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1. Introduction

Contact and complex structures on smooth manifolds are studied with details in [3]. In the literature,
there are many studies on these structures and their classifications with compatible (semi-)Riemannian
metrics. For instance, almost contact metric structures and their classification is studied in [2, 4, 8];
almost Hermitian structures were examined in [1]; in [5], almost contact structures with Norden metric
are classified. Likewise, almost complex Norden metric structures and their classification are given
in [6]. In this paper, we study how to obtain an almost complex Norden metric structures by given
almost contact Norden metric structures and give the correspondence between the classes of these
structures. In the final section, we give some examples about the existence of the induced almost
complex Norden metric structures by the results of the paper.

2. Preliminaries

Definition 2.1. Let M be a 2n + 1 dimensional C∞ manifold and ξ, η and φ be a vector field, a 1-form
and a (1, 1) tensor field respectively on M with

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)
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then (φ, ξ, η) is called an almost contact structure on M and the manifold M is said to be an almost
contact manifold.

Furthermore, if M is also equipped with a metric ρ of signature (n + 1, n), satisfying

ρ(φ(U), φ(V)) = −ρ(U,V) + η(U)η(V), (2.2)

where U,V ∈ X(M), then ρ is said to be a compatible metric with the structure (φ, ξ, η) and M is called
an almost contact Norden metric manifold (or almost contact B-metric manifold) with the structure
(φ, ξ, η, ρ).

For a given almost contact Norden metric manifold (M, φ, ξ, η, ρ), the followings hold:

φ2 = −id + η ⊗ ξ ; η(ξ) = 1. (2.3)

It follows,
η ◦ φ = 0, φξ = 0, ρ(φU,V) = ρ(U, φV), η(U) = ρ(U, ξ). (2.4)

Moreover, φ has rank 2n [5].

Definition 2.2. The (0, 3)-tensor field α on M given with

α(U,V,W) = ρ((∇Uφ)V,W), (2.5)

is called the fundamental tensor of the structure,where U,V,W ∈ X(M) and ∇ is the Levi-Civita
connection of ρ .

Proposition 2.1. By the definition of ∇, we have

(∇Uη)(V) = ρ(∇Uξ,V) = α(U, φV, ξ). (2.6)

Also from the Eqs (2.1) and (2.4), it follows immediately

α(U,V,W) = α(U,V,W),
α(U, φV, φW) = α(U,V,W) − η(V)α(U, ξ,W) − η(W)α(U,V, ξ), (2.7)
α(U, ξ, ξ) = 0,

where U,V,W ∈ X(M) . The 1-forms below, called “Lee forms”, are associated with α:

θ(u) = ρi jα(ei, e j, u); θ∗(u) = ρi jα(ei, φe j, u); ω(u) = α(ξ, ξ, u), (2.8)

where u ∈ TpM, {ei, ξ} (i = 1, 2, · · · , 2n) is a basis of TpM, and (ρi j) is the inverse matrix of (ρi j).

In [5], a classification of almost contact Norden metric manifolds with respect to the fundamental
tensor α is studied , where the defining relations of the eleven basic classes Fi, (i = 1, 2, · · · , 11) are
given as follow Table 1:
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Table 1. Basic classes of almost contact Norden metric structures.

F1 α(U,V,W) = 1
2n [ρ(U, φV)θ(φW)+ ρ(U, φW)θ(φV)+ ρ(φU, φW)θ(φ2V)+

ρ(φU, φV)θ(φ2W)]
F2 α(ξ,V,W) = α(U, ξ,W) = 0, α(U,V, φW) + α(V,W, φU) +

α(W,U, φV) = 0, θ = 0
F3 α(ξ,V,W) = α(U, ξ,W) = 0, α(U,V,W)+α(V,W,U)+α(W,U,V) = 0
F4 α(U,V,W) = − θ(ξ)2n [ρ(φU, φW)η(V) + ρ(φU, φV)η(W)]
F5 α(U,V,W) = − θ

