r,Tr) , d (w,Tw) ,

d (r,Tw) + d (w,Tr)
2

}
,

N2 (r,w) = min {d (r,Tr) , d (w,Tw) , d (r,Tw) , d (w,Tr)} ,

for T ∈ { f , S }.
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2. Fixed points of generalized set-valued F-contractions of a b-metric space

We start with the following theorem.

Theorem 2.1. Let (X, d) be a complete b-MS and S : X −→ CB(X). Suppose there is a function
F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A2) and (A3), and for any r,w ∈ X and η ∈ S r, there is µ ∈ S w such that η = µ or

τ + F (d (η, µ)) ≤ F (M1 (r,w) + LN1 (r,w))

holds for some L ≥ 0. Then F ix(S ) is non-empty.

Proof. On contrary, consider that F ix(S ) is empty. Fix r1 ∈ X and r2 ∈ S r1. From our assumption
r1 , r2 and r2 < S r2. We can pick r3 ∈ S r2. As r2 , r3, so

τ + F (d (r2, r3)) ≤ F (M1 (r1, r2) + LN1 (r1, r2))

≤ F


max


d (r1, r2) , d (r1, r2) , d (r2, r2) ,

(d (r1, r2) d (r2, r2))

+
L min {d (r1, r2) , d (r2, r3) , d (r1, r3) , d (r2, r2)}


= F (d (r1, r2)) .

Similarly, we can choose a sequence {r j} in X for any j ∈ N satisfying r j+1 ∈ S r j and

τ + F
(
d
(
r j+1, r j+2

))
≤ F

(
M1

(
r j, r j+1

)
+ LN1

(
r j, r j+1

))

= F


max


d
(
r j, r j+1

)
, d

(
r j, r j+1

)
, d

(
r j+1, r j+1

)
,(

d
(
r j, r j+1

)
d
(
r j+1, r j+1

))
+

L min
{
d
(
r j, r j+1

)
, d

(
r j+1, r j+2

)
, d

(
r j, r j+2

)
, d

(
r j+1, r j+1

)}


= F

(
d
(
r j, r j+1

))
.

That is

F
(
d
(
r j+1, r j+2

))
≤ F

(
d
(
r j, r j+1

))
− τ ≤ F

(
d
(
r j−1, r j

))
− 2τ

≤ F
(
d
(
r j−2, r j−1

))
− 3τ ≤ ... ≤ F (d (r1, r2)) − jτ,
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implies
jτ + F

(
d
(
r j+1, r j+2

))
≤ F (d (r1, r2)) .

Now, using Lemma 1.3, {
d
(
r j, r j+1

)}
∈ O

 j
−

1
c


holds. As c ∈

(
0, 1

1+log2 s

)
, so

1
c
∈

(
1 + log2 s,+∞

)
.

Hence, by Lemma 1.2, {r j} is a Cauchy sequence. Because X is complete, {r j} converges to a z ∈ X,
there is z j ∈ S z such that either z j = r j+1 or

τ + F
(
d
(
r j+1, z j

))
≤ F

(
M1

(
r j, z

)
+ LN1

(
r j, z

))
holds. Let { j} be a sequence in N and { f ( j)} be an arbitrary subsequence of { j}. Here, two cases arise:

(1) #
{
j ∈ N : z f ( j) = r f ( j)+1

}
= ∞,

(2) #
{
j ∈ N : z f ( j) = r f ( j)+1

}
< ∞,

where #A denotes the cardinality of the set A.
Case 1: Let {g ( j)} be a subsequence of { j} in N which satisfy z f◦g( j) = r f◦g( j)+1. Since r j → z as

j→ ∞,
z f◦g( j) = r f◦g( j)+1 → z,

as j→ ∞. Hence,
lim
j→∞

d
(
z f og( j), z

)
= 0.

Case 2: Let {g ( j)} be a subsequenceof { j} inN such that g ( j) <
{
j ∈ N : z f ( j) = r f ( j)+1

}
. This implies

τ + F
(
d
(
r f og( j)+1, z f og( j)

))
≤ F

(
M1

(
r f og( j), z

)
+ LN1

(
r f og( j), z

))

= F


max


d
(
r f og( j) , z

)
, d

(
r f og( j) , r f og( j)+1

)
, d

(
z, r f og( j)+1

)
,(

d
(
r f og( j) , r f og( j)+1

)
d
(
z, r f og( j)+1

))
+

L min
{
d
(
r f og( j) , r f og( j)+1

)
, d

(
z, z f og( j)

)
, d

(
r f og( j), z f og( j)

