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1. Introduction

The prominent Banach contraction in metric spaces has laid a solid foundation for fixed point theory
in metric space. The basic idea of the contraction mapping principle has been fine-tuned in several
domains (see, e.g. [12,13,15]). The applications of fixed point range across inequalities, approximation
theory, optimization and so on. Researchers in this area have introduced several new concepts in metric
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space and obtained a great deal of fixed point results for linear and nonlinear contractions. Recently,
Karapınar et al. [7] introduced a new notion of hybrid contraction which is a unification of some
existing linear and nonlinear contractions in metric space.

On the other hand, Mustafa [8] pioneered an extension of metric space by the name, generalized
metric space (or more precisely, G-metric space) and proved some fixed point results for Banach-type
contraction mappings. This new generalization was brought to spotlight by Mustafa and Sims [9].
Subsequently, Mustafa et al. [11] obtained some engrossing fixed point results for Lipschitzian-type
mappings on G-metric space. However, Jleli and Samet [5], as well as Samet et al. [16] noted that
most of the fixed point results in G-metric space are direct consequences of existence results in
corresponding metric space. Jleli and Samet [5] further observed that if a G-metric is consolidated
into a quasi-metric, then the resultant fixed point results become the known fixed point results in the
setting of quasi-metric space. Motivated by the latter observation, many investigators (see for
instance, [3, 6]) have established techniques of obtaining fixed point results in symmetric G-metric
space that are not deducible from their ditto ones in metric space or quasi-metric space.

Following the existing literature, we realize that hybrid fixed point results in G-metric space are
not adequately investigated. Hence, motivated by the ideas in [3, 6, 7], we introduce a new concept of
hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-contraction in G-metric space and prove some
related fixed point theorems. An example is constructed to demonstrate that our result is valid, an
improvement of existing result and the main ideas obtained herein do not reduce to any existence
result in metric space. A corollary is presented to show that the concept proposed herein is a
generalization and improvement of well-known fixed point result in metric space. Finally, one of our
obtained corollaries is applied to establish novel existence conditions for solution of a class of integral
equations.

2. Preliminaries

In this section, we will present some fundamental notations and results that will be deployed
subsequently.

All through, every set Φ is considered non-empty, N is the set of natural numbers, R represents the
set of real numbers and R+, the set of non-negative real numbers.

Definition 2.1. [9] Let Φ be a non-empty set and let G : Φ × Φ × Φ −→ R+ be a function satisfying:

(G1) G(r, s, t) = 0 if r = s = t;
(G2) 0 < G(x, r, s) for all r, s ∈ Φ with r , s;
(G3) G(r, r, s) ≤ G(r, s, t), for all r, s, t ∈ Φ with t , s;
(G4) G(r, s, t) = G(r, t, s) = G(s, r, t) = ... (symmetry in all variables);
(G5) G(r, s, t) ≤ G(r, u, u) + G(u, s, t), for all r, s, t, u ∈ Φ (rectangular inequality).

Then the function G is called a generalised metric, or more precisely, a G-metric on Φ, and the pair
(Φ,G) is called a G-metric space.

Example 2.2. [11] Let (Φ, d) be a usual metric space, then (Φ,Gp) and (Φ,Gm) are G-metric space,
where

Gp(r, s, t) = d(r, s) + d(s, t) + d(r, t) ∀r, s, t ∈ Φ. (2.1)
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Gm(r, s, t) = max{d(r, s), d(s, t), d(r, t)} ∀r, s, t ∈ Φ. (2.2)

Definition 2.3. [11] Let (Φ,G) be a G-metric space and let {rn} be a sequence of points of Φ. Then
{rn} is said to be G-convergent to r if lim

n,m→∞
G(r, rn, rm) = 0; that is, for any ε > 0, there exists n0 ∈ N

such that G(r, rn, rm) < ε, ∀n,m ≥ n0. We refer to r as the limit of the sequence {rn}.

Proposition 1. [11] Let (Φ,G) be a G-metric space. Then the following are equivalent:

(i) {rn} is G-convergent to r.
(ii) G(r, rn, rm) −→ 0, as n,m→ ∞.

(iii) G(rn, r, r) −→ 0, as n→ ∞.
(iv) G(rn, rn, r) −→ 0, as n→ ∞.

Definition 2.4. [11] Let (Φ,G) be a G-metric space. A sequence {rn} is called G-Cauchy if for any
ε > 0, we can find n0 ∈ N such that G(rn, rm, rl) < ε, ∀n,m, l ≥ n0, that is, G(rn, rm, rl) −→ 0, as
n,m, l→ ∞.

Proposition 2. [11] If (Φ,G) is a G-metric space, the following statements are equivalent:

(i) The sequence {rn} is G-Cauchy.
(ii) For every ε > 0, there exists n0 ∈ N such that G(rn, rm, rm) < ε, ∀n,m ≥ n0.

Definition 2.5. [11] Let (Φ,G) and (Φ′,G′) be two G-metric spaces and f : (Φ,G) −→ (Φ′,G′) be a
function. Then f is G-continuous at a point u ∈ Φ if and only if for any ε > 0, there exists δ > 0 such
that r, s ∈ Φ; and G(u, r, s) < δ implies G′( f (u), f (r), f (s)) < ε. A function f is G-continuous on Φ if
and only if it is G-continuous at all u ∈ Φ.

Proposition 3. [11] Let (Φ,G) and (Φ′,G′) be two G-metric spaces. Then a function f : (Φ,G) −→
(Φ′,G′) is said to be G-continuous at a point r ∈ Φ if and only if it is G-sequentially continuous at r,
that is, whenever {rn} is G-convergent to r, { f rn} is G-convergent to f r.

Definition 2.6. [11] A G-metric space (Φ,G) is called symmetric G-metric space if

G(r, r, s) = G(s, r, r) ∀r, s ∈ Φ.

