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Abstract: Very recently, several novel conceptions of fractional derivatives have been proposed and
employed to develop numerical simulations for a wide range of real-world configurations with
memory, background, or non-local effects via an uncertainty parameter [0, 1] as a confidence degree
of belief. Under the complexities of the uncertainty parameter, the major goal of this paper is to
develop and examine the Atangana-Baleanu derivative in the Caputo sense for a convoluted
glucose-insulin regulating mechanism that possesses a memory and enables one to recall all
foreknowledge. However, as compared to other existing derivatives, this is a vitally important point,
and the convenience of employing this derivative lessens the intricacy of numerical findings. The
Atangana-Baleanu derivative in the Caputo sense of fuzzy valued functions (FVF) in parameterized
interval representation is established initially in this study. Then, it is leveraged to demonstrate that
the existence and uniqueness of solutions were verified using the theorem suggesting the Banach fixed
point and Lipschitz conditions under generalized Hukuhara differentiability. In order to explore the
regulation of plasma glucose in diabetic patients with impulsive insulin injections and by monitoring
the glucose level that returns to normal in a finite amount of time, we propose an impulsive
differential equation model. It is a deterministic mathematical framework that is connected to diabetes
mellitus and fractional derivatives. The framework for this research and simulations was numerically
solved using a numerical approach based on the Adams-Bashforth-Moulton technique. The findings
of this case study indicate that the fractional-order model’s plasma glucose management is a suitable
choice.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022987


17914

Keywords: fractional diabetes model; Atangana-Baleanu fractional derivative operator; fuzzy set
theory; contraction mapping theorem; Adams Bashforth Moulton method
Mathematics Subject Classification: 46S40, 47H10, 54H25

1. Introduction

Insulin and glucagon enzymes are produced by the pancreas and assist in glucose management.
While blood sugar concentrations rise, glucagon is released into the bloodstream by the pancreas.
Whenever plasma concentrations are inadequate, glycogen is generated by collapsing glucagon and
producing fructose from intravascular components, which improves insulin sensitivity. Diabetes
mellitus, often known as diabetes, is an illness that arises if the insulin-glucose connection requires
replacement [1]. As a consequence of diverse underlying etiologies of diabetic complications
involving persistent hyperglycemia, diabetes mellitus causes disruptions in nutrients, carb, and lipid
consumption as a consequence of impaired glucose function, impaired insulin, or perhaps both.
Type 1 (hyperglycemic) and type 2 (hypoglycemic) diabetes are the main types of diabetes that
individuals can have [2]. Patients with hypoglycemia may be capable of incorporating a continuous
glucose monitor (CGM) to optimize and maintain their glycemic concentration. The patient would be
aseptically if any irregularities in plasma glucose were discovered. If insulin concentrations are
excessively high, a mixture of CGM and insulin injections is applied to regulate glucagon.

Treatments such as glucose fortification and diet modification are currently available for diabetics.
A syringe or an insulin pen is typically used to inject medication subcutaneously [3, 4]. As a result,
scientists have recently collaborated to overcome an innovation challenge in order to produce a
synthetic pancreas that can perform the same endocrine functions as a genuine and normal
pancreas [5, 6]. Scientists have recently [7] discovered an alternative pancreas, or automatic
monitoring mechanism. The proliferation of CGMs is an attempt to put the paradigm of shuttered
monitoring into practice. Considering the valuable information accessible, numerous strategies are
being created. Closed loop systems, model predictive influence and shaky reasoning regulation are
only a few of the applications because of its capability to handle a broad plethora of different
restrictions on a traditional premise. Optimal tracking regulation is the more frequently implemented
communication measure. It was extremely complicated to fix the challenge of diabetes modulation in
artificial pancreas experiments. The primary objectives of an artificial pancreas system are to reduce
hypoglycemic episodes and ensure safe recovery from them [8–11], as well as to accurately alter its
settings for glycaemia control in type 1 and type 2 diabetics as well as healthy people [12, 13].

According to several academics and scientists exploring them fractional generalizations of
integer-order frameworks constitute a fairly rigorous description of physical phenomena [14–22]. The
implementation of fractional DEs has gained in popularity subsequently, and it is now widely
employed in numerical simulations in scientific disciplines. Numerous major achievements, including
articles and monographs, have been released in the associated domains [23–30]. For modeling
purposes, the fractional derivative operators based on power law, exponential decay and
Mittag-Leffler kernels can be used [31–38]. These are regarded as appropriate for understanding
challenging real concerns, such as complications exhibiting anomalous tendencies, which may be
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duplicated by employing varying-order differential operators. These techniques have been
productively employed in a variety of scientific domains, but biological models have received less
consideration. The Atangana-Baleanu-Caputo (ABC)-fractional operator expressing the hereditary
property is credited with this crucial breakthrough. The generalized Mittag-Leffler function
outperforms the exponential decay and index law kernels due to resilient reminiscence linked in the
Atangana-Baleanu fractional derivative. Moreover, the Atangana-Baleanu fractional order derivative
is also Liouville-Caputo and Caputo-Fabrizio, indicating that it has both Markovian and
non-Markovian features. Because the transmission of certain viral infections is aberrant, neither
classical differentiation nor fractional with constant can be employed in these circumstances, although
they might be highly valuable strategies for simulating epidemiological challenges [39–41].

Very recently, fractional calculus and DEs have been expanded to fuzzy set theory and fuzzy
fractional order DEs, respectively; see [42]. Agrawal et al. [43] explored the idea of finding fractional
DEs with correlating fuzziness and expanded Riemann-Liouville differentiability to develop a
formulation which is a unification of the Hukuhara difference and the Riemann-Liouville derivative.
Several authors have devoted their interests to the notion of a Hukuhara difference, which was
contemplated by Bede et al. [44, 45]. Several researchers have investigated the existence and
uniqueness of solutions via fuzzifications [46]. It is extremely time consuming to estimate
increasingly efficient results for each fuzzy fractional DE when interacting with fuzzy fractional DEs.
Researchers have invested a considerable amount of time into analyzing fuzzy fractional DEs,
employing diverse strategies such as perturbation methods, integral transform methods, and spectral
techniques [47, 48]. As a consequence of this relevance, we will implement a fractional instance
application of strongly generalized differentiability to the control of glucose in insulin treatments for
the diabetes model. The main objective of this study is to construct and investigate the
Atangana-Baleanu derivative in the Caputo perspective for a comprehensive glucose-insulin
governing process that has a memory and is capable of retaining all preconceptions under the
complexity of the uncertainty criterion. This is a key distinction from other current derivatives, and
using this derivative is convenient, which reduces the complexity of the numerical results. This paper
establishes the Atangana-Baleanu derivative in the parameterization interval formulation of fuzzy
valued functions (FVFs) in the notion of Caputo. Furthermore, we extend this research by using
Banach fixed point and Lipschitz conditions under generalized Hukuhara differentiability in order to
verify the existence and uniqueness of solutions. We suggest using an impulsive differential equation
model to examine plasma glucose control in diabetics receiving impulsive insulin doses. It is a
deterministic mathematical system related to fractional derivatives and diabetes mellitus. The
Adams-Bashforth-Moulton technique was used in a numerical method to address the structure for this
research’s simulations. The outcome of the present investigation suggests that managing plasma
glucose using the fractional-order model is an appropriate option.