)
, d

(
z, r f og( j)+1

)}



≤ F


max


d
(
r f og( j) , z

)
, sd

(
r f og( j) , z

)
+ sd

(
z, r f og( j)+1

)
,

d
(
z, r f og( j)+1

)
,
(
d
(
r f og( j) , r f og( j)+1

)
d
(
z, r f og( j)+1

))
+

L min
{
d
(
r f og( j) , r f og( j)+1

)
, d

(
z, z f og( j)

)
, d

(
r f og( j), z f og( j)

)
, d

(
z, r f og( j)+1

)}


.
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That is
τ + F

(
d
(
r f og( j)+1, z f og( j)

))
≤ F(u j), (2.1)

where

u j = max


d
(
r f og( j) , z

)
, sd

(
r f og( j) , z

)
+ sd

(
z, r f og( j)+1

)
,

d
(
z, r f og( j)+1

)
,
(
d
(
r f og( j) , r f og( j)+1

)
d
(
z, r f og( j)+1

))


+L min
{
d
(
r f og( j) , r f og( j)+1

)
, d

(
z, z f og( j)

)
, d

(
r f og( j), z f og( j)

)
, d

(
z, r f og( j)+1

)}
.

Since r j → z as j→ ∞, therefore, u j → 0 as j→ ∞. Hence, by (A2), we get

lim
j→∞

F(u j) = −∞. (2.2)

From (2.1) and (2.2), we obtain

τ + lim
j→∞

F
(
d
(
r f og( j)+1, z f og( j)

))
≤ −∞.

Again by (A2), we get
lim
j→∞

d
(
r f og( j)+1, z f og( j)

)
= 0.

Hence,
lim
j→∞

d
(
z f og( j), z

)
≤ lim

j→∞
s(d

(
z f og( j), r f og( j)+1) + d

(
r f og( j)+1, z

))
= 0.

Consequently, both cases imply
lim
j→∞

d
(
z f og( j), z

)
= 0.

As f was taken to be arbitrary, so
lim
j→∞

d
(
z j, z

)
= 0.

As S z is closed, we get z ∈ S z, a contradiction. Thus F ix(S ) is non-empty. □

Consider an example to illustrate the Theorem 2.1 and to show that it is a proper generalization of
some results in the literature.

Example 2.1. Let X = {1, 2, 3} be a set and d : X × X → R+ a mapping defined as

d (1, 2) = d (2, 1) = 3, d (1, 3) = d (3, 1) = 1.5,
d (2, 3) = d (3, 2) = 5, d (r, r) = 0, for all r ∈ X,

and d (r,w) = d (w, r) , for all r,w ∈ X.

As
d (2, 3) = 5 ≰ d (2, 1) + d (1, 3) = 4.5,

so d is not a metric on X but for s = 1.12, d is a complete b-metric. Define S : X → CB(X) and
F : R+ −→ R as

S r =
{
{1, 2} , if r = 3,
{1} , if r = 1, 2,

and F(r) = ln(r).

AIMS Mathematics Volume 7, Issue 10, 17967–17988.
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Note that
1

1 + log2 1.12
≈ 0.859 > 0.

If r = 3 and w = 1, then S r = {1, 2}, for η = 1 ∈ S 3, there is µ = 1 ∈ S 1 such that η = µ. For η = 2,
there is µ = 1 such that

F (d (2, 1)) = ln (3) ≈ 1.099, and

F (M1 (3, 1) + LN1 (3, 1))

= F

 max
{

d (3, 1) , d (3, 2) , d (1, 2) ,
(d (3, 2) d (1, 2))

}
+

+L min {d (3, 2) , d (1, 1) , d (3, 1) , d (1, 2)}


= F (max {1.5, 5, 3, (5) (3)} + L min {5, 0, 1.5, 3})

= ln (15 + 0) = ln (15) ≈ 2.708.

If r = 3 and w = 2, then S r = {1, 2}, for η = 1, there exists µ = 1 ∈ S 2 such that η = µ. For η = 2,
there is µ = 1 ∈ S 2 such that

F (d (2, 1)) = ln (3) ≈ 1.099 and

F (M1 (3, 2) + LN1 (3, 2))

= F
(

max {d (3, 2) , d (3, 2) , d (2, 2) , (d (3, 2) d (2, 2))}+
L min {d (3, 2) , d (2, 1) , d (3, 1) , d (2, 2)}

)
= F (max {5, 5, 0, 0} + L min {5, 3, 1.5, 0})

= ln (5 + 0) = ln (5) ≈ 1.609.

Hence, for any τ ∈ (0, 0.51), r,w ∈ X and η ∈ S r, there exists µ ∈ S w such that either η = µ or

τ + F (d (η, µ)) ≤ F (M1 (r,w) + LN1 (r,w))

holds for all r,w ∈ X and for any L ≥ 0. Hence, all the assumptions of Theorem 2.1 are met and
1 ∈ S (1).