∗(ξ)
2n [ρ(U, φW)η(V) + ρ(U, φV)η(W)]

F6 α(U,V,W) = −α(φU, φV,W) − α(φU,V, φW) = −α(V,W,U) +
α(W,U,V) − 2α((φU, φV,W), θ(ξ) = θ∗(ξ) = 0

F7 α(U,V,W) = −α(φU, φV,W)−α(φU,V, φW) = −α(V,W,U)−α(W,U,V)
F8 α(U,V,W) = α(φU, φV,W)+α(φU,V, φW) = −α(V,W,U)+α(W,U,V)+

2α(φU, φV,W)
F9 α(U,V,W) = α(φU, φV,W) + α(φU,V, φW) = −α(V,W,U) − α(W,U,V)
F10 α(U,V,W) = η(U)α(ξ, φV, φW)
F11 α(U,V,W) = η(U)(η(W)ω(V) + η(V)ω(W))

The class F0 is determined by the condition α = 0.
By setting specific choices for U,V,W in the defining relations Fi’s, one can obtain the following

results.

Proposition 2.2. Let (M, φ, ξ, η, ρ) be an almost contact Norden metric manifold. Then we have,

(1) The Reeb vector field ξ is parallel only in the classes F1, F2, F3, F10 and in their direct sums.
(2) The Reeb vector field ξ is Killing only in the classes F7, F8 and in their direct sum.
(3) The Reeb vector field ξ satisfies the relation ρ(∇Uξ,V) = ρ(∇Vξ,U) for any U,V ∈ X(M), in the

classes F4, F5, F6, F9 and in their direct sums.

Definition 2.3. Let N2n be a C∞ manifold with an almost complex structure J and a semi-Riemannian
metric h of signature (n, n) that holds

J2 = −id, h(JU, JV) = −h(U,V), (2.9)

for arbitrary U,V ∈ X(N). Then (N, J, h) is called an almost complex Norden metric manifold (or
almost complex B-metric manifold) [5].

The metric h satisfies
h(JU,V) = h(U, JV), (2.10)

for all vector fields U,V .

Definition 2.4. The fundamental tensor F of the manifold (N, J, h) is given with :

F(U,V,W) = h((∇̃U J)V,W), (2.11)

where U,V,W are smooth vector fields and ∇̃ is the Levi-Civita connection of h.
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The tensor F satisfies

F(U,V,W) = F(U,W,V)
F(U,V,W) = F(U, JV, JW). (2.12)

Definition 2.5. For a given p ∈ (N, J, h) and a basis {e1, · · · , e2n} of TpN, the Lee form ϕ associated
with the tensor F is defined as

ϕ(u) = hi jF(ei, e j, u), (2.13)

where (hi j) is the the inverse of (h) and u ∈ TpN .

In [6], almost complex Norden metric structures are classified with respect to ∇̃J. Due to this
classification, three basic classes Wi, (i = 1, 2, 3) and so 23 invariant subspaces are obtained. These
subspaces are given with the relations below. For U,V,W ∈ X(N),

W0 : F(U,V,W) = 0,

W1 : F(U,V,W) =
1
2n

[h(U,V)ϕ(W) + h(U,W)ϕ(V)

+ h(U, JV)ϕ(JW) + h(U, JW)ϕ(JV)],
W2 : F(U,V, JW) + F(V,W, JU) + F(W,U, JV) = 0, ϕ = 0,
W3 : F(U,V,W) + F(V,W,U) + F(W,U,V) = 0,

W1 ⊕W2 : F(U,V, JW) + F(V,W, JU) + F(W,U, JV) = 0,
W2 ⊕W3 : ϕ = 0,

W1 ⊕W3 : F(U,V,W) + F(V,W,U) + F(W,U,V) =
1
n

[h(U,V)ϕ(W)

+ h(W,U)ϕ(V) + h(V,W)ϕ(U) + h(U, JV)ϕ(JW)
+ h(V, JW)ϕ(JU) + h(W, JU)ϕ(JV)],

W1 ⊕W2 ⊕W3 : (The whole class).