Owing to the above propensity, we will suggest ABC fractional differentiability, also known as
ABC gH-differentiability, that is predicated on the generalized Hukuhara difference. To develop this
conceptualization, a straightforward technique is applied that is determined by a blending of strongly
generalized differentiability and the fractional ABC derivative. Taking into account the uncertain
ABC fractional derivative, we examined the model for diabetes. Furthermore, the uniqueness and
existence conditions of the system alternatives are presented via the contraction mapping theorem and
the Lipschitiz strategy. Numerical simulation via the varying fractional order and uncertainty
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parameters is analyzed in a different manner. It is expected that the projected approach will be helpful
in new venues in epidemiological research.

The remaining portion of the paper is organized as follows: Section 2 presents definitions and
formulas for the fractional derivatives and fuzzy set theory. Section 3 illustrates the computational
procedure for the suggested fuzzy fractional model for diabetes mellitus. Section 4 is devoted to the
implementation of the fuzzy fractional diabetes model utilizing the ABC fractional derivative. Also,
numerical simulations have been performed in consideration of an uncertainty parameter in Section 5.
At the end, Section 6 describes the conclusions.

2. Preliminaries

Here, we recall certain fundamental ideas and definitions from fuzzy set theory and fractional
calculus; see [14, 23, 42].

Definition 2.1. [49, 50] A fuzzy number µ of mapping µ : R 7→ [0, 1] satisfies the subsequent
assumptions:
(a) µ is upper semi continuous.
(b) µ

[
ηx1 + (1 − η)y1

]
≥ min

{
µ(x1), µ(y1)

}
.

(c) µ is normal, that is, there exists x0 ∈ R; µ(x0) = 1.
(d) cl

{
y ∈ R, µ(y) > 0

}
is compact.

Definition 2.2. [49] The parameterized version of a fuzzy number µ can be expressed as

µ[r1] =
[
µ(r1), µ̄(r1)

]
, r1 ∈ [0, 1]. (2.1)

Th following characterizations hold:
(a) µ(r1) is a left continuous, bounded and increasing mapping over [0, 1] and right continuous at 0;
(b) µ̄(r1) is a right continuous, bounded and decreasing mapping over [0, 1] and right continuous at 0;
(c) µ(r1) ≤ µ̄(r1).
r1 is known to be a crisp number if µ(r1) ≤ µ̄(r1) = 0.

Definition 2.3. [51] For r1 ∈ [0, 1] and two fuzzy numbers µ and ν, the fuzzy algebraic operations are
defined as follows:

(µ ⊕ ν)[r1] =
[
µ(r1) + ν(r1), µ̄(r1) + ν̄(r1)

]
, (2.2)

(a ⊙ µ)[r1] =


[
aµ(r1), aµ̄(r1)

]
, a ≥ 0,[

aµ̄(r1), aµ(r1)
]
, a < 0.

(2.3)

Assume that FVF ω(t1) ∈ CF (J) ∩ LF (J) and its parametric form is described as follows:[
ω(t1)

]
r1
=
[
ω(t1; r1), ω̄(t1, r1)

]
, r1 ∈ [0, 1]. (2.4)

Definition 2.4. [52] The Hausdorff distance d̃ : RF × RF 7→ R+
⋃
{0} is described as follows:

d̃(µ, ν) = sup
0≤r1≤1

max
{∣∣∣µ(r1) − ν(r1)

∣∣∣, ∣∣∣µ̄(r1) − ν̄(r1)
∣∣∣}, (2.5)

where RF represents the set of all fuzzy numbers, and (RF , d̃) is a complete metric space.
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A metric d̃ has the subsequent properties:
(i) d̃(µ1 ⊕ µ3, µ2 ⊕ µ3) = d̃(µ1, µ2), ∀ µ1, µ2, µ3 ∈ RF ;
(ii) d̃(µ1 ⊕ µ3, 0) = d̃(µ1, 0) + d̃(µ3, 0), ∀ µ1, µ2, µ3 ∈ RF ;
(iii) d̃(µ1 ⊕ µ2, µ1 ⊕ µ3) = d̃(µ2, µ3), ∀ µ1, µ2, µ3 ∈ RF ;
(iv) d̃(µ1 ⊕ µ2, µ3 ⊕ µ4) = d̃(µ1, µ3) + d̃(µ2, µ4), ∀ µ1, µ2, µ3 ∈ RF ;
(v) d̃(µ1 ⊖ µ2, µ3 ⊖ µ4) = d̃(µ1, µ3) + d̃(µ2, µ4), ∀ µ1, µ2, µ3 ∈ RF ;
(vi) d̃(a ⊙ µ1) = |a|d̃(µ1, µ2), ∀ µ1, µ2 ∈ RF .

Definition 2.5. [53] The generalized Hukuhara (gH) derivative of a mapping ω(t1) as a solution of
model (3.1) can be described as

gHω
′(τ) = lim

ℏ7→0+

ω(τ + ℏ) ⊖ gHω(τ)
ℏ

= lim
ℏ7→0+

ω(τ) ⊖ gHω(τ + ℏ)
ℏ

, (2.6)

where dω(τ)
dt1
|gH ∈ C

F (J) ∩ LF (J), and

ω(τ + ℏ) ⊖ gHω(τ) = z1(τ)⇔

(i) ω(τ + ℏ) = ω(τ) ⊕ z1(τ),
(ii) ω(τ) = ω(τ + ℏ) ⊕ (−1)z1(τ).

The condition (i) is identical to the Hukuhara difference of ω(τ + ℏ) ⊖ ω(τ) definition. Assuming
the definition of gH-difference and an r1-cut of both sides of the aforementioned derivative (2.6), the
derivative in the accompanying interval yields the following:

Case (i): (1-differentiability)

ȷ−gH[ω′]r1 =
[
ω′(t1; r1), ω̄′(t1; r1)

]
, r1 ∈ [0, 1].

Case (ii): (2-differentiability)

ȷ ȷ−gH[ω′]r1 =
[
ω̄′(t1; r1), ω′(t1; r1)

]
, r1 ∈ [0, 1].

To define the ABC derivative in a parameterized version, we must first establish the Lebesgue integral
of ω(t1) in interval form, which is as follows:

[ t1∫
0

ω′(t1)dτ
]

r1

=

t1∫
0

[
ω′(τ)

]
r1

dτ =


[ t1∫

0
ω′(t1; r1)dτ,

t1∫
0
ω̄′(t1; r1)dτ

]
, in Case (i),

[ t1∫
0
ω̄′(t1; r1)dτ,

t1∫
0
ω′(t1; r1)dτ

]
, in Case (ii).