Remark 2.1. In the above example, if r = 3 and w = 1, then S r = {1, 2}, for η = 2, there does not exist
µ ∈ S 1 such that either η = µ or

τ + F (d (η, µ)) ≤ Fd (r,w) ,

for any τ > 0, because for η = 2, and for all µ ∈ S 1 = {1}, we have

F (d (2, 1)) = ln (3) = 1.099 ≰ 0.405 ≈ ln(1.5) = F (d (3, 1)) ,

that is Theorem 1.1 is not applicable in this example. Hence, Theorem 2.1 is a proper extension of
Theorem 1.1.

In the following, we obtain some corollaries of Theorem 2.1.
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Corollary 2.1. Let (X, d) be a complete b-MS and S : X −→ CB(X) a mapping. Suppose there is a
function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

τ ∈ R+ satisfying (A2) and (A3), and for any r,w ∈ X and η ∈ S r, there is µ ∈ S w such that either
η = µ or

τ + F (d (η, µ)) ≤ F (M1 (r,w))

holds. Then F ix(S ) is non-empty.

Corollary 2.2. Let (X, d) be a complete b-MS and S : X −→ CB(X) a mapping. Suppose there is a
function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

τ ∈ R+ satisfying A2, A3, and for any r,w ∈ X and η ∈ S r, there is µ ∈ S w such that either η = µ or

τ + F (d (η, µ)) ≤ F (max {d (r,w) , d (r, η) , d (w, η)})

holds. Then F ix(S ) is non-empty.

Following result is the corollary of Theorem 2.1 for single valued mapping.

Corollary 2.3. Let (X, d) be a complete b-MS and a mapping f : X −→ X. Suppose there is a function
F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

τ ∈ R+ satisfying (A2) and (A3), and for any r,w ∈ X and either f r = f w or

τ+F (d ( f r, f w)) ≤ F (M2 (r,w) + LN2 (r,w))

holds for some L ≥ 0. Then F ix( f ) is singleton.

Proof. From Theorem 2.1, F ix( f ) is non-empty. To check the uniqueness, assume κ and ϖ be fixed
points of f with κ , ϖ, that is f κ , fϖ. Hence, from given condition, we get

τ+F (d (κ,ϖ)) = τ+F (d ( f κ, fϖ))

≤ F (M2 (κ,ϖ) + LN2 (κ,ϖ))

= F
(

max {d (κ,ϖ) , d (κ, f κ) , d (ϖ, f κ) , (d (κ, f κ) d (ϖ, f κ))}
+min {d (κ, f κ) , d (ϖ, fϖ) , d (κ, fϖ) , d (ϖ, f κ)}

)

= F

 max
{

d (κ,ϖ) , d (κ, κ) , d (ϖ, κ) ,
(d (κ, κ) d (ϖ, κ))

}
+min {d (κ, κ) , d (ϖ,ϖ) , d (κ,ϖ) , d (ϖ, κ)}


= F (max {d (κ,ϖ) , 0, d (ϖ, κ) , 0} +min {0, 0, d (κ,ϖ) , d (ϖ, κ)})

= F (d (κ,ϖ)) ,

implies τ ≤ 0, a contradiction. Hence, F ix( f ) is singleton. □
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The following result is an extension of a result given in [25, Theorem 14].

Theorem 2.2. Let (X, d) be a complete b-MS and S : X −→ CB(X) a mapping. Suppose there is a
function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A1)–(A3) and (A5), and for any r,w ∈ X, r , w with S r , S w,

τ + F (H (S r, S w)) ≤ F (M2 (r,w) + LN2 (r,w))

holds for some L ≥ 0. Then F ix(S ) is non-empty.

Proof. Let α ∈ S r where r,w ∈ X. We have following two cases:

(1) d (α, S w) = 0,
(2) d (α, S w) > 0.

If d (α, S w) = 0 then α ∈ S w, because S w is closed. In the second case S r , S w. So

τ + F (H (S r, S w)) ≤ F (M2 (r,w) + LN2 (r,w))

holds as given. As
d (α, S w) ≤ H (S r, S w) ,

so using (A1) we get

τ + F(d (α, S w))
≤ τ + F (H (S r, S w))

≤ F (M2 (r,w) + LN2 (r,w)) .

From (A5),

inf {F (d (α, γ)) : γ ∈ S w}

= F (d (α, S w))

≤ F (M2 (r,w) + LN2 (r,w)) − τ

< F (M2 (r,w) + LN2 (r,w)) −
τ

2
.

So, we can pick β ∈ S w fulfilling

τ

2
+ F (d (α, β)) ≤ F (M2 (r,w) + LN2 (r,w)) .