Proposition 4. [11] Let (Φ,G) be a G-metric space. Then the function G(r, s, t) is jointly continuous
in all variables.

Proposition 5. [11] Every G-metric space (Φ,G) defines a metric space (Φ, dG) by

dG(r, s) = G(r, s, s) + G(s, r, r) ∀r, s ∈ Φ. (2.3)

Note that for a symmetric G-metric space (Φ,G),

(Φ, dG) = 2G(r, s, s) ∀r, s ∈ Φ. (2.4)

On the other hand, if (Φ,G) is not symmetric, then by the G-metric properties,

3
2

G(r, s, s) ≤ dG(r, s) ≤ 3G(r, s, s) ∀r, s ∈ Φ, (2.5)

and that in general, these inequalities are sharp.
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Definition 2.7. [11] A G-metric space (Φ,G) is referred to as G-complete (or complete G-metric) if
every G-Cauchy sequence in (Φ,G) is G-convergent in (Φ,G).

Proposition 6. [11] A G-metric space (Φ,G) is G-complete if and only if (Φ, dG) is a complete metric
space.

Popescu [14] gave the following definition in the setting of metric space.

Definition 2.8. [14] Let α : Φ × Φ −→ R+ be a function. A self-mapping Γ : Φ −→ Φ is referred to
as α-orbital admissible if for all r ∈ Φ,

α(r,Γr) ≥ 1⇒ α(Γr,Γ2r) ≥ 1.

We modify the above definitions in the framework of G-metric space as follows:

Definition 2.9. Let α : Φ × Φ × Φ −→ R+ be a function. A self-mapping Γ : Φ −→ Φ is called
(G-α)-orbital admissible if for all r ∈ Φ,

α(r,Γr,Γ2r) ≥ 1 implies α(Γr,Γ2r,Γ3r) ≥ 1.

Definition 2.10. [2] Let α : Φ ×Φ ×Φ −→ R+ be a mapping. The set Φ is called regular with respect
to α if and only if for a sequence {rn} in Φ such that α(rn, rn+1, rn+2) ≥ 1, for all n and rn → r ∈ Φ as
n→ ∞, we have α(rn, r, r) ≥ 1 for all n.

The following Propositions 7 and 8 were studied in [7], where the constant C ∈ R+. However, we
noticed that the arguments in their proofs are only valid if we restrict R+ to [0, 1). Hence, we reexamine
them in the latter interval.

Proposition 7. Given C ∈ [0, 1), let {ρn} ⊂ R+ be a sequence such that

ρn+2 ≤ C max{ρn, ρn+1} ∀n ∈ N. (2.6)

Let K = max{ρ0, ρ1}. Then

ρ2n ≤ CnK, ρ2n+1 ≤ CnK ∀n ≥ 1. (2.7)

Proof. The proof is by induction.
For n = 0, we have from (2.6) that

ρ2 ≤ C max{ρ0, ρ1} = CK.

For n = 1, (2.6) becomes

ρ3 ≤ C max{ρ1, ρ2} ≤ C max{ρ1,C max{ρ0, ρ1}}

≤ C max{ρ1,CK} ≤ CK.

Suppose that (2.7) holds for some n ∈ N. Then

ρ2n+2 ≤ C max{ρ2n, ρ2n+1} ≤ C max{CnK,CnK} = Cn+1K;
ρ2n+3 ≤ C max{ρ2n+1, ρ2n+2} ≤ C max{CnK,Cn+1K} = Cn+1K.

This completes the induction. Hence, the proof. �
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Lemma 2.11. Let {rn} be a sequence in a G-metric space (Φ,G). Suppose that there exists C ∈ [0, 1)
such that

G(rn+2, rn+3, rn+4) ≤ C max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)} ∀n ∈ N.

Then {rn} is a G-Cauchy sequence in (Φ,G).

Proof. Consider the sequence {ρn} in Φ defined by

ρn = G(rn, rn+1, rn+2) ∀n ∈ N.

Then by the hypothesis, {ρn} satisfies (2.6). Hence, by Proposition 7, we obtain

G(r2n, r2n+1, r2n+2) = ρ2n ≤ CnK;
G(r2n+1, r2n+2, r2n+3) = ρ2n+1 ≤ CnK,

for all n ∈ N, where K = max{ρ0, ρ1}. In particular,

G(r2n, r2n+1, r2n+2) + G(r2n+1, r2n+2, r2n+3) ≤ 2CnK ∀n ∈ N. (2.8)

If C = 0 or K = 0, then {rn}n≥2 is constant, hence G-Cauchy. Assume that C > 0 and K > 0. To see
that {rn}n∈N is G-Cauchy in (Φ,G), take arbitrary ε > 0. Since ε

2K > 0 and 0 < C < 1, then we can find
n0 ∈ N such that

∞∑
i=n0

Ci <
ε

2K
.

In particular,

2K
p∑

i=n0

Ci < 2K
∞∑

i=n0

Ci < ε ∀p ∈ N; p ≥ n0.

Let l,m, n ∈ N, where 2n0 ≤ n < m < l. Let p ∈ N be such that p ≥ n0 + 2 and 2p ≥ l. Then by
rectangular inequality and (2.8), we have

G(rn, rm, rl) ≤
l−2∑
j=n

G(r j, r j+1, r j+2) ≤
2p−2∑
j=2n0

G(r j, r j+1, r j+2)

=

p−2∑
q=n0

[
G(r2q, r2q+1, r2q+2) + G(r2q+1, r2q+2, r2q+3)

]
≤

p−2∑
q=n0

2CqK = 2K
p∑

q=n0

Cq < 2K
∞∑

q=n0

Cq < ε.