3. Fuzzy fractional model for diabetes mellitus

Suppose a mathematical framework comprises glucose level G, glucose uptake activity X and
insulin level I. Numerous variables have been examined, and a mathematical formulation has been
created depending on the proportions of these components. The fundamental parameters, Gb and Ib,
are also included in this approach [54]. Nonlinear fuzzy fractional order DEs are employed to explain
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the new diabetes mellitus model with fuzzy fractional ABC derivative, as follows:
ABC
0 Dαt1

G̃(t1) = −φ1G̃(t1) + φ2Ĩ(t1) + φ1G̃b(t1),
ABC
0 Dαt1

X̃(t1) = −φ2X̃(t1) + φ3Ĩ(t1) − φ3Ĩb(t1) + φ6Ĩb(t1),
ABC
0 Dαt1

Ĩ(t1) = −φ3Ĩ(t1) + φ4G̃(t1) + φ4φ5 − φ6Ĩ(t1) + φ6Ĩb(t1),
G(0) = ℘(r1)G0, X(0) = ℘(r1)X0, I(0) = ℘(r1)I0,

(3.1)

where ℘(r1) = (℘(r1), ℘̄(r1)) = (r1 − 1, 1 − r1), and r1 ∈ [0, 1].
For the sake of simplicity, we express the fuzzy ABC fractional diabetes model (3.1) as follows: ABC

0 Dα0Ω(t1) = Λ(t1,Ω(t1)),
Ω(0) = Ω0 ≥ 0, 0 < t1 < T < ∞,

(3.2)

where Ω(t1) ∈ CF (J)
⋂
LF (J), Ω(t1) = (Φ1,Φ2,Φ3) denotes the state of variables, and Λ is a

continuous vector function such that

Λ =


Φ1

Φ2

Φ3

 =


−φ1G̃ + φ2Ĩ + φ1G̃b

−φ2X̃ + φ3Ĩ − φ3Ĩb + φ6Ĩb

−φ3Ĩ + φ4G̃ + φ4φ5 − φ6Ĩ + φ6Ĩb

 , (3.3)

where G̃(t1) is the random blood glucose intensity, X̃(t1) is the serum insulin variability for the
secluded compartment, Ĩ(t1) is the serum insulin intensity, G̃b is the normal pre-injection level of
glucose concentrations, Ĩb is the normal pre-injection level of insulin sensitivity, and φ1 is the insulin
autonomous metabolic absorption in liver tissue and adipose cells. φ2 is the proportion of reduction in
muscle glucose absorption capacity, φ3 is the insulin production growth in glycemic accumulation
potential in Ĩb, φ4 is the percentage of transfer of pancreatic islets upon glycemic inoculation and
glycogen accumulation, φ5 is the glycemic target value, and φ6 is the insulin decomposition
proportion in the bloodstream. Two glucose/insulin systems are used to explain the coupling of the
mathematical model of glycemic behavior. These algorithms can forecast hyperglycemia since they
are based on regularly modified evidence [54].

4. The fuzzy fractional diabetes model via the interval Atangana-Baleanu fractional derivative
in the Caputo sense

In the system (3.2), let us assume the mappingΩ(t1) is the solution of the FV AB-fractional diabetes
model in the view of Caputo, which is stated in interval parameterized form below.

Definition 4.1. The FV AB-fractional derivative in the view of Caputo is described in parametric form
as follows: [ ABC

0 D ȷ,αt1
Ω(t1)

]
=
[ ABC

0 D ȷ,αΩ(t1; r1), ABC
0 D ȷ,αΩ̄(t1; r1)

]
(Case i),[ ABC

0 D ȷ ȷ,αt1
Ω(t1)

]
=
[ ABC

0 D ȷ ȷ,αΩ̄(t1; r1), ABC
0 D ȷ ȷ,αΩ(t1; r1)

]
(Case ii), (4.1)

where B(α) is the normalization function such that B(0) = B(1) = 1. Also, Eα signifies the Mittag-
Leffler function. Thus, we have
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ABC
0 D ȷ,αt1

Ω(t1) =
B(α)
1 − α

t1∫
0

ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)
dτ

=
B(α)
1 − α

t1∫
0

ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

ȷ ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ,

ABC
0 D ȷ,αt1

Ω(t1) =
B(α)
1 − α

t1∫
0

ȷ ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)
dτ

=
B(α)
1 − α

t1∫
0

ȷ ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

ȷ−gHΩ
′(τ)Ēα

(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ.

Since the symbol of the generalized Mittag-Leffler Ēα(t1) is determined by α and t1, and B(α) > 0,
α < 1.

[ ABC
0 D ȷ,αt1

Ω(t1)
]
r1
=

B(α)
1 − α

t1∫
0

[
ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)
dτ

=
B(α)
1 − α

t1∫
0

[
ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

[
ȷ ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ,

ABC
0 D ȷ,αt1

Ω(t1) =
B(α)
1 − α

t1∫
0

[
ȷ ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)
dτ

=
B(α)
1 − α

t1∫
0

[
ȷ ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

[
ȷ−gHΩ

′(τ)
]
r1

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ.
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The ABC fractional derivative’s upper and lower limits are as follows:

ABC
0 D⋄,αt1

Ω(t1; r1) =
B(α)
1 − α

t1∫
0

Ω′(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

Ω̄′(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ,

ABC
0 D⋄,αt1

Ω̄(t1; r1) =
B(α)
1 − α

t1∫
0

Ω̄′(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

Ω′(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ, ⋄ ∈ { ȷ, ȷ ȷ}, (4.2)

ABC
0 D⋄,αt1

Ω̄(t1)(t1) =
B(α)
1 − α

t1∫
0

dΩ̄′τ; r1)
dτ

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα

dτ

=
B(α)
1 − α

t1∫
0

dΩ̄′τ; r1)
dτ

Ēαdτ
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

dΩ′τ; r1)
dτ

Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣∣∣
Ēα<0

dτ, ⋄ ∈ { ȷ, ȷ ȷ}. (4.3)

Now, we will investigate the relationship between the solutions of our fuzzy fractional differential
equation and the fuzzy integral equation that corresponds to it. Assume that

ABC
0 Dαt1

Ω(t1) = Φ1(t1),
ABC
0 Dαt1

Ω(t1) = Φ2(t1),
ABC
0 Dαt1

Ω(t1) = Φ3(t1).

When two aspects are analyzed, the interval parameterized version is[ ABC
0 Dαt1

Ω(t1)
]
r1
=
[
Φ1(t1)

]
r1
=
[
Φ1(t1; r1), Φ̄1(t1; r1)

]
,[ ABC

0 Dαt1
Ω(t1)

]
r1
=
[
Φ2(t1)

]
r1
=
[
Φ2(t1; r1), Φ̄2(t1; r1)

]
,[ ABC

0 Dαt1
Ω(t1)

]
r1
=
[
Φ3(t1)

]
r1
=
[
Φ3(t1; r1), Φ̄3(t1; r1)

]
.

Utilizing (4.1) yields the following:
Case (i):

ABC
0 D ȷ,αt1

Ω(t1; r1) = Φ1(t1; r1), ABC
0 D ȷ,αt1

Ω̄(t1; r1) = Φ̄1(t1; r1),
ABC
0 D ȷ,αt1

Ω(t1; r1) = Φ2(t1; r1), ABC
0 D ȷ,αt1

Ω̄(t1; r1) = Φ̄2(t1; r1),
ABC
0 D ȷ,αt1

Ω(t1; r1) = Φ3(t1; r1), ABC
0 D ȷ,αt1

Ω̄(t1; r1) = Φ̄3(t1; r1).
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Case (ii):

ABC
0 D ȷ ȷ,αt1

Ω(t1; r1) = Φ̄1(t1; r1), ABC
0 D ȷ ȷ,αt1

Ω̄(t1; r1) = Φ1(t1; r1),
ABC
0 D ȷ,αt1

Ω(t1; r1) = Φ̄2(t1; r1), ABC
0 D ȷ ȷ,αt1

Ω̄(t1; r1) = Φ2(t1; r1),
ABC
0 D ȷ ȷ,αt1

Ω(t1; r1) = Φ̄3(t1; r1), ABC
0 D ȷ,αt1

Ω̄(t1; r1) = Φ3(t1; r1).