If we replace τ with
τ

2
in Theorem 2.1, then we get the desired result. □

Here, we obtain some corollaries of Theorem 2.2.
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Corollary 2.4. Let (X, d) be a complete b-MS and a mapping S : X −→ CB(X). Suppose there is a
function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A1)–(A3) and (A5), and for any r,w ∈ X, r , w with S r , S w,

τ + F (H (S r, S w)) ≤ F (M2 (r,w))

holds. Then F ix(S ) is non-empty.

Corollary 2.5. Let (X, d) be a complete b-MS and a mapping S : X −→ CB(X). Suppose there is a
function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

and τ ∈ R+ satisfying (A1)–(A3) and (A5), and for any r,w ∈ X, r , w with S r , S w,

τ + F (H (S r, S w)) ≤ F (max {d (r,w) , d (r, S r) , d (w, S r)})

holds. Then F ix(S ) is non-empty.

In the following, we obtain another result for a new set-valued F-contractions of a b-MS.

Theorem 2.3. Let (X, d) be a complete b-MS and S : X → CB(X) a set-valued mapping. Suppose there
is a function F : R+ −→ R,

c ∈
(
0,

1
1 + log2 s

)
,

τ ∈ R+ satisfying (A1)–(A3), (A6) and

2τ + F (H (S r, S w)) ≤ F (M3 (r,w) + LN2 (r,w)) , (2.3)

for all r,w ∈ X with S r , S w and for some L ≥ 0. Then F ix(S ) is non-empty.

Proof. Let r0 ∈ X and r j+1 ∈ S r j for all j ∈ N. If r j = r j+1 for some j ∈ N, then r j ∈ S r j and there is
nothing to prove further. Now suppose r j , r j+1 for all j ∈ N. As F is right continuous at H

(
S r j, S r j+1

)
for each j ∈ N, so there is a k > 1 such that

F
(
kH

(
S r j, S r j+1

))
< F

(
H

(
S r j, S r j+1

))
+ τ. (2.4)

Moreover, there exists r j+2 ∈ S r j+1 such that

d
(
r j+1, r j+2

)
≤ kH

(
S r j, S r j+1

)
. (2.5)
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Now, from (2.3)–(2.5) and (A1) we get

F
(
d
(
r j+1, r j+2

))
≤ F

(
kH

(
S r j, S r j+1

))
< F

(
H

(
S r j, S r j+1

))
+ τ ≤ F

(
M3

(
r j, r j+1

)
+ LN2

(
r j, r j+1

))
− 2τ + τ

= F



max



d
(
r j, r j+1

)
, d

(
r j, S r j

)
, d

(
r j+1, S r j+1

)
, d

(
r j, S r j

)
d
(
r j+1, S r j

)
,

d
(
r j, S r j+1

)
d
(
r j+1, S r j

)
,

d
(
r j, S r j+1

)
+ d

(
r j+1, S r j

)
2s

,

 d
(
r j, S r j+1

)
+ d

(
r j+1, S r j

)
s
(
1 + d

(
r j, S r j

)
+ d

(
r j+1, S r j+1

)) d
(
r j, r j+1

)


+L min

{
d
(
r j, S r j

)
, d

(
r j+1, S r j+1

)
, d

(
r j, S r j+1

)
, d

(
r j+1, S r j

)}



− τ

≤ F



max



d
(
r j, r j+1

)
, d

(
r j, r j+1

)
, d

(
r j+1, r j+2

)
, d

(
r j, r j+1

)
d
(
r j+1, r j+1

)
,

d
(
r j, r j+2

)
d
(
r j+1, r j+1

)
,

d
(
r j, r j+2

)
+ d

(
r j+1, r j+1

)
2s

,

 d
(
r j, r j+2

)
+ d

(
r j+1, r j+1

)
s
(
1 + d

(
r j, r j+1

)
+ d

(
r j+1, r j+2

)) d
(
r j, r j+1

)


+L min

{
d
(
r j, S r j

)
, d

(
r j+1, r j+2

)
, d

(
r j, r j+2

)
, d

(
r j+1, r j+1

)}



− τ

= F


max


d
(
r j, r j+1

)
, d

(
r j+1, r j+2

)
,

sd
(
r j, r j+1

)
+ sd

(
r j+1, r j+2

)
2s

,

 sd
(
r j, r j+1

)
+ sd

(
r j+1, r j+2

)
s
(
1 + d

(
r j, r j+1

)
+ d

(
r j+1, r j+2

)) d
(
r j, r j+1

)




− τ

≤ F
(
max

{
d
(
r j, r j+1

)
, d

(
r j+1, r j+2

)})
− τ.