This completes the proof. �
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Proposition 8. Given C ∈ [0, 1) and σ ∈ (0, 1), let {ρn} ⊂ (0, 1) be a sequence such that

ρn+2 ≤ C max{ρn, ρn+1}
σ ∀n ∈ N. (2.9)

Let K = max{ρ0, ρ1}. Then

ρ2n ≤ C1+σ+σ2+...+σn−1
Kσn

, ρ2n+1 ≤ C1+σ+σ2+...+σn−1
Kσn

∀n ≥ 1. (2.10)

Therefore,

lim sup
n→∞

ρn ≤ C
1

1−σ .

Proof. The result holds if C = 0. Assume C > 0. Since σ ∈ (0, 1), then obviously,

σm+1 < σm < σm−1 < ... < σ2 < σ ∀m ∈ N; m ≥ 1.

Therefore, since K ∈ (0, 1), we have

Kσm+1
< Kσm

< Kσm−1
< ... < Kσ2

< Kσ ∀m ∈ N; m ≥ 1.

Consider (2.9) and let n = 0. Then

ρ2 ≤ C max{ρ0, ρ1}
σ ≤ CKσ.

For n = 1, we obtain

ρ3 ≤ C max{ρ1, ρ2}
σ ≤ C max{ρ1,CKσ}σ ≤ C max{K,CKσ}σ

= C max{Kσ,CσKσ2
} ≤ C max{Kσ,CσKσ}

= CKσ max{1,Cσ} = CKσ.

Now, assume that (2.10) holds for some n ∈ N. We then prove that it holds for n + 1. Therefore,

ρ2n+2 ≤ C max{ρ2n, ρ2n+1}
σ

≤ C max{C1+σ+σ2+...+σn−1
Kσn

,C1+σ+σ2+...+σn−1
Kσn
}σ

= C(C1+σ+σ2+...+σn−1
Kσn

)σ = C(Cσ+σ2+...+σn
Kσn+1

)

= C1+σ+σ2+...+σn
Kσn+1

.

Similarly,

ρ2n+3 ≤ C max{ρ2n+1, ρ2n+2}
σ

≤ C max{C1+σ+σ2+...+σn−1
Kσn

,C1+σ+σ2+...+σn
Kσn+1

}σ

= C max{Cσ+σ2+...+σn
Kσn+1

,Cσ+σ2+...+σn+1
Kσn+2

}

≤ C max{Cσ+σ2+...+σn
Kσn+1

,Cσ+σ2+...+σn+1
Kσn+1

}

= CKσn+1
max{Cσ+σ2+...+σn

,Cσ+σ2+...+σn+1
}
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= CKσn+1
(Cσ+σ2+...+σn

) = C1+σ+σ2+...+σn
Kσn+1

.

This completes the induction, therefore, verifying (2.10). Noting that {σn}n∈N → 0 as n → ∞, it is
obvious that {Kσn

}n∈N → K0 = 1. Also,

lim
n→∞

(1 + σ + σ2 + ... + σn) ≤
∞∑

i=0

σi =
1

1 − σ
.

Therefore,

lim
n→∞

C1+σ+σ2+...+σn
= C( 1

1−σ ).

�

Corollary 1. Let {rn} be a sequence in a G-metric space (Φ,G). Assume that there exist C ∈ [0, 1) and
θ, η ∈ [0, 1] with θ + η = 1 such that

G(rn+2, rn+3, rn+4) ≤ C
[
G(rn, rn+1, rn+2)θ ·G(rn+1, rn+2, rn+3)η

]
∀n ∈ N.

Then {rn} is a G-Cauchy sequence in (Φ,G).

Proof. Notice that

G(rn+2, rn+3, rn+4) ≤ C
[
G(rn, rn+1, rn+2)θ ·G(rn+1, rn+2, rn+3)η

]
≤ C

[
max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}θ

·max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}η
]

= C max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}θ+η

= C max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}.

Then the result follows from Lemma 2.11. �

Karapınar et al. [7] gave the following definition of hybrid-interpolative Reich-Istrăţescu-type
contraction in metric space.

Definition 2.12. [7] Let (Φ, d) be a metric space and let α : Φ × Φ −→ R+ be a function. A self-
mapping Γ : Φ −→ Φ is called hybrid-interpolative Reich-Istrăţescu-type contraction if for some
q ∈ R+, there exist constants µ ∈ (0, 1), δ ≥ 0 and λi ≥ 0 with i = 1, 2, ..., 5 such that for all distinct
r, s ∈ Φ\Fix(Γ),

α(r, s)d(Γ2r,Γ2s) ≤ µM(r, s), (2.11)

where

M(r, s) =



[
λ1d(r, s)q + λ2d(r,Γr)q + λ3d(s,Γs)q + λ4d(Γr,Γs)q + λ5d(Γr,Γ2r)q

+δd(Γs,Γ2s)q
] 1

q

, f or q > 0, with
∑5

i=1 λi + δ ≤ 1;

[d(r, s)]λ1 · [d(r,Γr)]λ2 · [d(s,Γs)]λ3 · [d(Γr,Γs)]λ4 · [d(Γr,Γ2r)]λ5

·[d(Γs,Γ2s)]δ, f or q = 0, with
∑5

i=1 λi + δ = 1,

(2.12)

and Fix(Γ) = {r ∈ Φ : Γr = r}.
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3. Main results

In this section, we introduce a new concept of hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-
contraction in G-metric space.

Definition 3.1. Let (Φ,G) be a G-metric space and let α : Φ × Φ −→ R+ be a function. A self-
mapping Γ : Φ −→ Φ is called hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-contraction if for
some q ∈ R+, there exist constants µ ∈ (0, 1), δ ≥ 0 and λi ≥ 0 with i = 1, 2, ..., 5 such that for all
r, s ∈ Φ\Fix(Γ),

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) ≤ µM(r, s,Γs), (3.1)

where

M(r, s,Γs) =



[
λ1G(r, s,Γs)q + λ2G(r,Γr,Γ2r)q + λ3G(s,Γs,Γ2s)q

+λ4G(Γr,Γs,Γ2s)q + λ5G(Γr,Γ2r,Γ3r)q + δG(Γs,Γ2s,Γ3s)q
] 1

q

,

f or q > 0, with
∑5

i=1 λi + δ ≤ 1;

[G(r, s,Γs)]λ1 · [G(r,Γr,Γ2r)]λ2 · [G(s,Γs,Γ2s)]λ3 · [G(Γr,Γs,Γ2s)]λ4

·[G(Γr,Γ2r,Γ3r)]λ5 · [G(Γs,Γ2s,Γ3s)]δ,

f or q = 0, with
∑5

i=1 λi + δ = 1,

(3.2)

and Fix(Γ) = {r ∈ Φ : Γr = r}.