3. Induced almost complex Norden metric structure

Let (M2n+1, φ, ξ, η, ρ) be an almost contact Norden metric manifold. Define J as

J(Ũ) := (φU − aξ, η(U)
d
dt

), (3.1)

where U ∈ X(M), Ũ = (U, a d
dt ) ∈ X(M × R). Here, a is a real valued smooth function on M × R, and

t is the coordinate of R. It is known that (M × R, J, h) is an almost complex Norden metric manifold
with the metric h

h(Ũ, Ṽ) := ρ(U,V) − ab, (3.2)

where Ũ = (U, a d
dt ), Ṽ = (V, b d

dt ) [9].
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In this work, this structure is said to be the induced almost complex Norden metric structure.
Unless otherwise stated, throughout the paper, we will use the notation M̃ for M×R, and Ũ, Ṽ , W̃, ...

for the vector fields (U, a d
dt ), (V, b

d
dt ), (W, c

d
dt ), ... on M̃.

Let (M, φ, ξ, η, ρ) be an almost contact Norden metric manifold and (M̃, J, h) be the induced almost
complex Norden metric manifold. Then, we have the following relations [9]

∇̃ŨṼ = (∇UV, (U[b] + a
db
dt

)
d
dt

), (3.3)

(∇̃Ũ J)(Ṽ) = ((∇Uφ)(V) − b∇Uξ, (∇Uη)(V)
d
dt

), (3.4)

F(Ũ, Ṽ , W̃) = α(U,V,W) − cα(U, ξ, φV) − bα(U, ξ, φW), (3.5)

where ∇ and ∇̃ denote the Levi-Civita connections of ρ and h respectively. From the Eq (3.5) we can
obtain the following equalities, that will be used later.

F(Ũ, Ṽ , JW̃) = α(U,V, φW) − cα(U,V, ξ) + bα(U,W, ξ) − η(W)α(U, ξ, φV). (3.6)

Let {ei, ξ}, (i = 1, · · · , 2n) be a basis for TpM, p ∈ (M, φ, ξ, η, ρ). Then, one can construct the basis
{ẽi = (ei, 0), ẽ2n+1 = (ξ, 0), ẽ2n+2 = (0, d

dt )}, (i = 1, · · · , 2n) for the manifold (M × R, J, h). Thus, the
inverse matrix of the metric h becomes:

(hi j) =


(ρi j) 0

0 −1

 ,
where (ρi j) is the inverse matrix of ρ.

With the basis above, after long but direct calculation, we can state the following lemma.

Lemma 3.1. The Lee form ϕ of the manifold (M × R, J, h) can be stated as:

ϕ(Ũ) = θ(U) + ρξξω(U) − aθ∗(ξ) − aρiξω(φ(ei)) + ρiξα(ei, ξ,U) + ρiξα(ξ, ei,U). (3.7)

4. Results

In the paper [9], it is shown that if the (M, φ, ξ, η, ρ) is of class F0, F2, F3, then (M̃, J, h) is in the
classW0,W1 ⊕W2,W3 respectively. In this study, we focus on the remaining classes.

Shortly, (M, φ, ξ, η, ρ) and the induced manifold (M̃, J, h) will be denoted by M and M̃ respectively.

Theorem 4.1. Let M and M̃ be given as above. We have the followings:

(1) If M is in F1, then M̃ is inW1 ⊕W2.

(2) If M is in F2, then M̃ is inW2.

(3) If M is in F3, then M̃ is inW3.

(4) If M is in F4, then M̃ is inW1 ⊕W2.
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(5) If M is in F5, then M̃ is inW1 ⊕W2.

(6) If M is in F6, then M̃ is inW1 ⊕W2.