If
max

{
d
(
r j, r j+1

)
, d

(
r j+1, r j+2

)}
= d

(
r j+1, r j+2

)
,

then
τ + F

(
d
(
r j+1, r j+2

))
≤ F

(
d
(
r j+1, r j+2

))
,

implies τ ≤ 0, a contradiction. So

τ + F
(
d
(
r j+1, r j+2

))
≤ F

(
d
(
r j, r j+1

))
,
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which further implies

F
(
d
(
r j+1, r j+2

))
≤ F

(
d
(
r j, r j+1

))
− τ ≤ F

(
d
(
r j−1, r j

))
− 2τ

≤ F
(
d
(
r j−2, r j−1

))
− 3τ ≤ · · · ≤ F (d (r1, r2)) − jτ,

we get
jτ + F

(
d
(
r j+1, r j+2

))
≤ F (d (r1, r2)) ,

for any j ∈ N. By Lemma 1.3, {
d
(
r j, r j+1

)}
∈ O

 j
−

1
c


holds. Since

1
c
∈

(
1 + log2 s,∞

)
,

by Lemma 1.2, {r j} is a Cauchy sequence. Since X is complete, {r j} converges to some w ∈ X.

lim
j→∞

r j = w.

Now we will show that w ∈ S w. On contrary assume that w < S w, that is d (w, S w) > 0. As

d
(
r j+1, S w

)
≤ H

(
S r j, S w

)
.

By (A1), we get

2τ + F
(
d
(
r j+1, S w

))
≤ 2τ + F

(
H

(
S r j, S w

))
≤ F

(
M3

(
r j,w

)
+ LN2

(
r j,w

))

= F


max


d
(
r j,w

)
, d

(
r j, S r j

)
, d (w, S w) , d

(
r j, S r j

)
d
(
w, S r j

)
, d

(
r j, S w

)
d
(
w, S r j

)
,

d
(
r j, S w

)
+ d

(
w, S r j

)
2s

,

 d
(
r j, S w

)
+ d

(
w, S r j

)
s
(
1 + d

(
r j, S r j

)
+ d (w, S w)

) d
(
r j,w

)


+L min
{
d
(
r j, S r j

)
, d (w, S w) , d

(
r j, S w

)
, d

(
w, S r j

)}



≤ F


max


d
(
r j,w

)
, d

(
r j, r j+1

)
, d (w, S w) , d

(
r j, r j+1

)
d
(
w, r j+1

)
, d

(
r j, S w

)
d
(
w, r j+1

)
,

d
(
r j, S w

)
+ d

(
w, r j+1

)
2s

,

 d
(
r j, S w

)
+ d

(
w, r j+1

)
s
(
1 + d

(
r j, r j+1

)
+ d (w, S w)

) d
(
r j,w

)


+L min
{
d
(
r j, r j+1

)
, d (w, S w) , d

(
r j, S w

)
, d

(
w, r j+1

)}


.

On taking limit as j tends to∞ and by the continuity of F, we get

2τ + F (d (w, S w)) ≤ F (d (w, S w)) ,

implies 2τ ≤ 0, a contradiction. Hence, S has a fixed point. □
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Here is an example to explain the Theorem 2.3.

Example 2.2. Let X = {a, b, c, ρ, e} and set a mapping d : X × X → R+ by

d (a, b) = d (a, c) = 3, d (b, e) = d (c, ρ) = d (c, e) = 9,
d (a, ρ) = d (a, e) = 12, d (b, ρ) = 8, d (b, c) = 6, d (ρ, e) = 2,
d (r, r) = 0 for all r ∈ X and d (r,w) = d (w, r) for all r,w ∈ X.

As
d (a, ρ) = 12 ≰ d (a, b) + d (b, ρ) = 11,

so d is not a metric on X. For any s ≥
12
11

, d is a complete b-metric. Set L = 2 and define a mapping
S : X → CB(X) as

S r =


{a} , if r = a, b,
{b} , if r = c, ρ,
{c, ρ} , if r = e.

For r ∈ {a, b} and w ∈ {c, ρ, e} , there are following cases:
If r = a, w = c, then

F (H (S a, S c)) = F (d (a, b)) = ln (3) ≈ 1.0986 and
F (M3 (a, c) + LN2 (a, c))

= F


max


d (a, c) , d (a, S a) , d (c, S c) , d (a, S a) d (c, S a) , d (a, S c) d (c, S a) ,

d (a, S c) + d (c, S a)
2s

,

[
d (a, S c) + d (c, S a)

s (1 + d (a, S a) + d (c, S c))

]
d (a, c)


+L min {d (a, S a) , d (c, S c) , d (a, S c) , d (c, S a)}


= F

(
max

{
3, 0, 6, 0, 9,

66
24
,

(
66
84

)
3
}
+ L min {0, 6, 3, 3}

)
= F (max {3, 0, 6, 0, 9, 2.75, 2.36} + L (0))

= F (9) = ln (9) ≈ 2.197.