Our main result is the following.

Theorem 3.2. Let (Φ,G) be a complete G-metric space and let Γ : Φ −→ Φ be a hybrid-interpolative
Reich-Istrăţescu-type (G-α-µ)-contraction satisfying the following conditions:

(i) Γ is (G-α)-orbital admissible;
(ii) Γ is continuous;

(iii) there exists r0 ∈ Φ such that α(r0,Γr0,Γ
2r0) ≥ 1.

Then Γ has at least a fixed point in Φ.

Proof. Let r0 ∈ Φ be such that α(r0,Γr0,Γ
2r0) ≥ 1. Since Γ is (G-α)-orbital admissible, then

α(Γr0,Γ
2r0,Γ

3r0) ≥ 1 and by induction, we have α(Γnr0,Γ
n+1r0,Γ

n+2r0) ≥ 1 for any n ∈ N. Let {rn} be
a sequence in Φ defined by rn = Γnr0 for all n ∈ N. If there exists some m ∈ N such that
Γrm = rm+1 = rm, then clearly, rm is a fixed point of Γ. Assume now that rn , rn+1 for any n ∈ N. Since
Γ is hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-contraction, then we have from (3.1) that

G(rn+2, rn+3, rn+4) ≤ α(rn, rn+1,Γrn+1)G(Γ2rn,Γ
2rn+1,Γ

3rn+1)
≤ µM(rn, rn+1,Γrn+1). (3.3)

We now consider the following cases:

Case 1: For q > 0, we have

M(rn, rn+1,Γrn+1) =
[
λ1G(rn, rn+1,Γrn+1)q + λ2G(rn,Γrn,Γ

2rn)q

AIMS Mathematics Volume 7, Issue 10, 17894–17912.
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+ λ3G(rn+1,Γrn+1,Γ
2rn+1)q + λ4G(Γrn,Γrn+1,Γ

2rn+1)q

+ λ5G(Γrn,Γ
2rn,Γ

3rn)q + δG(Γrn+1,Γ
2rn+1,Γ

3rn+1)q] 1
q

=
[
λ1G(rn, rn+1, rn+2)q + λ2G(rn, rn+1, rn+2)q + λ3G(rn+1, rn+2, rn+3)q

+ λ4G(rn+1, rn+2, rn+3)q + λ5G(rn+1, rn+2, rn+3)q

+ δG(rn+2, rn+3, rn+4)q] 1
q

=
[
(λ1 + λ2)G(rn, rn+1, rn+2)q + (λ3 + λ4 + λ5)G(rn+1, rn+2, rn+3)q

+ δG(rn+2, rn+3, rn+4)q] 1
q

≤
[
(λ1 + λ2 + λ3 + λ4 + λ5) max{G(rn, rn+1, rn+2)q,G(rn+1, rn+2, rn+3)q}

+ δG(rn+2, rn+3, rn+4)q] 1
q . (3.4)

Therefore, (3.3) becomes

G(rn+2, rn+3, rn+4)q ≤ µq[(λ1 + λ2 + λ3 + λ4 + λ5)
max{G(rn, rn+1, rn+2)q,G(rn+1, rn+2, rn+3)q}

+δG(rn+2, rn+3, rn+4)q]
so that

(1 − µqδ)G(rn+2, rn+3, rn+4)q ≤ µq(λ1 + λ2 + λ3 + λ4 + λ5)
max{G(rn, rn+1, rn+2)q,G(rn+1, rn+2, rn+3)q}

≤ µq(1 − δ) max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}q,

implying that for all n ∈ N,

G(rn+2, rn+3, rn+4)q ≤

(
µq(1 − δ)
1 − µqδ

)
max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}q,

which is equivalent to

G(rn+2, rn+3, rn+4) ≤ C max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)},

where

C =

(
µq(1 − δ)
1 − µqδ

)
∈ (0, 1).

Hence, by Lemma 2.11, {rn}n∈N is a G-Cauchy sequence in (Φ,G).
Case 2: For q = 0, we have

M(rn, rn+1,Γrn+1) = G(rn, rn+1,Γrn+1)λ1 ·G(rn,Γrn,Γ
2rn)λ2

·G(rn+1,Γrn+1,Γ
2rn+1)λ3 ·G(Γrn,Γrn+1,Γ

2rn+1)λ4

·G(Γrn,Γ
2rn,Γ

3rn)λ5 ·G(Γrn+1,Γ
2rn+1,Γ

3rn+1)δ

= G(rn, rn+1, rn+2)λ1 ·G(rn, rn+1, rn+2)λ2

·G(rn+1, rn+2, rn+3)λ3 ·G(rn+1, rn+2, rn+3)λ4

·G(rn+1, rn+2, rn+3)λ5 ·G(rn+2, rn+3, rn+4)δ
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= G(rn, rn+1, rn+2)(λ1+λ2) ·G(rn+1, rn+2, rn+3)(λ3+λ4+λ5)

·G(rn+2, rn+3, rn+4)δ.