(7) If M is in F7, then M̃ is inW3.

(8) If M is in F8, then M̃ is inW1 ⊕W2.

(9) If M is in F9, then M̃ is inW1 ⊕W2 ⊕W3.
(not in one of the classesW1,W2,W3,W1 ⊕W2,W2 ⊕W3,W1 ⊕W3).

(10) If M is in F10, then M̃ is inW2 ⊕W3 orW1 ⊕W2 ⊕W3.
(11) If M is in F11, then M̃ is inW1 ⊕W2.

Proof. (1) Let M be in F1. From the defining relation of the class F1, by direct calculation we get
α(ξ,U,V) = 0 and α(U, ξ,W) = 0 for any U,V,W ∈ X(M). Moreover, since ξ is parallel in F1, we
obtain

F(Ũ, Ṽ , W̃) = α(U,V,W) (4.1)

from the Eq (3.5). By this equation, one can see that the equation F(Ũ, Ṽ , JW̃) + F(Ṽ , W̃, JW̃) +
F(W̃, Ũ, JṼ) = 0 holds. So M̃ is inW1 ⊕W2.
Remark that the structure M̃ is neither in W1, nor W2. Suppose that M̃ ∈ W1. By setting
Ũ = (ξ, 0 d

dt ), Ṽ = (ξ, 0 d
dt ), W̃ = (W, 0 d

dt ) in the defining relation of W1, we get θ(W) = 0 that
implies α(U,V,W) = 0 in the defining relation of F1. This contradicts with the non-triviality of α
in F1. So, M̃ is not inW1. Similarly, by assuming M̃ ∈ W2, we get ϕ(U, a d

dt ) = θ(U) = 0 which
also implies α(U,V,W) = 0. Hence, M̃ is not of the classW2.

(2) Let M be in F2. Since α(ξ,V,W) = α(U, ξ,W) = 0, the terms ω(U), θ∗(ξ), ω(φ(ei)) vanish. So,
we get ϕ = θ = 0. On the other hand, as ξ is Killing in F2, F(Ũ, Ṽ , JW̃) = α(U,V, φW). Thus,
F(Ũ, Ṽ , JW̃) + F(Ṽ , W̃, JŨ) + F(W̃, Ũ, JṼ) = 0, that is M̃ ∈ W2.

Remark that, in [9], it was shown that if M is in F2, the induced structure M̃ is of the class
W1 ⊕W2. In this theorem, we improved this statement asW2.

(3) The proof follows by routine calculations by using the defining relations and the Eq (3.5).
(4) Let M be in F4. After a usual but long calculation with considering (3.6), one can see that

F(Ũ, Ṽ , JW̃) + F(Ṽ , W̃, JŨ) + F(W̃, Ũ, JṼ) = 0, i.e., M̃ is of the classW1 ⊕W2.
Note that, the structure M̃ is neither inW1, norW2. Assume that M̃ is inW1. Then, we get

−
θ(ξ)
2n
{η(V)ρ(φU, φV) + η(W)ρ(φU, φV) − cα(U, ξ, φV) − bα(U, ξ, φW)}

=
1

2(n + 1)
{h(Ũ, Ṽ)ϕ(W̃) + h(Ũ, W̃)ϕ(Ṽ) + h(Ũ, J(Ṽ)ϕ(JW̃)

+ h(Ũ, JW̃)ϕ(JṼ)}. (4.2)

If we choose Ũ = (ξ, 0 d
dt ), Ṽ = (ξ, b d

dt ), W̃ = (ξ, c d
dt ), where bc , 1, then the left hand side

of (4.2) vanishes. However, the right hand side becomes 2θ(ξ)(1 − bc) which must be non-zero.
In conclusion, M̃ can not be in W1. Similarly, if we set Ũ = (ξ, 0), by the Lemma 3.1, we get
ϕ(Ũ) = θ(ξ) which is non-zero since M ∈ F4. Thus, M̃ can not be of the classW2.