If r = a, w = ρ, then

F (H (S a, S ρ)) = F (d (a, b)) = ln (3) ≈ 1.0986 and
F (M3 (a, ρ) + LN2 (a, ρ))

= F


max


d (a, ρ) , d (a, S a) , d (ρ, S ρ) , d (a, S a) d (ρ, S a) , d (a, S ρ) d (ρ, S a) ,

d (a, S ρ) + d (ρ, S a)
2s

,

[
d (a, S ρ) + d (ρ, S a)

s (1 + d (a, S a) + d (ρ, S ρ))

]
d (a, ρ)


+L min {d (a, S a) , d (ρ, S ρ) , d (a, S ρ) , d (ρ, S a)}


= F

(
max

{
12, 0, 8, 0, 36,

165
24
,

[
165
108

]
12

}
+ L min {0, 8, 3, 12}

)
= F (max {12, 0, 8, 0, 36, 6.875, 18.33} + L (0))

= F (36) = ln (36) ≈ 3.5835.
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If r = a, w = e, then

F (H (S a, S e)) = F (H (a, {c, ρ})) = F (12) = ln (12) ≈ 2.4849 and
F (M3 (a, e) + LN2 (a, e))

= F


max


d (a, e) , d (a, S a) , d (e, S e) , d (a, S a) d (e, S a) , d (a, S e) d (e, S a) ,

d (a, S e) + d (e, S a)
2s

,

[
d (a, S e) + d (e, S a)

s (1 + d (a, S a) + d (e, S e))

]
d (a, e)


+L min {d (a, S a) , d (e, S e) , d (a, S e) , d (e, S a)}


= F

(
max

{
12, 0, 9, 0, 12 (12) ,

264
24
,

[
264
120

]
12

}
+ L min {0, 9, 12, 12}

)
= F (max {12, 0, 9, 0, 144, 11, 26.4} + L (0))

= F (144) = ln (144) ≈ 4.9698.

If r = b, w = c, then

F (H (S b, S c)) = F (d (a, b)) = ln (3) ≈ 1.0986 and
F (M3 (b, c) + LN2 (b, c))

= F


max


d (b, c) , d (b, S b) , d (c, S c) , d (b, S b) d (c, S b) , d (b, S c) d (c, S b) ,

d (b, S c) + d (c, S b)
2s

,

[
d (b, S c) + d (c, S b)

s (1 + d (b, S b) + d (c, S c))

]
d (b, c)


+L min {d (b, S b) , d (c, S c) , d (b, S c) , d (c, S b)}


= F

(
max

{
6, 3, 6, 9, 0,

[
33
24

]
,

[
33

120

]
6
}
+ L (0)

)
= F (max {6, 3, 6, 9, 0, 1.38, 1.65})

= F (9) = ln (9) ≈ 2.197.

If r = b, w = ρ, then

F (H (S b, S ρ)) = F (d (a, b)) = ln (3) ≈ 1.0986 and
F (M3 (b, ρ) + LN2 (b, ρ))

= F


max


d (b, ρ) , d (b, S b) , d (ρ, S ρ) , d (b, S b) d (ρ, S b) , d (b, S ρ) d (ρ, S b) ,

d (b, S ρ) + d (ρ, S b)
2s

,

[
d (b, S ρ) + d (ρ, S b)

s (1 + d (b, S b) + d (ρ, S ρ))

]
d (b, ρ)


+L min {d (b, S b) , d (ρ, S ρ) , d (b, S ρ) , d (ρ, S b)}


= F

(
max

{
8, 3, 8, 36, 0,

132
24
,

[
132
144

]
8
}
+ L{3, 8, 0, 12}

)
= F (36) = ln (36) ≈ 3.584.
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If r = b, w = e, then

F (H (S b, S e)) = F (H (a, {c, ρ})) = ln (12) ≈ 2.4849 and
F (M3 (b, e) + LN2 (b, e))

= F


max


d (b, e) , d (b, S b) , d (e, S e) , d (b, S b) d (e, S b) , d (b, S e) d (e, S b) ,

d (b, S e) + d (e, S b)
2s

,

[
d (b, S e) + d (e, S b)

s (1 + d (b, S b) + d (e, S e))

]
d (b, e)


+L min {d (b, S b) , d (e, S e) , d (b, S e) , d (e, S b)}


= F

(
max

{
9, 3, 9, 3 (12) , 96,

220
24
,

[
220
156

]
9
}
+ L min {3, 9, 8, 12}

)
= F (96 + 2 (3)) = ln (102) ≈ 4.625.

Hence, for any τ ∈ (0, 0.5492),

2τ + F (H (S r, S w)) ≤ F (M3 (r,w) + LN2 (r,w))

holds for all r,w ∈ X and for any L = 2. That is, all the assumptions of Theorem 2.3 are met, so there
exists a fixed point a ∈ S (a) .