Therefore, (3.3) becomes

G(rn+2, rn+3, rn+4) ≤ µG(rn, rn+1, rn+2)(λ1+λ2) ·G(rn+1, rn+2, rn+3)(λ3+λ4+λ5)

·G(rn+2, rn+3, rn+4)δ. (3.5)

If δ = 1, then λ1 = λ2 = λ3 = λ4 = λ5 = 0, and so we obtain

0 < G(rn+2, rn+3, rn+4) ≤ µG(rn+2, rn+3, rn+4),

which is a contradiction. Therefore, δ < 1, so that
∑5

i=1 λi = 1 − δ > 0, implying that

θ =
λ1 + λ2

1 − δ
, η =

λ3 + λ4 + λ5

1 − δ

satisfying θ + η = 1. Hence, (3.5) becomes

G(rn+2, rn+3, rn+4)(1−δ) ≤ µG(rn, rn+1, rn+2)(λ1+λ2) ·G(rn+1, rn+2, rn+3)(λ3+λ4+λ5)

so that

G(rn+2, rn+3, rn+4) ≤ µ( 1
1−δ )G(rn, rn+1, rn+2)

(
λ1+λ2

1−δ

)
·G(rn+1, rn+2, rn+3)

(
λ3+λ4+λ5

1−δ

)
= µ( 1

1−δ )G(rn, rn+1, rn+2)θ ·G(rn+1, rn+2, rn+3)η

for all n in N. Noting that µ ∈ (0, 1), we have

0 < 1 − δ ≤ 1⇒ 1 ≤
1

1 − δ
⇒ µ( 1

1−δ ) ≤ µ < 1.

Hence, since 0 < µ( 1
1−δ ) < 1 and θ + η = 1, then by Corollary 1, we can conclude that {rn}n∈N is

G-Cauchy in (Φ,G).
Therefore, for all q ≥ 0, we have established that {rn}n∈N is a G-Cauchy sequence in (Φ,G) and so

by the completeness of (Φ,G), there exists a point c in Φ such that lim
n→∞

rn = c. Moreover, since Γ is
continuous, then we can conclude that Γc = c, that is, c is a fixed point of Γ. �

Theorem 3.3. Let (Φ,G) be a complete G-metric space and let Γ : Φ −→ Φ be a hybrid-interpolative
Reich-Istrăţescu-type (G-α-µ)-contraction satisfying the following conditions:

(i) Γ is (G-α)-orbital admissible;
(ii) there exists r0 ∈ Φ such that α(r0,Γr0,Γ

2r0) ≥ 1;
(iii) Γ3 is continuous and α(r,Γr,Γ2r) ≥ 1 for any r ∈ Fix(Γ3).

Then Γ has at least a fixed point in Φ.
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Proof. Let r0 ∈ Φ be arbitrary and define a sequence {rn}n∈N in Φ by rn = Γnr0. We have shown in
Theorem 3.2 that there exists c ∈ Φ such that rn → c. Since Γ3 is continuous, then

Γ3c = lim
n→∞

Γ3rn = c, (3.6)

that is, c is a fixed point of Γ3. This implies that Γ3 has at least one fixed point in Φ, that is, Fix(Γ3) is
nonempty. Moreover,

Γ4c = Γc. (3.7)

To see that c is a fixed point of Γ, assume contrary that Γc , c. In this case, Γc is not a fixed point of
Γ3 either, since Γc = Γ3c = c, which is a contradiction. Also, by (3.1), we have

G(c,Γc,Γ2c) ≤ α(c,Γc,Γ2c)G(c,Γc,Γ2c)
= α(c,Γc,Γ2c)G(Γ3c,Γ4c,Γ2c)
= α(c,Γc,Γ2c)G(Γ3c,Γc,Γ2c)
= α(c,Γc,Γ2c)G(Γc,Γ2c,Γ3c)
≤ µM(c,Γc,Γ2c). (3.8)

Considering Case 1, we obtain

M(c,Γc,Γ2c) =
[
λ1G(c,Γc,Γ2c)q + λ2G(c,Γc,Γ2c)q + λ3G(Γc,Γ2c,Γ3c)q

+ λ4G(Γc,Γ2c,Γ3c)q + λ5G(Γc,Γ2c,Γ3c)q + δG(Γ2c,Γ3c,Γ4c)q] 1
q

=
[
λ1G(c,Γc,Γ2c)q + λ2G(c,Γc,Γ2c)q + λ3G(c,Γc,Γ2c)q

+ λ4G(c,Γc,Γ2c)q + λ5G(c,Γc,Γ2c)q + δG(c,Γc,Γ2c)q] 1
q

=
[
(λ1 + λ2 + λ3 + λ4 + λ5 + δ)G(c,Γc,Γ2c)q] 1

q

= (λ1 + λ2 + λ3 + λ4 + λ5 + δ)
1
q G(c,Γc,Γ2c)

≤ G(c,Γc,Γ2c)

implying that

0 < G(c,Γc,Γ2c) ≤ µG(c,Γc,Γ2c),

which is a contradiction. Hence, Γc = c.
Similarly, for Case 2, we obtain

M(c,Γc,Γ2c) = G(c,Γc,Γ2c)λ1 ·G(c,Γc,Γ2c)λ2 ·G(Γc,Γ2c,Γ3c)λ3

·G(Γc,Γ2c,Γ3c)λ4 ·G(Γc,Γ2c,Γ3c)λ5 ·G(Γ2c,Γ3c,Γ4c)δ

= G(c,Γc,Γ2c)λ1 ·G(c,Γc,Γ2c)λ2 ·G(c,Γc,Γ2c)λ3

·G(c,Γc,Γ2c)λ4 ·G(c,Γc,Γ2c)λ5 ·G(c,Γc,Γ2c)δ

= G(c,Γc,Γ2c)(λ1+λ2+λ3+λ4+λ5+δ)

= G(c,Γc,Γ2c),
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so that (3.8) becomes

0 < G(c,Γc,Γ2c) ≤ µG(c,Γc,Γ2c),

which is also a contradiction. Hence, Γc = c.
Therefore, c is a fixed point of Γ in Φ. �

Theorem 3.4. If in addition to the hypotheses of Theorem 3.3, we assume supplementary that
α(r, s,Γs) ≥ 1 for any r, s ∈ Fix(Γ), then the fixed point of Γ is unique.