For every case, in view of (4.2), the parameterized version of the ABC fractional derivative and the
verification in each case vary. So, the solution can be established theoretically and numerically. The
Case (ii) represents the ABC-fractional differential equations with parameterized forms utilizing the
generalized Hukuhara differentiability. Now, taking these considerations into account, the results in
each scenario are as follows:

In Case (i):

Ω(t1) =
1 − α
B(α)

⊙ Φ1(t1) ⊕
α

Γ(α)
⊙

t1∫
0

Φ1(τ) ⊙ (t1 − τ)α−1dτ,

Ω(t1) =
1 − α
B(α)

⊙ Φ2(t1) ⊕
α

Γ(α)
⊙

t1∫
0

Φ2(τ) ⊙ (t1 − τ)α−1dτ,

Ω(t1) =
1 − α
B(α)

⊙ Φ3(t1) ⊕
α

Γ(α)
⊙

t1∫
0

Φ3(τ) ⊙ (t1 − τ)α−1dτ.

In Case (ii):

Ω(t1) = ⊖(−1)
1 − α
B(α)

⊙ Φ1(t1) ⊖ (−1)
α

Γ(α)
⊙

t1∫
0

Φ1(τ) ⊙ (t1 − τ)α−1dτ,

Ω(t1) = ⊖(−1)
1 − α
B(α)

⊙ Φ2(t1) ⊖ (−1)
α

Γ(α)
⊙

t1∫
0

Φ2(τ) ⊙ (t1 − τ)α−1dτ,

Ω(t1) = ⊖(−1)
1 − α
B(α)

⊙ Φ3(t1) ⊖ (−1)
α

Γ(α)
⊙

t1∫
0

Φ3(τ) ⊙ (t1 − τ)α−1dτ.

The parameterized version of the above system can be given as

[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ1(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ̄1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄1(τ; r1)(t1 − τ)α−1dτ
]
,
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[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ2(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ̄2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄2(τ; r1)(t1 − τ)α−1dτ
]
,

[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ3(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ̄3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄3(τ; r1)(t1 − τ)α−1dτ
]
, Case (i),

[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ̄1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄1(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ1(τ; r1)(t1 − τ)α−1dτ
]
,

[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ̄2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄2(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ2(τ; r1)(t1 − τ)α−1dτ
]
,

[
Ω(t1; r1), Ω̄(t1; r1)

]
=

[1 − α
B(α)

Φ̄3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ̄3(τ; r1)(t1 − τ)α−1dτ,

1 − α
B(α)

Φ3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

Φ3(τ; r1)(t1 − τ)α−1dτ
]
, Case (ii).

In view of the interval parameterized formulations, the integral operator correlated with the ABC
fractional derivative operator on a FVF is represented as[ AB

0 I
α
t1

(Φ1(t1))
]
r1
=
[ AB

0 I
α
t1

(Φ1(t1; r1)), AB
0 I
α
t1

(Φ̄1(t1; r1))
]
,[ AB

0 I
α
t1

(Φ2(t1))
]
r1
=
[ AB

0 I
α
t1

(Φ2(t1; r1)), AB
0 I
α
t1

(Φ̄2(t1; r1))
]
,[ AB

0 I
α
t1

(Φ3(t1))
]
r1
=
[ AB

0 I
α
t1

(Φ3(t1; r1)), AB
0 I
α
t1

(Φ̄3(t1; r1))
]
.

It is described this way:
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[ AB
0 I
α
t1

(Φ1(t1; r1)), AB
0 I
α
t1

(Φ̄1(t1; r1))
]
=

[1 − α
B(α)

Φ1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ1(τ; r1)dτ,

1 − α
B(α)

Φ̄1(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ̄1(τ; r1)dτ
]
,

[ AB
0 I
α
t1

(Φ2(t1; r1)), AB
0 I
α
t1

(Φ̄2(t1; r1))
]
=

[1 − α
B(α)

Φ2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ2(τ; r1)dτ,

1 − α
B(α)

Φ̄2(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ̄2(τ; r1)dτ
]
,

[ AB
0 I
α
t1

(Φ3(t1; r1)), AB
0 I
α
t1

(Φ̄3(t1; r1))
]
=

[1 − α
B(α)

Φ3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ3(τ; r1)dτ,

1 − α
B(α)

Φ̄3(t1; r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ̄3(τ; r1)dτ
]
.

The r1-cut of the fractional integral is the accumulation of r1-cuts because it is a composition. Relying
on (4.2) and the consequence of this fractional integral on the ABC fractional derivative, the following
can also be clarified:[ AB

0 I
α
t1

( AB
0 Dαt1

Φ1(t1)
)]

r1
= AB

0 I
α
t1

([ AB
0 Dαt1

Φ1(t1)
]
r1

)
=

 AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ1(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ̄1(t1; r1)
])
, Case (i),

AB
0 I
α
t1

([ AB
0 D ȷ ȷ,αt1

Φ̄1(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ1(t1; r1)
])
, Case (ii),[ AB

0 I
α
t1

( AB
0 Dαt1

Φ2(t1)
)]

r1
= AB

0 I
α
t1

([ AB
0 Dαt1

Φ2(t1)
]
r1

)
=

 AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ2(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ̄2(t1; r1)
])
, Case (i),

AB
0 I
α
t1

([ AB
0 D ȷ ȷ,αt1

Φ̄2(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ2(t1; r1)
])
, Case (ii),[ AB

0 I
α
t1

( AB
0 Dαt1

Φ3(t1)
)]

r1
= AB

0 I
α
t1

([ AB
0 Dαt1

Φ3(t1)
]
r1

)
=

 AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ3(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ̄3(t1; r1)
])
, Case (i),

AB
0 I
α
t1

([ AB
0 D ȷ ȷ,αt1

Φ̄3(t1; r1), AB
0 I
α
t1

([ AB
0 D ȷ,αt1

Φ3(t1; r1)
])
, Case (ii),

(4.4)

where

AB
0 I
α
t1

( AB
0 D⋄,αt1

Φ1(t1; r1)
)
= AB

0 I
α
t1

( B(α)
1 − α

t1∫
0

Φ′1(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣
Ēα≥0

dτ

+
B(α)
1 − α

t1∫
0

Φ̄′1(τ; r1)Ēα
(
−
α

1 − α
(t1 − τ)α

)∣∣∣
Ēα<0

dτ
)
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= AB
0 I
α
t1

( AB
0 D⋄,αt1

Φ1(t1; r1)
)

Ēα≥0 +
AB
0 I
α
t1

( AB
0 D⋄,αt1

Φ1(t1; r1)
)

Ēα<0

=
(
Φ1(t1; r1) − Φ1(0; r1)

)
Ēα≥0 +

(
Φ̄1(t1; r1) − Φ̄1(0; r1)

)
Ēα<0. (4.5)

AB
0 I
α
t1

( AB
0 D⋄,αt1

Φ̄1(t1; r1)
)
=
(
Φ̄1(t1; r1) − Φ̄1(0; r1)

)
Ēα≥0 +

(
Φ1(t1; r1) − Φ1(0; r1)

)
Ēα<0, ⋄ ∈ { ȷ, ȷ ȷ}.