Following result is the metric version of Theorem 2.3.

Corollary 2.6. Let (X, d) be a complete metric space and S : X → CB(X) a set-valued mapping.
Suppose there is a function F : R+ −→ R, c ∈ (0, 1), τ ∈ R+ satisfying (A1)–(A3), (A6) and

2τ + F (H (S r, S w)) ≤ F (M4 (r,w) + LN2 (r,w)) ,

for all r,w ∈ X with S r , S w and for some L ≥ 0. Then F ix(S ) is non-empty.

Proof. Take s = 1 in Theorem 2.3. □

Abbas et al. [3] proved a coincidence point theorem for generalized set-valued ( f , L)-almost F-
contraction and the following is one of the corollary of their main result.

Corollary 2.7. [3] Let (X, d) be a complete metric space and F : R+ −→ R be a function with
τ ∈ (0,∞) satisfying (A1)–(A3) and (A6). There is a mapping S : X → CB(X) with L ≥ 0, satisfying

2τ + F (H (S r, S w)) ≤ F (M5 (r,w) + LN2 (r,w)) ,

for every r,w ∈ X with S r , S w. Then F ix(S ) is non-empty.

Remark 2.2. Note that the Corollary 2.7 is the corollary of Corollary 2.6.

In the next example, we show that the Corollary 2.6 properly generalize the Corollary 2.7.

Example 2.3. Let X = {1, 2, 3, 4, 5} and set a mapping d : X × X → R+ as

d (r, r) = 0, for all r ∈ X,

d (r,w) = d (w, r) , for all r,w ∈ X,
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d (1, 2) = d (1, 3) = d (1, 4) = d (2, 3) = d (2, 4) = 2,
d (1, 5) = d (2, 4) = d (2, 5) = d (3, 4) = 3,
d (3, 5) = d (4, 5) = 1.5,

so d is a metric on X and it is a complete metric. Set L = 2 and define a mapping S : X −→ CL (X) as

S r =


{1} , if r = 1, 2,
{5} , if r = 3, 4,
{3, 4} , if r = 5.

For r ∈ {1, 2} and w ∈ {3, 4, 5}, there is following cases:

If r = 1, w = 3, then

F (H (S 1, S 3)) = F (d (1, 5)) = ln (3) ≈ 1.0986, and
F (M4 (1, 3) + LN2 (1, 3))

= F


max


d (1, 3) , d (1, S 1) , d (3, S 3) , d (1, S 1) d (3, S 1) , d (1, S 3) d (3, S 1) ,

d (1, S 3) + d (3, S 1)
2

,

[
d (1, S 3) + d (3, S 1)

1 + d (1, S 1) + d (3, S 3)

]
d (1, 3)


+L min {d (1, S 1) , d (3, S 3) , d (1, S 3) , d (3, S 1)}


= F (max {2, 0, 1.5, 0, 6, 2.5, 2(2)} + L min {0, 1.5, 3, 2})

= F (6 + L (0)) = F (6) = ln (6) ≈ 1.792.

If r = 1, w = 4, then

F (H (S 1, S 4)) = F (d (1, 5)) = ln (3) ≈ 1.0986, and
F (M4 (1, 4) + LN2 (1, 4))

= F


max


d (1, 4) , d (1, S 1) , d (4, S 4) , d (1, S 1) d (4, S 1) , d (1, S 4) d (4, S 1) ,

d (1, S 4) + d (4, S 1)
2

,

[
d (1, S 4) + d (4, S 1)

1 + d (1, S 1) + d (4, S 4)

]
d (1, 4)


+L min {d (1, S 1) , d (4, S 4) , d (1, S 4) , d (4, S 1)}


= F (max {2, 0, 1.5, 0, 3 (2) , 2.5, 2(2)} + L min {0, 1.5, 3, 2})

= F (6 + L (0)) = F (6) = ln (6) ≈ 1.792.

If r = 1, w = 5, then

F (H (S 1, S 5)) = F (d (1, {3, 4})) = ln (2) ≈ 0.693, and
F (M4 (1, 5) + LN2 (1, 5))

= F


max


d (1, 5) , d (1, S 1) , d (5, S 5) , d (1, S 1) d (5, S 1) , d (1, S 5) d (5, S 1) ,

d (1, S 5) + d (5, S 1)
2

,

[
d (1, S 5) + d (5, S 1)

1 + d (1, S 1) + d (5, S 5)

]
d (1, 5)


+L min {d (1, S 1) , d (5, S 5) , d (1, S 5) , d (5, S 1)}


= F (max {3, 0, 1.5, 0, 2 (3) , 2.5, 2(3)} + L min {0, 1.5, 2, 3})

= F (6 + L (0)) = F (6) = ln (6) ≈ 1.792.