Proof. Let v, c ∈ Φ be any two fixed point of Γ with v , c. By replacing this in (3.1) and noting the
additional hypothesis, we have:

G(c, v,Γv) ≤ α(c, v,Γv)G(Γ2c,Γ2v,Γ3v) ≤ µM(c, v,Γv). (3.9)

By Case 1, we obtain

M(c, v,Γv) =
[
λ1G(c, v,Γv)q + λ2G(c,Γc,Γ2c)q + λ3G(v,Γv,Γ2v)q

+ λ4G(Γc,Γv,Γ2v)q + λ5G(Γc,Γ2c,Γ3c)q + δG(Γv,Γ2v,Γ3v)q] 1
q

=
[
λ1G(c, v,Γv)q + λ2G(c, c, c)q + λ3G(v, v, v)q

+ λ4G(c, v,Γv)q + λ5G(c, c, c)q + δG(v, v, v)q] 1
q

=
[
(λ1 + λ4)G(c, v,Γv)q] 1

q

= (λ1 + λ4)
1
q G(c, v,Γv)

≤ G(c, v,Γv).

Hence, (3.9) becomes

0 < G(c, v,Γv) ≤ µG(c, v,Γv),

which is a contradiction. Therefore, v = c, and so the fixed point of Γ is unique. �

In the following result, we examine the existence of fixed point of Γ when the G-metric space (Φ,G)
is regular.

Theorem 3.5. Let (Φ,G) be a complete G-metric space and let Γ : Φ −→ Φ be a hybrid-interpolative
Reich-Istrăţescu-type (G-α-µ)-contraction for q = 0 such that λ2 > 0 and λ5 > 0. Suppose further
that:

(i) Γ is (G-α)-orbital admissible;
(ii) there exists r0 ∈ Φ such that α(r0,Γr0,Γ

2r0) ≥ 1;
(iii) (Φ,G) is regular with respect to α.

Then Γ has a fixed point.

Proof. In Theorem 3.2, we have established that for any q ≥ 0, the sequence {rn}n∈N is G-Cauchy and
by the completeness of the G-metric space (Φ,G), there exists a point c in Φ such that rn → c. To
prove that c is a fixed point of Γ, suppose contrary that Γc , c.
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Assume {rn}n∈N is such that rn , rm whenever n , m, for all n,m ∈ N. Then there exists n0 ∈ N such
that rn and c are distinct and not in Fix(Γ) for all n ≥ n0. We will verify that c is a fixed point of Γ3.
Indeed, for all n ≥ n0,

G(rn+2,Γ
2c,Γ3c) ≤ α(rn, c,Γc)G(Γ2rn,Γ

2c,Γ3c) ≤ µM(rn, c,Γc)
= µG(rn, c,Γc)λ1 ·G(rn,Γrn,Γ

2rn)λ2 ·G(c,Γc,Γ2c)λ3

·G(Γrn,Γc,Γ2c)λ4 ·G(Γrn,Γ
2rn,Γ

3rn)λ5 ·G(Γc,Γ2c,Γ3c)δ

= µG(rn, c,Γc)λ1 ·G(rn, rn+1, rn+2)λ2 ·G(c,Γc,Γ2c)λ3

·G(rn+1,Γc,Γ2c)λ4 ·G(rn+1, rn+2, rn+3)λ5 ·G(Γc,Γ2c,Γ3c)δ.

Since λ2 > 0 and λ5 > 0, then letting n → ∞ and noting Proposition 1, it is verified that c is a fixed
point of Γ3. Hence, by (3.6) and (3.7), we obtain a contradiction. Therefore Γc = c, implying that c is
a fixed point of Γ. �

Example 3.6. Let Φ = [−1, 1] and let Γ : Φ −→ Φ be a self-mapping on Φ defined by Γr = r
2 for all

r ∈ Φ. Define G : Φ × Φ × Φ −→ R+ by

G(r, s, t) = |r − s| + |r − t| + |s − t| ∀ r, s, t ∈ Φ.

Then (Φ,G) is a complete G-metric space. Define α : Φ × Φ × Φ −→ R+ by

α(r, s, t) =

1, if r, s, t ∈ {−1} ∪ [0, 1];
0, otherwise.

(3.10)

Then obviously, Γ is a (G-α)-orbital admissible and Γ is continuous for all r ∈ Φ. Also, there exists
r0 = 1

3 ∈ Φ such that α(1
3 ,Γ( 1

3 ),Γ2( 1
3 )) = α( 1

3 ,
1
6 ,

1
12 ) ≥ 1. Hence, conditions (i)-(iii) of Theorems 3.2

and 3.3 are satisfied.
To see that Γ is a hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-contraction, let µ = 1

2 . Notice that
α(r, s,Γs) = 0 for all r, s ∈ (−1, 0). Hence, inequality (3.1) holds for all r, s ∈ (−1, 0).
Now for r, s ∈ {−1, 1}, if r = s, then letting λ1 = 1

5 , λ2 = λ3 = λ4 = 0, λ5 = δ = 2
5 and q = 2, we obtain

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) = α

(
1, 1,

1
2

)
G

(
1
4
,

1
4
,

1
8

)
= α

(
−1,−1,

−1
2

)
G

(
−1
4
,
−1
4
,
−1
8

)
=

1
4
<

2
5

=
1
2

(
4
5

)
=

1
2

(
M

(
1, 1,

1
2

))
=

1
2

(
M

(
−1,−1,

−1
2

))
= µM(r, s,Γs).