Therefore, for r1 ∈ [0, 1], we have[ AB
0 I
α
t1

( AB
0 D⋄,αt1

Φ1(t1)
)]

r1
=
[(
Φ1(t1; r1) − Φ1(0; r1)

)
Ēα≥0 +

(
Φ̄1(t1; r1) − Φ̄1(0; r1)

)
Ēα<0,(

Φ̄1(t1; r1) − Φ̄1(0; r1)
)

Eα≥0 +
(
Φ1(t1; r1) − Φ1(0; r1)

)
Ēα<0
]
,[ AB

0 I
α
t1

( AB
0 D⋄,αt1

Φ2(t1)
)]

r1
=
[(
Φ2(t1; r1) − Φ2(0; r1)

)
Ēα≥0 +

(
Φ̄2(t1; r1) − Φ̄2(0; r1)

)
Ēα<0,(

Φ̄2(t1; r1) − Φ̄2(0; r1)
)

Eα≥0 +
(
Φ2(t1; r1) − Φ2(0; r1)

)
Ēα<0
]
,[ AB

0 I
α
t1

( AB
0 D⋄,αt1

Φ3(t1)
)]

r1
=
[(
Φ3(t1; r1) − Φ3(0; r1)

)
Ēα≥0 +

(
Φ̄3(t1; r1) − Φ̄3(0; r1)

)
Ēα<0,(

Φ̄3(t1; r1) − Φ̄3(0; r1)
)

Eα≥0 +
(
Φ3(t1; r1) − Φ3(0; r1)

)
Ēα<0
]
, (4.6)

and

AB
0 I
α
t1

( AB
0 Dαt1

Φ1(t1)
)
=
(
Φ1(t1) ⊖ Φ1(0)

)
Ēα≥0 ⊖ (−1)

(
Φ1(t1) ⊖ Φ1(0)

)
Ēα<0,

AB
0 I
α
t1

( AB
0 Dαt1

Φ2(t1)
)
=
(
Φ2(t1) ⊖ Φ2(0)

)
Ēα≥0 ⊖ (−1)

(
Φ2(t1) ⊖ Φ2(0)

)
Ēα<0,

AB
0 I
α
t1

( AB
0 Dαt1

Φ3(t1)
)
=
(
Φ3(t1) ⊖ Φ3(0)

)
Ēα≥0 ⊖ (−1)

(
Φ3(t1) ⊖ Φ3(0)

)
Ēα<0, (4.7)

or, more generically,

AB
0 I
α
t1

( AB
0 Dαt1

Φ1(t1)
)
=
(
Φ1(t1) ⊖ gHΦ1(0)

)
Ēα≥0 ⊕

(
Φ1(t1) ⊕ gHΦ1(0)

)
Ēα<0,

AB
0 I
α
t1

( AB
0 Dαt1

Φ2(t1)
)
=
(
Φ2(t1) ⊖ gHΦ2(0)

)
Ēα≥0 ⊕

(
Φ2(t1) ⊕ gHΦ2(0)

)
Ēα<0,

AB
0 I
α
t1

( AB
0 Dαt1

Φ3(t1)
)
=
(
Φ3(t1) ⊖ gHΦ3(0)

)
Ēα≥0 ⊕

(
Φ3(t1) ⊕ gHΦ3(0)

)
Ēα<0. (4.8)

4.1. Existence analysis

Theorem 4.1. Suppose there is a continuous FVF Λ(t1,Ω(t1)) and a non-negative kernel Ēα for
every t1, α > 0 with fuzzy initial condition has a solution in the following form:(

Ω(t1) ⊖ gHΩ(0)
)

Ēα≥0 ⊕
(
Ω(t1) ⊖ gHΩ(0)

)
Ēα<0

=
1 − α
B(α)

Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)

t∫
0

(t1 − τ)α−1Λ(t1,Ω(t1))dτ.

Proof. The parameterized version of (3.2) is as follows:
[ ABC

0 Dαt1
Ω(t1)

]
r1
=
[
Λ(t1,Ω(t1))

]
r1
, 0 ≤ t1 < t1 < ∞, α ∈ (0, 1),[

Ω(0)
]
r1
=
[
Ω0
]
r1
, r1 ∈ [0, 1].

According to Case (i),

ABC
0 D ȷ,αt‘ Ω(t1, r1) = Λ(t1,Ω(t1; r1) = Λ1

(
t1,Ω(t1; r1), Ω̄(t1; r1)

)
,
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ABC
0 D ȷ,αt1

Ω̄(t1, r1) = Λ̄(t1,Ω(t1; r1) = Λ2
(
t1,Ω(t1; r1), Ω̄(t1; r1)

)
.

In Case (ii),

ABC
0 D ȷ ȷ,αt‘ Ω(t1, r1) = Λ̄(t1,Ω(t1; r1) = Λ2

(
t1,Ω(t1; r1), Ω̄(t1; r1)

)
,

ABC
0 D ȷ ȷ,αt1

Ω̄(t1, r1) = Λ(t1,Ω(t1; r1) = Λ1
(
t1,Ω(t1; r1), Ω̄(t1; r1)

)
.

Invoking the AB fractional operator on both sides of the above equation, we have the following:
In Case (i),(

Ω(t1; r1) −Ω(0; r1)
)

Ēα≥0 +
(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα<0 =

AB
0 I
α
t1

(
Λ(t1,Ω(t1); r1)

)
,(

Ω̄(t1; r1) − Ω̄(0; r1)
)

Ēα≥0 +
(
Ω(t1; r1) −Ω(0; r1)

)
Ēα<0 =

AB
0 I
α
t1

(
Λ̄(t1,Ω(t1); r1)

)
.

In Case (ii),(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα≥0 +

(
Ω(t1; r1) −Ω(0; r1)

)
Ēα<0 =

AB
0 I
α
t1

(
Λ(t1,Ω(t1); r1)

)
,(

Ω(t1; r1) −Ω(0; r1)
)

Ēα≥0 +
(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα<0 =

AB
0 I
α
t1

(
Λ̄(t1,Ω(t1); r1)

)
,

where

AB
0 I
α
t1

(
Υ(t1,Ω(t1); r1)

)
=

1 − α
B(α)

Υ1(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Υ1(τ,Ω(t1), Ω̄(t1); r1)dτ,

AB
0 I
α
t1

(
Ῡ(t1,Λ(t1); r1)

)
=

1 − α
B(α)

Υ2(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Υ2(τ,Ω(t1), Ω̄(t1); r1)dτ.

Therefore, we have the following:
In Case (i),(

Ω(t1; r1) −Ω(0; r1)
)

Ēα≥0 +
(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα<0

=
1 − α
B(α)

Λ1(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Λ1(τ,Ω(t1), Ω̄(t1); r1)dτ,

(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα≥0 +

(
Ω(t1; r1) −Ω(0; r1)

)
Ēα<0

=
1 − α
B(α)

Λ2(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Λ2(τ,Ω(t1), Ω̄(t1); r1)dτ.

AIMS Mathematics Volume 7, Issue 10, 17913–17941.



17926

In Case (ii),(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα≥0 +

(
Ω(t1; r1) −Ω(0; r1)

)
Ēα<0

=
1 − α
B(α)

Λ1(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Λ1(τ,Ω(t1), Ω̄(t1); r1)dτ,

(
Ω(t1; r1) −Ω(0; r1)

)
Ēα≥0 +

(
Ω̄(t1; r1) − Ω̄(0; r1)

)
Ēα<0

=
1 − α
B(α)

Λ2(t1,Ω(t1), Ω̄(t1); r1) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Λ2(τ,Ω(t1), Ω̄(t1); r1)dτ.