AIMS Mathematics Volume 7, Issue 10, 17967–17988.



17985

If r = 2, w = 3, then

F (H (S 2, S 3)) = F (d (1, 5)) = ln (3) ≈ 1.0986, and
F (M4 (2, 3) + LN2 (2, 3))

= F


max


d (2, 3) , d (2, S 2) , d (3, S 3) , d (2, S 2) d (3, S 2) , d (2, S 3) d (3, S 2) ,

d (2, S 3) + d (3, S 2)
2

,

[
d (2, S 3) + d (3, S 2)

1 + d (2, S 2) + d (3, S 3)

]
d (2, 3)


+L min {d (2, S 2) , d (3, S 3) , d (2, S 3) , d (3, S 2)}


= F (max {2, 2, 1.5, 4, 6, 2.5, (1.11)2} + L min {2, 1.5, 3, 2})

= F (6 + L (1.5)) = F (9) = ln (9) ≈ 2.197.

If r = 2, w = 4, then

F (H (S 2, S 4)) = F (d (1, 5)) = ln (3) ≈ 1.0986, and
F (M4 (2, 4) + LN2 (2, 4))

= F


max


d (2, 4) , d (2, S 2) , d (4, S 4) , d (2, S 2) d (4, S 2) , d (2, S 4) d (4, S 2) ,

d (2, S 4) + d (4, S 2)
2

,

[
d (2, S 4) + d (4, S 2)

1 + d (2, S 2) + d (4, S 4)

]
d (2, 4)


+L min {d (2, S 2) , d (4, S 4) , d (2, S 4) , d (4, S 2)}


= F (max {3, 2, 1.5, 4, 6, 2.5, (1.11)3} + L min {2, 1.5, 3, 2})

= F (6 + L (1.5)) = F (9) = ln (9) ≈ 2.197.

If r = 2, w = 5, then

F (H (S 2, S 5)) = F (d (1, {3, 4})) = ln (2) ≈ 0.693, and
F (M4 (2, 5) + LN2 (2, 5))

= F


max


d (2, 5) , d (2, S 2) , d (5, S 5) , d (2, S 2) d (5, S 2) , d (2, S 5) d (5, S 2) ,

d (2, S 5) + d (5, S 2)
2

,

[
d (2, S 5) + d (5, S 2)

1 + d (2, S 2) + d (5, S 5)

]
d (2, 5)


+L min {d (2, S 2) , d (5, S 5) , d (2, S 5) , d (5, S 2)}


= F (max {3, 2, 1.5, 6, 6, 2.5, (1.11)3} + L min {2, 1.5, 2, 3})

= F (6 + L (1.5)) = F (9) = ln (9) ≈ 2.197.

Hence, for all τ ∈ (0, 0.3467],

2τ + F (H (S r, S w)) ≤ F (M4 (r,w) + LN2 (r,w))

holds for all r,w ∈ X and for any L = 2. Hence, all the assumptions of Corollary 2.6 are satisfied, so
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there exist a fixed point 1 ∈ S (1). On the other hand, if r = 1 and w = 3, then

F (H (S 1, S 3)) = F (d (1, 5)) = ln (3) ≈ 1.0986, and
F (M5 (1, 3) + LN2 (1, 3))

= F

 max
{

d (1, 3) , d (1, S 1) , d (3, S 3) ,
d (1, S 3) + d (3, S 1)

2

}
+L min {d (1, S 1) , d (3, S 3) , d (1, S 3) , d (3, S 1)}


= F (max {2, 0, 1.5, 2.5} + L min {0, 1.5, 3, 2})

= F (2.5) = ln (2.5) ≈ 0.916.

Hence, there is no τ > 0 and L ≥ 0 such that

2τ + F (H (S 1, S 3)) ≤ F (M5 (1, 3) + LN2 (1, 3)) .

That is
2τ + F (H (S 1, S 3)) ≰ F (M5 (1, 3) + LN2 (1, 3)) ,

for all τ > 0 and L ≥ 0. Hence, Corollary 2.7 is not applicable in this example.

Remark 2.3. Above example provides a situation where Corollary 2.7 is not applicable while
Corollary 2.6 is applicable. Note that Corollary 2.6 is a consequence of our main result (Theorem 2.3).

3. Conclusions

In this paper, we have introduced generalized set-valued F-contractions of b-metric spaces and
presented the results about the existence of non-empty fixed point sets of newly introduced mappings.
Our results improve some already existing very important results in the literature. Examples show that
the new results offer proper generalizations. It is worth noting that by setting b-metric constant equal
to one, we obtain some specific cases showing notable enhancement of existing results yet in metric
spaces (see Corollary 2.6 and Example 2.3 above). It would be interesting to investigate these results
in the framework of asymmetric distance spaces.
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