Also, if q = 0, we have

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) =
1
4
<

1
2

(
4
5

)
= µM(r, s,Γs).
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If r , s, then letting λ1 = 3
5 , λ2 = λ3 = λ5 = 0, λ4 = δ = 1

5 and q = 2, we obtain

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) = α

(
−1, 1,

1
2

)
G

(
−1
4
,

1
4
,

1
8

)
= α

(
1,−1,

−1
2

)
G

(
1
4
,
−1
4
,
−1
8

)
= 1 <

8
5

=
1
2

(
16
5

)
=

1
2

(
M

(
−1, 1,

1
2

))
=

1
2

(
M

(
1,−1,

−1
2

))
= µM(r, s,Γs).

Also, for q = 0, we take λ1 = 3
5 , λ2 = λ5 = δ = 0, λ3 = λ4 = 1

5 . Then

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) = α

(
−1, 1,

1
2

)
G

(
−1
4
,

1
4
,

1
8

)
= α

(
1,−1,

−1
2

)
G

(
1
4
,
−1
4
,
−1
8

)
= 1 <

7
5

=
1
2

(
14
5

)
=

1
2

(
M

(
−1, 1,

1
2

))
=

1
2

(
M

(
1,−1,

−1
2

))
= µM(r, s,Γs).

Finally, for all r, s ∈ (0, 1), we take λ1 = 1, λ2 = λ3 = λ4 = λ5 = δ = 0. Then

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) = G(Γ2r,Γ2s,Γ3s)

=

∣∣∣∣∣ r4 − s
4

∣∣∣∣∣ +

∣∣∣∣∣ r4 − s
8

∣∣∣∣∣ +

∣∣∣∣∣ s
4
−

s
8

∣∣∣∣∣
=

1
4

(
|r − s| +

∣∣∣∣∣r − s
2

∣∣∣∣∣ +

∣∣∣∣∣s − s
2

∣∣∣∣∣)
=

1
4

G(r, s,Γs)

<
1
2

G(r, s,Γs)

= µM(r, s,Γs)

for all q ≥ 0.
Hence, inequality (3.1) is satisfied for all r, s ∈ Φ\Fix(Γ). Therefore, Γ is a hybrid-interpolative Reich-
Istrăţescu-type (G-α-µ)-contraction which satisfies all the assumptions of Theorems 3.2 and 3.3. The
point r = 0 is the fixed point of Γ in Φ.

We now demonstrate that our result is independent and an improvement of the results of
Karapınar et al. [7]. Let α : Φ × Φ −→ R+ be as given by Definition (2.12), r0 ∈ Φ be such that
α(r0,Γr0) ≥ 1 and d : Φ × Φ −→ R+ be defined by
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d(r, s) = |r − s| ∀ r, s ∈ Φ.

Consider r, s ∈ {−1, 1} and take for Case 1, r , s, λ1 = 1
5 , λ2 = λ3 = λ5 = 0, λ4 = 1

2 , δ = 3
10 and q = 1.

Then inequality (3.1) becomes

α(r, s,Γs)G(Γ2r,Γ2s,Γ3s) = α

(
−1, 1,

1
2

)
G

(
−1
4
,

1
4
,

1
8

)
= α

(
1,−1,

−1
2

)
G

(
1
4
,
−1
4
,
−1
8

)
= 1 ≤

101
100

=
1
2

(
202
100

)
=

1
2

(
M

(
−1, 1,

1
2

))
=

1
2

(
M

(
1,−1,

−1
2

))
= µM(r, s,Γs),

while inequality (2.11) due to Karapınar et al. [7] yields

α(r, s)d(Γ2r,Γ2s) = α(−1, 1)d
(
−1
4
,

1
4

)
= α(1,−1)d

(
1
4
,
−1
4

)
=

1
2
>

49
100

=
1
2

(
98

100

)
=

1
2

(M(−1, 1)) =
1
2

(M(1,−1))

= µM(r, s).

For Case 2, Karapınar et al. [7] have noted that their result is indeterminate for r = s, if either λ1 = 0
or λ4 = 0, since

[d(r, s)]λ1 = [d(Γr,Γs)]λ4 = 00.

Hence, they declared that r and s are distinct and that 00 = 1, which in contrast, is unconventional.
But our result is valid for all r, s ∈ Φ\Fix(Γ). Therefore, hybrid-interpolative Reich-Istrăţescu-type
(G-α-µ)-contraction is not hybrid-interpolative Reich-Istrăţescu-type contraction defined by Karapınar
et al. [7], and so Theorems 12 and 17 due to Karapınar et al. [7] are not applicable to this example.

The following is an Istrăţescu-type (see [7]) consequence of our result.

Corollary 2. Let (Φ,G) be a complete G-metric space and Γ : Φ −→ Φ be a continuous self-mapping
such that there exist η, λ ∈ (0, 1) with η + λ < 1, satisfying

G(Γ2r,Γ2s,Γ3s) ≤ ηG(r, s,Γs) + λG(Γr,Γs,Γ2s)

for all r, s ∈ Φ. Then Γ has a fixed point in Φ.

Proof. Let µ = η + λ ∈ (0, 1). Consider Definition (3.1) and let α(r, s,Γs) = 1, q = 1, λ1 =
η

µ
, λ4 = λ

µ

and λ2 = λ3 = λ5 = δ = 0. Then for all r, s ∈ Φ, we have

G(Γ2r,Γ2s,Γ3s) ≤ µM(r, s,Γs)
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= µ

[
η

µ
G(r, s,Γs) +

λ

µ
G(Γr,Γs,Γ2s)

]
= ηG(r, s,Γs) + λG(Γr,Γs,Γ2s), (3.11)

implying that inequality (3.1) holds for all r, s ∈ Φ\Fix(Γ).
Let r0 ∈ Φ be arbitrary and define a sequence {rn}n∈N in Φ by rn = Γnr0. Then by (3.11), we have

G(rn+2, rn+3, rn+4) ≤ ηG(rn, rn+1, rn+2) + λG(rn+1, rn+2, rn+3)
≤ ηmax{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}

+ λmax{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}
= (η + λ) max{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}
= µmax{G(rn, rn+1, rn+2),G(rn+1, rn+2, rn+3)}.