Taking into account the fuzzy formulation in Case (i),(
Ω(t1) ⊖Ω(0)

)
Ēα≥0 ⊖ (−1)

(
Ω(t1) ⊖Ω(0)

)
Ēα<0

=
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω(t1))dτ.

In Case (ii),

⊖(−1)
(
Ω(t1) ⊖Ω(0)

)
Ēα≥0 ⊕

(
Ω(t1) ⊖Ω(0)

)
Ēα<0

=
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω(t1))dτ.

Generally, we have (
Ω(t1) ⊖ gHΩ(0)

)
Ēα≥0 ⊕

(
Ω(t1) ⊖ gHΩ(0)

)
Ēα<0

=
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω(t1))dτ.

□

Corollary 4.1. In case the kernel Ēα for every t1 and α is negative the mentioned above relation are
true conversely.

In Case (i),

Ω(t1) = Ω(0) ⊕
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1Λ(t1,Ω(t1))dt1.

In Case (ii),

Ω(t1) = Ω(0) ⊖ (−1)
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊖ (−1)
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1Λ(t1,Ω(t1))dt1.
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In order to illustrate the existence of the solution, we first propose and describe the lower and upper
solutions of the model in parameterized form. Here, Ω(t1; r1) and Ω̄(t1; r1) are the optimal solutions of
the subsequent minimization and maximization problems, respectively:

min
{
Ω(0) ⊕

1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(τ,Ω(τ))dτ
}
,

such that

Λ(0) ∈
[
Ω(0; r1), Λ̄(0; r1)

]
, Λ(t1,Ω(t1)) ∈

[
Λ(t1,Ω(t1), Ω̄(t1); r1), Λ̄(t1,Ω(t1), Ω̄(t1); r1)

]
,

and

max
{
Ω(0) ⊕

1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(τ,Ω(τ))dτ
}
,

such that

Ω(0) ∈
[
Ω(0; r1), Λ̄(0; r1)

]
, Λ(t1,Ω(t1)) ∈

[
Λ(t1,Ω(t1), Ω̄(t1); r1), Λ̄(t1,Ω(t1), Ω̄(t1); r1)

]
,

where

Λ(t1,Ω(t1), Ω̄(t1); r1) =


min
{
Λ(t1,Φ1) : Φ1 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
,

min
{
Λ(t1,Φ2) : Φ2 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
,

min
{
Λ(t1,Φ3) : Φ3 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
,

and

Λ̄(t1,Ω(t1), Ω̄(t1); r1) =


max
{
Λ(t1,Φ1) : Φ1 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
,

max
{
Λ(t1,Φ2) : Φ2 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
,

max
{
Λ(t1,Φ3) : Φ3 ∈

[
Ω(t1; r1), Ω̄(t1, r1)

]}
.

Some remarkable cases of the above mentioned optimization problems are presented as follows:
I. Suppose there is a linear mapping Λ, along with ∂Λ

∂Ω
≥ 0 and ∂Λ̄

∂Ω
≥ 0,and then we haveΛ(t1,Ω(t1), Ω̄(t1); r1) = Λ(t1,Ω(t1); r1),

Λ̄(t1,Ω(t1), Ω̄(t1); r1) = Λ(t1, Ω̄(t1); r1).

II. Suppose there is a linear mapping Λ, along with ∂Λ
∂Ω
< 0 and ∂Λ̄

∂Ω
< 0, and then we haveΛ(t1,Ω(t1), Ω̄(t1); r1) = Λ(t1, Ω̄(t1); r1),

Λ̄(t1,Ω(t1), Ω̄(t1); r1) = Λ(t1,Ω(t1); r1).
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4.2. Uniqueness Analysis

Theorem 4.2. Assume that there is a continuous FVF Λ(t1,Ω(t1)) on ∆ of a plane (t1,Ω) holding the
Lipchitz assumption in ∆ with respect to Ω,

D̃
(
Λ(t1,Ω1(t1)),Λ(t1,Ω2(t1))

)
≤ LD̃(Ω1(t1),Ω2(t1)), ∀Ω1,Ω2 ∈ ∆ ∃ L > 0,

and then the model (3.1) has a unique fuzzy solution Ω(t1) when the subsequent assumption holds:

1 − α
B(α)

L +
αtα+1

1

B(α)Γ(α)
L < 1.

Proof. In order to prove the result, suppose the operator F : CF (J) ∩ LF (J) 7→ F : CF (J) ∩ LF (J)
is the solution having both (non-negative and negative) kernels.

In Case (i),

F (Ω(t1)) = Ω(0) ⊕
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω(t1))dτ.

In Case (ii),

F (Ω(t1)) = Ω(0) ⊖ (−1)
1 − α
B(α)

⊙ Λ(t1,Ω(t1)) ⊖ (−1)
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω(t1))dτ.

In Case (i),

d
(
F (Ω1(t1)),F (Ω2(t1))

)
= d

(
Ω1(0) ⊕

1 − α
B(α)

⊙ Λ(t1,Ω1(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω1(t1))dτ,

Λ2(0) ⊕
1 − α
B(α)

⊙ Λ(t1,Ω2(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω2(t1))dτ
)
.

Since Ω1(0) = Ω2(0), and by means of property (iii) of Definition 2.4, we have

d
(
F (Ω1(t1)),F (Ω2(t1))

)
= d

(1 − α
B(α)

⊙ Λ(t1,Ω1(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω1(t1))dτ,

1 − α
B(α)

⊙ Λ(t1,Ω2(t1)) ⊕
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω2(t1))dτ
)
.

Again, utilizing properties (iv) and (vi) of Definition 2.4,
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d
(
F (Ω1(t1)),F (Ω2(t1))

)
≤ d

(1 − α
B(α)

⊙ Λ(t1,Ω1(t1)),
1 − α
B(α)

⊙ Λ(t1,Ω2(t1))
)

+d

(
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω1(t1))dτ,
α

B(α)Γ(α)
⊙

t1∫
0

(t1 − τ)α−1 ⊙ Λ(t1,Ω2(t1))dτ
)

≤
1 − α
B(α)

d
(
Λ(t1,Ω1(t1)),Υ(t1,Ω2(t1))

)
+

α

B(α)Γ(α)
d

( t1∫
0

(t1 − τ)α−1Λ(t1,Ω1(t1))dτ,

t1∫
0

(t1 − τ)α−1Λ(t1,Ω2(t1))dτ
)

≤
1 − α
B(α)

Ld
(
Ω1(t1),Ω2(t1)

)
+

α

B(α)Γ(α)

t1∫
0

∣∣∣(t1 − τ)α−1
∣∣∣d(Λ(t1,Ω1(t1)),Λ(t1,Ω2(t1))

)
dτ

≤
1 − α
B(α)

Ld
(
Ω1(t1),Λ2(t1)

)
+

α

B(α)Γ(α)

t1∫
0

∣∣∣(t1 − τ)α−1
∣∣∣Ld(Ω1(t1),Ω2(t1)

)
dτ

=
1 − α
B(α)

Ld
(
Ω1(t1),Ω2(t1)

)
+

α

B(α)Γ(α)
Ld
(
Λ1(t1),Λ2(t1)

) t1∫
0

∣∣∣(t1 − τ)α−1dτ

=
1 − α
B(α)

Ld
(
Ω1(t1),Ω2(t1)

)
+

α

B(α)Γ(α)
Ld
(
Ω1(t1),Ω2(t1)

)
tα1

=

(1 − α
B(α)

L +
α

B(α)Γ(α)
Ltα1
)
d
(
Ω1(t1),Ω2(t1)

)
= Ld

(
Ω1(t1),Ω2(t1)

)
.