(5) The proof follows very similar with the Proof (4).
(6) Let M be in F6. From the defining relation of F6, we have

α(ξ,V,W) = 0, α(U,V, ξ) = α(V,U, ξ) = −α(φU, φV, ξ), (4.3)
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for any vector fields U,V,W. So, by the Eq (3.6),

F(Ũ, Ṽ , JW̃) + F(Ṽ , W̃, JŨ) + F(W̃, Ũ, JṼ)
= α(U,V, φW) + α(V,W, φU) + α(W,U, φV) − η(W)α(U, ξ, φV)
− η(U)α(V, ξ, φW) − η(V)α(W, ξ, φU). (4.4)

On the other hand, from the relations in (4.3), after direct calculation, we get

α(U,VφW) = η(V)α(W, ξ, φU).

Thus, the induced structure in M̃ is of the classW1 ⊕W2.
Also, by setting Ũ = (ξ, 0), Ṽ = (V, 0), W̃ = (W, 0) in the defining relation of the class W1

provides α = 0. Thus, M̃ is not of the classW1.
(7) Let M be in F7. After routine calculation, by using (3.5) we obtain,

F(Ũ, Ṽ , W̃) + F(Ṽ , W̃, Ũ) + F(W̃, Ũ, Ṽ)
= {α(U,V,W) + α(V,W,U) + α(W,U,V)}
− a(α(V, ξ, φW) + α(W, ξ, φV) − b(α(U, ξ, φW) + α(W, ξ, φU))
− c(α(U, ξ, φV) + α(V, ξ, φU)). (4.5)

Since ξ is Killing in F7, α(U, ξ, φV) + α(V, ξ, φU)) = 0, for any U,V . On the other hand, the
summation of the first three terms of the right hand side of (4.5) vanishes by the defining relation
of F7. Thus, M̃ is of the classW3.

(8) The proof is very similar with the Proof (6), by means of the following relations:

α(ξ,V,W) = 0, α(U,V, ξ) = α(V,U, ξ) = α(φU, φV, ξ), (4.6)

that holds for the structures in F8. If M ∈ F8, we get ϕ(Ũ) = θ(U)+ρiξα(ei, ξ,U), since θ∗(ξ) = 0.
Assume that M̃ ∈ W1. Then for Ũ = (ξ, 0), Ṽ = (V, 0), W̃ = (W, 0) in the defining relation of
W1, we get

1
2n
{η(V)ϕ(W, 0) + η(W)ϕ(V, 0)} = 0.

By setting V = W in this equation, we obtain α = 0, that is not true since α is non-trivial in F8.
So, the induced manifold M̃ is not of the classW1.

(9) Let M be in F9. Then, from the defining relation we have

α(ξ,V,W) = 0, α(U,V, ξ) = α(φU, φV, ξ) = −α(V,U, ξ), (4.7)

and then,
α(U, ξ, φV) = α(V, ξ, φU). (4.8)

Assume that M̃ ∈ W1. Then for Ũ = Ṽ = W̃ = (ξ, 0 d
dt ), from the defining relation ofW1, we get

0 = θ(ξ)
n+1 , which is not true since θ(ξ) is non-zero in the class F9. Hence, M̃ is not inW1.

Let Ũ = (ξ, 0 d
dt ). It is easy to see that ϕ(Ũ) = θ(ξ). Since θ(ξ) is non-zero in F9, so is not ϕ. So,
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M̃ is neither inW2, norW2 ⊕W3.
Assume that M̃ ∈ W3. By using the defining relation ofW3, the following equation holds:

F(Ũ, Ṽ , W̃) + F(Ṽ , W̃, Ũ) + F(W̃, Ũ, Ṽ)
= −2cα(U, ξ, φV) − 2bα(U, ξ, φW) − 2aα(V, ξ, φW)
= 0. (4.9)