Hence, by Lemma 2.11, {rn}n∈N is a G-Cauchy sequence in (Φ,G) and since (Φ,G) is complete, then
there exists c ∈ Φ such that rn → c. Since Γ is continuous, then we can conclude that c is a fixed point
of Γ, that is, Γc = c. �

In Definition (3.1), if we specialize the parameters λi (i = 1, 2, ..., 5), δ and q, as well as let
α(r, s,Γs) = 1 for all r, s ∈ Φ and Γs = t, we obtain the following corollary, which is a consequence of
Theorem 3.2.

Corollary 3. Let (Φ,G) be a complete G-metric space and Γ : Φ −→ Φ be a continuous self-mapping
such that there exists µ ∈ (0, 1), satisfying

G(Γ2r,Γ2s,Γ2t) ≤ µG(r, s, t) (3.12)

for all r, s, t ∈ Φ. Then Γ has a fixed point in Φ.

4. Applications to solution of integral equation

In this section, an existence theorem for a solution of a class of integral equations is provided using
Corollary 3. For similar results, we refer to [1, 4, 10, 17].
Consider the integral equation

r(y) =

∫ b

a
L(y, x) f (x, r(x))dx, y ∈ [a, b]. (4.1)

Let Φ = C([a, b],R) be the set of all continuous real-valued functions. Define G : Φ × Φ × Φ −→ R+

by

G(r, s, t) = max
y∈[a,b]

|r(y) − s(y)| + max
y∈[a,b]

|r(y) − t(y)|+ max
y∈[a,b]

|s(y) − t(y)|

∀r, s, t ∈ Φ, y ∈ [a, b]. (4.2)

Then, (Φ,G) is a complete G-metric space.
Define a function Γ : Φ −→ Φ as follows:

Γr(y) =

∫ b

a
L(y, x) f (x, r(x))dx, y ∈ [a, b]. (4.3)
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Then a point u∗ is said to be a fixed point of Γ if and only if u∗ is a solution to (4.1).
Now, we study existence conditions of the integral equation (4.1) under the following hypotheses.

Theorem 4.1. Assume that the following conditions are satisfied:

(C1) L : [a, b] × [a, b] −→ R+ and f : [a, b] × R −→ R are continuous;
(C2) for all r, s ∈ Φ, x ∈ [a, b], we have | f (x, r(x)) − f (x, s(x))| ≤ |r(x) − s(x)|;

(C3) max
y∈[a,b]

∫ b

a
L(y, x)dx ≤ λ for some λ < 1.

Then, the integral equation (4.1) has a solution u∗ in Φ.

Proof. Observe that for any r, s ∈ Φ, using (4.3) and the above hypotheses, we obtain

|Γr(y) − Γs(y)| =

∣∣∣∣∣∣
∫ b

a

[
L(y, x) f (x, r(x)) − L(y, x) f (x, s(x))

]
dx

∣∣∣∣∣∣
≤

∫ b

a
L(y, x) | f (x, r(x)) − f (x, s(x))| dx

≤

∫ b

a
L(y, x) |r(x) − s(x)| dx

≤

∫ b

a
L(y, x) max

x∈[a,b]
|r(x) − y(x)| dx

≤ λ max
y∈[a,b]

|r(y) − s(y)| ,

so that

|Γ2r(y) − Γ2s(y)| ≤ λ max
y∈[a,b]

|Γr(y) − Γs(y)|

≤ λ max
y∈[a,b]

[
λ max

y∈[a,b]
|r(y) − s(y)|

]
≤ λ2 max

y∈[a,b]
|r(y) − s(y)| .

Using this in (4.2), we have

G(Γ2r,Γ2s,Γ2t) = max
y∈[a,b]

|Γ2r − Γ2s| + max
y∈[a,b]

|Γ2r − Γ2t| + max
y∈[a,b]

|Γ2s − Γ2t|

≤ λ2 max
y∈[a,b]

|r − s| + λ2 max
y∈[a,b]

|r − t| + λ2 max
y∈[a,b]

|s − t|

= λ2
(
max
y∈[a,b]

|r − s| + max
y∈[a,b]

|r − t| + max
y∈[a,b]

|s − t|
)

= µG(r, s, t),

where µ = λ2 < 1.
Hence, all the hypotheses of Corollary 3 are verified, implying that there exists a solution u∗ in Φ of
the integral equation (4.1).
Conversely, if u∗ is a solution of (4.1), then u∗ is also a solution of (4.3), so that Γu∗ = u∗, that is, u∗ is
a fixed point of Γ. �
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Remark 1.

(i) We can deduce many other corollaries by particularizing some of the parameters in
Definition (3.1).

(ii) None of the results presented in this work is expressible in the form G(s, r, r) or G(s, s, r). Hence,
they cannot be obtained from their corresponding versions in metric spaces.

5. Conclusions

A generalization of metric space was introduced by Mustafa and Sims [9], namely G-metric space
and several fixed point results were studied in that space. However, Jleli and Samet [5] as well as
Samet et al. [16] established that most fixed point theorems obtained in G-metric space are direct
consequences of their analogues in metric space. Contrary to the above observation, a new family
of contraction, called hybrid-interpolative Reich-Istrăţescu-type (G-α-µ)-contraction is introduced in
this manuscript and some fixed point theorems that cannot be deduced from their corresponding ones
in metric space are proved. The main distinction of this class of contraction is that its contractive
inequality is expressible in a number of ways with respect to multiple parameters. Consequently, a few
corollaries, including some recently announced results in the literature are highlighted and analyzed.
Nontrivial comparative examples are constructed to validate the assumptions of our obtained theorems.
Furthermore, one of our obtained corollaries is applied to set up novel existence conditions for solution
of a class of integral equations.
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