Since
(

1−α
B(α)L +

α
B(α)Γ(α)Ltα1

)
= L < 1 is a Lipchitz constant. Consequently, we have

d
(
F (Ω1(t1)),F (Ω2(t1))

)
< Ld

(
Ω1(t1),Ω2(t1)

)
. (4.9)

This shows that the operator F is a contraction mapping on CF (J) ∩ LF (J). By the Banach fixed
point theorem, (3.2) has a unique solution. By applying an analogous technique, we can deduce the
same result for Case (ii). □

5. Adams-Bashforth-Moulton approach for fuzzy fractional ABC fractional derivative for
diabetes model

This section consists of a reliable and widely utilized numerical approach for finding and obtaining
fractional order fuzzy initial value problems; see [55, 56]. Let us assume the general fractional
differential equations

G(t1) − G(0) =
1 − α
B(α)

Φ1(t1,G,X,I) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ1(t1,G,X,I)dτ,
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Ḡ(t1) − Ḡ(0) =
1 − α
B(α)

Φ1(t1, Ḡ, X̄, Ī) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ1(t1, Ḡ, X̄, Ī)dτ,

X(t1) − X(0) =
1 − α
B(α)

Φ2(t1,G,X,I) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ2(t1,G,X,I)dτ,

X̄(t1) − X̄(0) =
1 − α
B(α)

Φ2(t1, Ḡ, X̄, Ī) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ2(t1, Ḡ, X̄, Ī)dτ,

I(t1) − I(0) =
1 − α
B(α)

Φ3(t1,G,X,I) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ3(t1,G,X,I)dτ,

Ī(t1) − Ī(0) =
1 − α
B(α)

Φ3(t1, Ḡ, X̄, Ī) +
α

B(α)Γ(α)

t1∫
0

(t1 − τ)α−1Φ3(t1, Ḡ, X̄, Ī)dτ. (5.1)

Choosing t0 = 0, ℏ = 0.01, tn1+1 = tn1 + ℏ, G(0) = (r1 − 1)G
0
, X(0) = (r1 − 1)X0, I(0) = (r1 − 1)I0,

Ḡ(0) = (1 − r1)Ḡ0, X̄(0) = (1 − r1)X̄0, Ī(0) = (1 − r1)Ī0 in (3.1), where ℏ denotes the step-size, the
corrector values are

G(tn1+1) = (r1 − 1)G(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ1(tn1+1,G

ρ

n1+1
,X
ρ
n1+1,I

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A1,κ,n1+1Φ1(tκ,G
κ
,X
κ
,I
κ
),

Ḡ(tn1+1) = (1 − r1)Ḡ(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ1(tn1+1, Ḡ

ρ
n1+1, X̄

ρ
n1+1, Ī

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A2,κ,n1+1Φ1(tκ, Ḡκ, X̄κ, Īκ),

X(tn1+1) = (r1 − 1)X(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ2(tn1+1,G

ρ

n1+1
,X
ρ
n1+1,I

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A3,κ,n1+1Φ2(tκ,G
κ
,X
κ
,I
κ
),

X̄(tn1+1) = (1 − r1)X̄(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ2(tn1+1, Ḡ

ρ
n1+1, X̄

ρ
n1+1, Ī

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A4,κ,n1+1Φ2(tκ, Ḡκ, X̄κ, Īκ),

I(tn1+1) = (r1 − 1)I(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ3(tn1+1,G

ρ

n1+1
,X
ρ
n1+1,I

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A5,κ,n1+1Φ3(tκ,G
κ
,X
κ
,I
κ
),
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Ī(tn1+1) = (1 − r1)Ī(0) +
ℏα(1 − α)

B(α)Γ(α + 2)
Φ3(tn1+1, Ḡ

ρ
n1+1, X̄

ρ
n1+1, Ī

ρ
n1+1)

+
ℏαα

B(α)Γ(α + 2)

n1∑
κ=0

A6,κ,n1+1Φ3(tκ, Ḡκ, X̄κ, Īκ). (5.2)

Moreover, the corresponding predictor terms are as follows:

G
ρ

n1+1
= (r1 − 1)G(0) +

1 − α
B(α)

Φ1(tn1 ,Gn1
,Xn1
,In1

) +
α

B(α)Γ2(α)

n1∑
κ=0

B1,κ,n1+1Φ1(tκ,G
κ
,X
κ
,I
κ
),

Ḡ
ρ
n1+1 = (1 − r1)Ḡ(0) +

1 − α
B(α)

Φ1(tn1 , Ḡn1 , X̄n1 , Īn1) +
α

B(α)Γ2(α)

n1∑
κ=0

B2,κ,n1+1Φ1(tκ, Ḡκ, X̄κ, Īκ),

X
ρ
n1+1 = (r1 − 1)X(0) +

1 − α
B(α)

Φ2(tn1 ,Gn1
,Xn1
,In1

) +
α

B(α)Γ2(α)

n1∑
κ=0

B3,κ,n1+1Φ2(tκ,G
κ
,X
κ
,I
κ
),

X̄
ρ
n1+1 = (1 − r1)X̄(0) +

1 − α
B(α)

Φ2(tn1 , Ḡn1 , X̄n1 , Īn1) +
α

B(α)Γ2(α)

n1∑
κ=0

B4,κ,n1+1Φ2(tκ, Ḡκ, X̄κ, Īκ),

I
ρ
n1+1 = (r1 − 1)I(0) +

1 − α
B(α)

Φ3(tn1 ,Gn1
,Xn1
,In1

) +
α

B(α)Γ2(α)

n1∑
κ=0

B5,κ,n1+1Φ3(tκ,G
κ
,X
κ
,I
κ
),

Ī
ρ
n1+1 = (1 − r1)Ī(0) +

1 − α
B(α)

Φ3(tn1 , Ḡn1 , X̄n1 , Īn1)

+
α

B(α)Γ2(α)

n1∑
κ=0

B6,κ,n1+1Φ3(tκ, Ḡκ, X̄κ, Īκ), (5.3)

where

Aι,κ,n1+1 =


nρ+1

1 − (n1 + ρ)(n1 + 1)ρ, i f ȷ = 0,
(n1 − κ + 2)ρ+1 + (n1 − κ)ρ+1 − 2(n1 − κ + 1)ρ+1, i f 0 ≤ κ ≤ n1,

1, i f κ = 1,

(5.4)

and

Bι,κ,n1+1 =
ℏα

α

(
(n1 + 1 − κ)ρ − (n1 − κ)ρ

)
, 0 ≤ κ ≤ n1. (5.5)

5.1. Numerical simulation

The glucose-insulin process can be modeled mathematically in a variety of ways. One of the most
well-known models presented by [55, 56] is a three-compartment model (3.1). The DEs are required
to transform this system to a fuzzy fractional-order system in the fuzzy ABC derivative sense. The
justification for this is that Saleem et al. [8] demonstrated that the fractional-order model identifies the
glucose-insulin combination more effectively than the classical model.