Set Ũ = (U, 0 d
dt ), Ṽ = (V, 0 d

dt ), W̃ = (0, d
dt ) in the Eq (4.9). Then we get α(U, ξ, φV) = 0, that

implies ξ to be parallel. However, ξ is not parallel in the class F9. So, M̃ can not be of the class
W3. Suppose that M̃ is of the classW1 ⊕W2. After direct calculation, we get α(U,V, ξ) = 0, for
Ũ = (U, 0 d

dt ), Ṽ = (V, 0 d
dt ), W̃ = (ξ, d

dt ), which is not true as ξ is not parallel in F9. So, M̃ is not in
W1 ⊕W2.
To see that M̃ is not in W1 ⊕W3, by choosing Ũ = Ṽ = W̃ = (ξ, 0 d

dt ) in the defining relation
ofW1 ⊕W3, we get 0 = 3θ(ξ)

n+1 , which does not hold as θ(ξ) is non-zero in F9. Thus, M̃ is not in
W1 ⊕W3.

(10) Let M be in F10. From the defining relation, the followings hold:

α(ξ,V,W) = α(ξ, φV, φW), α(U,V, ξ) = 0. (4.10)

By using (4.10) in the Eqs (3.5) and (3.6), we obtain:

F(Ũ, Ṽ , W̃) = α(U,V,W), (4.11)

and
F(Ũ, Ṽ , JW̃) = α(U,V, φW), (4.12)

respectively. Assume that M̃ is inW1 ⊕W2. If we choose U = ξ and substitute W with φW in
the defining relation ofW1⊕W2, by the Eq (4.12), we get α(ξ,V,W) = 0, which is not true since
α is non-trivial in F10. So, M̃ is not in the classesW1 ⊕W2, W1, W2. Let M̃ be inW1 ⊕W3.
By the Eq (4.11), The defining relation becomes:

α(ξ,U,V) =
1

n + 1
{η(U)ϕ((V, 0

d
dt

) + η(V)ϕ(U, 0
d
dt

)}. (4.13)

By substituting U and V with φU and φV respectively in (4.13), we get α(ξ, φU, φV) = 0, that is
not true since α is non-trivial in F10. Thus, M̃ can not be in the classesW1 ⊕W3 orW3.
As a result, M̃ can only be inW2 ⊕W3 orW1 ⊕W2 ⊕W3.

(11) Let M be in F11. By the aid of the Eq (3.6), it can be seen that the defining relation of the class
W1 ⊕W2 holds.

�

5. Some examples

Example 1. Consider the real connected Lie group G of dimension five and its Lie algebra g with the
following non-zero brackets:

[x1, x2] = −[x3, x4] = −λ1x1 − λ2x2 + λ3x3λ4x4 + 2µ1x5,

[x1, x4] = −[x2, x3] = −λ3x1 − λ4x2 − λ1x3 − λ2x4 + 2µ2x5,
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where {xi} is a basis of left-invariant vector fields on G and λi, µ j ∈ R, (i = 1, 2, 3, 4; j = 1, 2). It is
shown in [10] that the almost contact Norden metric structure given with:

φ(x1) = x3, φ(x2) = x4, φ(x3) = −x1, φ(x4) = −x2, φ(x5) = 0;
ξ = x5; η(xi) = 0 (i = 1, 2, 3, 4), η(x5) = 1;
g(x1, x1) = g(x2, x2) = g(x5, x5) = 1 = −g(x3, x3) = −g(x4, x4);
g(xi, x j) = 0, i, j ∈ {1, 2, 3, 4, 5}; i , j,

belongs to the class F7 (see [10] for the details and the proof). Thus, by the Theorem 4.1 (7), the
derived almost complex Norden metric structure on G × R that is constructed by (3.1) and (3.2) is of
the classW3.
Indeed, under the consideration of the global basis
{x̃i = (xi, 0), x̃6 = (0, d

dt }(i = 1, ..., 5), one can obtain the relation between the components of the
Levi-Civita connections as:

∇̃x̃i x̃ j =(∇xi x j, 0), (i, j = 1, 2, ..., 5);
∇̃x̃i x̃6 =∇̃x̃6 x̃i = 0, (i = 1, 2, ..., 6),

where ∇ and ∇̃ address G and G × R respectively. Thus, by using (3.5), after a routine calculation, we
get

SŨṼW̃ F(Ũ, Ṽ , W̃) = 0,

for any Ũ =
∑

ui x̃i, Ṽ =
∑

vi x̃i, W̃ =
∑

wi x̃i in X(G × R). So, the defining relation ofW3 holds.
Note that the vector fields ξ̃ = (ξ, 0 d

dt ), Ũ = (0, d
dt ) on G × R are Killing and parallel, respectively. So,

we can state

Corollary 5.1. There exists an almost complex Norden metric manifold of the classW3, possessing a
Killing vector field and a parallel vector field.

Example 2. Consider the complex Riemannian manifold R2n+2 with canonical complex structure J and
the metric ρ:

ρ(U,U) = −δi jλ
iλ j + δi jµ

iµ j,

where U = λi ∂
∂xi + µ

i ∂
∂yi , and the time-like hyper-surface S 2n+1 by identifying the point p ∈ R2n+2 with

its position vector W satisfying ρ(W,W) = −1. Under the conditions

ξ = λW + µJW, ρ(W, ξ) ρ(ξ, ξ) = 1,

we have the unique decomposition
JU = φU + η(U)Jξ,

where U ∈ TpS 2n+1, φU is the projection of JU into TpS 2n+1 with respect to Jξ and η is a one-form in
TpS 2n+1.

It is shown in [5] that, (φ, ξ, η, ρ) is an almost contact B- metric structure on S 2n+1 with the
construction above. Moreover, this structure is in the class F4 ⊕ F5. In other words, satisfies the
relation:

α(U,V,W) =
θ(ξ)
2n
{η(V)ρ(φU, φW) + η(W)ρ(φU, φV)}

−
θ∗(ξ)
2n
{η(V)ρ(φU,W) + η(W)ρ(φU,V)}. (5.1)
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Without any need to (5.1) and long calculations, we can state that the almost complex Norden metric
structure on S 2n+1×R constructed with (3.1) and (3.2) is of the classW1⊕W2 by the Theorem 4.1 (4)
and (5).
Example 3. Let M be the hyper-surface of the almost complex Norden metric manifold (R2n+2, J, ρ)
given in the above example with

M : ρ(W, JW) = 0; ρ(W,W) = ch2t, t > 0.

Take the vector field N = 1
cht JW, that obviously holds ρ(N,N) − 1. Choose ξ = −JN = 1

cht W, then for
any U ∈ TpM, we haver the unique decomposition

JU = φU + η(U)ξ,

where φU is the orthogonal projection of JU and η is a 1-form. In [5], it is shown with details that,
(φ, ξ, η, ρ) is an almost contact Norden metric structure on M. Moreover, this structure is of the class
F5. So, by the Theorem 4.1 (5), the induced almost complex B- metric structure on the manifold M×R
by means of the Eqs (3.1) and (3.2) is in the classW1 ⊕W2.
Example 4. In [11], S. Ivanov et al. give the defining relation of an almost contact Norden metric
manifold (M, φ, ξ, η, ρ) to be Sasaki-like as:

(∇Uφ)(V) = −ρ(U,V)ξ − η(V)U + 2η(U)η(V)ξ, (5.2)

or equivalently,
(∇Uφ)(V) = ρ(φU, φV)ξ + η(V)φ2U. (5.3)

Also, they considered the Lie group G of dimension five with the basis of left-invariant vector fields
{x0, x1, x2, x3, x4} with the commutators