The numerical findings of the fuzzy fractional model (3.1) have been established for a system of
nonlinear fuzzy fractional DEs via the fuzzy ABC derivative operator and the parameters are defined
in Table 1. In view of (3.1), various numerical techniques utilizing the variation in parameters
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presented in Table 1 and restricted intervals can examine the impact of these variables on the
dynamics of the fractional-order framework. This analysis demonstrates that changing the parameters
has an impact on the model’s behavior. Figures 1(a)–3(a) depict the constrained approximation for a
normal individual and hyperglycemia depending on normal glucose, insulin ambient concentration,
and insulin in plasma glucose for solutions. Furthermore, Figures 1(b)–3(b) depicts the constrained
approximation for a normal individual and hyperglycemia individual depending on normal glucose,
insulin ambient concentration and insulin in glucose for fuzzy solutions depending on an
integer-order approach. Figures 4(a)–6(a) illustrate the entire behavior of the glucose-insulin network
in both a healthy individual and a patient with hyperglycemia individual with both lower and upper
solutions with varying fractional order and constant uncertainty r1 = 0.4. The findings of the model
depict the real and control scenario of consistent glucose system for mechanical pancreatic design.
Also, Figures 4(b)–6(b) show the complete structure of the glucose-insulin network in both a healthy
individual and a patient with hyperglycemia, with both lower and upper solutions with integer order
and varying uncertainty. The results of the model present the solution for the upper case and a biassed
approach for the upper solution in the control case of a consistent glucose system for mechanical
pancreatic design. The technique will generate fuzzy solutions that occur in pairs for non-integer
values, which are highly reliable and precise in the specified space. We can notice in Figure 7 that the
conventional approach α = 1 is unable to stabilize the blood sugar insulin mechanism for both healthy
and hyperglycemia individual, and thus it does not meet the requirement for the preservation of a
closed-loop configuration for a synthetic pancreas. It is apparent from Figure 8 that uncertainty values
ensure balance and allow for persistent glucose system analysis. In Figure 9, the representations of the
glucose-insulin systems via fuzzy ABC for a healthy individual and hyperglycemia individual in each
category are compared with the recovery after plasma insulin injection. Although the behaviors of the
glucose-insulin systems are nearly identical, the fuzzy ABC derivative provides pertinent and viable
results in a closed-loop proposed methodology that aids in the development of the synthetic pancreas.

Table 1. Table of parameterized settings considered in problem (3.1) for simulations.

Parameters Healthy individual Hyperglycemia person Units

φ1 0.0317 0 min−1

φ2 0.0123 0.017 min−1

φ3 4.92 × 10−6 5.3 × 10−6 min−2(µU/ml)
φ4 0.0039 0.0042 (µU/ml)min−2(mg/dl)−2

φ5 79.053 80.25 mg/dl
φ6 0.2659 0.264 min−1

G̃b 80 80 mg/dl
Ĩb 7 [7–15] µU/ml
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Figure 1. (a) The effects of the lower and upper glucose levels are estimated for healthy
individuals for model (3.1) for various fractional orders when r1 = 0.7. (b) The effects of
the lower and upper glucose levels are estimated for healthy individuals for model (3.1) for
various uncertainty level when α = 1.
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Figure 2. (a) The effects of the lower and upper insulin concentrations in blood are estimated
for healthy individuals for model (3.1) for various fractional orders when r1 = 0.7. (b) The
effects of the lower and upper insulin concentrations in blood are estimated for healthy
individuals for model (3.1) for various uncertainty level when α = 1.
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Figure 3. (a) The illustrations of the lower and upper levels of monitoring insulin are
estimated for healthy individuals for model (3.1) for various fractional orders when r1 = 0.7.
(b) The illustrations of the lower and upper levels of monitoring insulin are estimated for
healthy individuals for model (3.1) for various uncertainty level when α = 1.
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Figure 4. (a) The effects of the lower and upper glucose levels are estimated for
hyperglycemia patients for model (3.1) for various fractional orders when r1 = 0.7. (b) The
effects of the lower and upper glucose levels are estimated for hyperglycemia patients for
model (3.1) for various uncertainty level when α = 1.
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Figure 5. (a) The effects of the lower and upper insulin concentrations in blood are estimated
for hyperglycemia patients for model (3.1) for various fractional orders when r1 = 0.7.
(b) The effects of the lower and upper insulin concentrations in blood are estimated for
hyperglycemia patients for model (3.1) for various uncertainty levels when α = 1.
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Figure 6. (a) The effects of the lower and upper levels of monitoring insulin are estimated for
hyperglycemia patients for model (3.1) for various fractional orders when r1 = 0.7. (b) The
effects of the lower and upper levels of monitoring insulin are estimated for hyperglycemia
patients for model (3.1) for various uncertainty levels when α = 1.
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Figure 7. (a) Lower solutions of the glucose levels for plasma insulin after injecting insulin
are estimated for model (3.1) for a range of Ib values when r1 = 0.4. and α = 1. (b) Upper
solutions of the glucose levels for plasma insulin after injecting insulin are estimated for
model (3.1) for a range of Ib values when r1 = 0.4. and α = 1.
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Figure 8. (a) Lower solutions for plasma insulin variables for remote in hyperglycemic
patients are estimated for model (3.1) for a range of Ib values when r1 = 0.4 and α = 1.
(b) Upper solutions for plasma insulin variables for remote in hyperglycemic patients are
estimated for model (3.1) for a range of Ib values when r1 = 0.4 and α = 1.
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Figure 9. (a) Lower solutions for plasma insulin after injecting insulin in hyperglycemic
patients are estimated for model (3.1) for a range of Ib values when r1 = 0.4 and α = 1.
(b) Upper solution for plasma insulin after injecting insulin in hyperglycemic patients are
estimated for model (3.1) for a range of Ib values when r1 = 0.4 and α = 1.

6. Conclusions

This paper describes the mathematical and contextual research of the bio-medical glycemic system
using a nonlinear fuzzy fractional-order framework with an ABC derivative for the treatment of
diabetes complications. It demonstrates the consistency, uniqueness, and applicability of glucose
intensity regulation in healthy people and individuals with hypoglycemic disorders. The
hypoglycemic model built with the fuzzy fractional ABC derivative demonstrates excellent
correlation in terms of controlling the glucose-insulin mechanism. The approach focuses on
continuous glucose monitoring for a restricted amount of time, and the results are confined to
standard levels for both normal people and individuals with hypoglycemic disorders. An investigation
of predictive findings is used to examine the effects of various configurations since the generated
systems are considerably more complicated to handle as parameterized governing equations than
conventional fuzzy DEs. In terms of the significance of these models, we must leverage the
interpretation of the uncertain ABC derivative to identify the solutions to the uncertain models. The
effects of variation on the proportion of diabetics with time-concerned problems and the severity of
diabetes mellitus are depicted graphically. By simulation analysis, we can demonstrate that when
α = 1 the ABC non-integer order derivative exhibits significant absorption features. For future
research, we will extend this model to the fuzzy fractal-fractional operator and simulate this research
with real data that depends on the control mechanism.
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25. M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of Caputo fractional integro-

differential equations with constant delays, Comput. Appl. Math., 40 (2021), 1–17.
https://doi.org/10.1007/s40314-021-01595-3

26. J. R. Graef, C. Tunç, H. Şevli, Razumikhin qualitative analyses of Volterra integro-fractional delay
differential equation with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul., 103 (2021),
106037. https://doi.org/10.1016/j.cnsns.2021.106037

27. Z. U. A. Zafar, S. Zaib, M. T. Hussainc, C. Tunç, S. Javeed, Analysis and numerical simulation
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