[x0, x1] =kx2 + x3 + lx4, [x0, x2] = −kx1 − lx3 + x4,

[x0, x3] = − x1 − lx2 + kx4, [x0, x4] = lx1 − x2 − kx3, k, l ∈ R,

and show that the almost contact Norden metric structure (φ, ξ, η, ρ) given by

ξ = x0, φx1 = x3, φx2 = x4, φx3 = −x1, φx4 = −x2

ρ(x0, x0) = ρ(x1, x1) = ρ(x2, x2) = −ρ(x3, x3) = −ρ(x4, x4) = 1
ρ(xi, x j) = 0, (i , j)

is Sasaki-like. It is known that the class of Sasaki-like structures is a subclass of the basic class F4 (
with θ = 2nη and θ∗ = ω = 0) [12]. Hence the Theorem 4.1 (4) enables us to state that the almost
complex Norden metric manifold (G × R, J, h), obtained by (3.1) and (3.2) is of the classW1 ⊕W2.
Since structure on G is of the subclass of F4, one may question if the induced structure on G × R is
either in the classW1, orW2. The answer is “no”. Indeed, from the Eq (5.3), we get

α(U,V,W) = η(W)ρ(φU, φV) + η(V)ρ(φU, φW), (5.4)

and by the Eq (3.5), we obtain
F(Ũ, Ṽ , W̃) = α(U,V,W), (5.5)

since α(U, ξ, φV) = α(U, ξ, φW) = 0.

AIMS Mathematics Volume 7, Issue 10, 17942–17953.



17952

Assume that G × R is inW1. So, the following equation holds:

F(Ũ, Ṽ , W̃) =
1

n + 1
{h(Ũ, Ṽ)ϕ(W̃) + h(Ũ, W̃)ϕ(Ṽ) + h(Ũ, JṼ)ϕ(JW̃)

+ h(Ũ, JW̃)ϕ(JṼ)}.

By setting Ũ = (ξ, 0 d
dt ), Ṽ = (ξ, b d

dt ), W̃ = (ξ, c d
dt ) with bc , 1 in this equation, as the left-hand side

vanishes, the right-hand side becomes n(bc − 1). So, G × R can not be inW1.
If we choose Ũ = (ξ, 0 d

dt ) in the Eq (3.7), we get ϕ(Ũ) = θ(ξ) that is non-zero since the structure is
Sasaki-like. Thus, G × R is not inW2.
Example 5. Let L be a real connected Lie group of dimension five and g be the associated Lie algebra
equipped with a global basis {x1, ..., x5} of left-invariant vector fields, satisfying

[x5, xi] = −λixi − λi+2xi+2, [x5, xi+2] = −λi+2xi + λixi+2,

where λi’s are real constants, i = 1, 2 and [x j, xk] = 0 in other cases.
It is shown that the quadruple (φ, ξ, η, ρ) given with

φx1 = x3, φx2 = x4, φx3 = −x1, φx4 = −x2, φx5 = 0; ξ = x5,

η(xi) = 0, i = 1, 2, 3, 4; η(x5) = 1,

ρ(x1, x1) = ρ(x2, x2) = ρ(x5, x5) = 1 = −ρ(x3, x3) = −ρ(x4, x4), ρ(xi, x j) = 0,

for i , j, is an almost contact Norden metric structure on L and moreover this structure in the class
F9 ⊕ F10 [13]. So, by the Theorem 4.1 (9) and (10), we are able to state that the induced almost
complex Norden metric structure on the Lie group L̃ = L×R can only be in the classW1 ⊕W2 ⊕W3

orW2 ⊕W3.

6. Conclusions

In this paper, we discuss the construction of almost complex Norden metric structure on M × R,
where M is an almost contact Norden metric manifold. After analysing the relations of the basic
classes, we state several examples by means of the results of the paper.

Acknowledgments

I would like to express my deep gratitude to Professor Nülifer Özdemir for her guidance and useful
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