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1. Introduction

In Euclidean 3-space E3, the trajectories of oriented lines associated with a moving rigid body are
generally ruled surfaces. The differential line geometry of ruled surfaces has been exceedingly utilized
in Computer-Aided Manufacturing (CAM), Computer-Aided Geometric Design (CAGD), geometric
modeling and kinematics [1–3]. Nowadays, both offsets surfaces and ruled surfaces have been studied
in both of Euclidean and non-Euclidean spaces; for example, Ravani and Ku [4] defined the theory of
Bertrand curves for Bertrand ruled surface-offsets depend on line geometry. They showed that a ruled
surface can have an infinity of Bertrand offsets, in the same way as a planar curve can have an infinity
of Bertrand mates. In view of this study, Küçük and Gürsoy gave several characterizations of Bertrand
offsets of trajectory ruled surfaces in terms of the relationships among the projection areas for the
spherical images of Bertrand offsets and their integral invariants [5] . In [6] Kasap and Kuruoglu gained
the relationships between integral invariants of the pairs of the Bertrand ruled surface in Euclidean
3-space E3. In [7] Kasap and Kuruoglu initiated the work of Bertrand offsets of ruled surfaces in
Minkowski 3-space. The involute-evolute offsets of ruled surface is defined by Kasap et al. in [8].
Orbay et al. in [9] initiated the study of Mannheim offsets of the ruled surface. Onder and Ugurlu
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obtained the relationships between invariants of Mannheim offsets of timelike ruled surfaces, and they
gave the conditions for these surface offsets to be developable ruled surfaces [10]. These offset surfaces
are defined using the geodesic Frenet frame which was given by [8] . Depend on the involute-evolute
offsets of ruled surface in [10] Senturk and Yuce have calculated integral invariants of these offsets
with respect to the geodesic Frenet frame [11]. Important contributions to the Bertrand offsets of these
ruled surfaces have been studied in [12–18].

In this paper, a generalization of the well known theory of Bertrand curves is considered for
spacelike ruled surfaces in Minkowski space E3

1. Using the E. Study map, two spacelike ruled surfaces
which are offset in the sense of Bertrand are defined. Specially, we find how to construct the spacelike
Bertrand offset from a spacelike ruled surface with vanishing dual geodesic curvature. Meanwhile,
a spacelike developable surface can have a spacelike developable Bertrand offset if a linear equation
holds between the curvature and torsion of its edge of regression.

2. Basic concepts

We begin with necessary concepts on the dual numbers, dual Lorentzian vectors and E. Study
map (see [16–20] ): An oriented (non-null) line in Minkowski 3-space E3

1 may be locate by a point
α ∈ L and a normalized direction non-null vector x of L, that is, < x, x >= ±1. A parametric equation
of the line is:

L : y = α + vx; v ∈ R.

Then we define the moment of the non-null vector x with respect to a fixed origin point in E3
1 as:

x∗ = y × x = α × x.

This means that x∗ is the same for all choices of the points on L, and the non-null pair (x, x∗) ∈ E3
1 ×E

3
1

satisfy the following relations:
< x, x >= ±1, < x∗, x >=0. (2.1)

The six components xi, x∗i (i = 1, 2, 3) of x and x∗are named the normalized Plűcker coordinates of the
line L. Thus, the two non-null vectors x and x∗ define the non-null oriented line L.

A dual number x̂ is a number x + εx∗, where x, x∗ in R and ε is a dual unit with the assets that ε , 0,
and ε2 = 0. Then the set:

D3 = {̂x:= x + εx∗ =(x̂1, x̂2, x̂3)},

with the Lorentzian inner product

< x̂, ŷ >= x̂1̂y1 + x̂2̂y2 − x̂3̂y3,

forms the so named dual Lorentzian 3-space D3
1. This yields:

f̂1×̂f2= −̂f3, f̂1 × f̂3= −̂f2, f̂2×̂f3=̂f1,

< f̂1, f̂1 > = < f̂2 ,̂f2>= − < f̂3 ,̂f3>=1,

 ,
where f̂1, f̂2, and f̂3, are the dual base at the origin point 0̂ (0, 0, 0) of the dual Lorentzian 3-space D3

1.
Thereby a point x̂ = (x̂1, x̂2, x̂3)t has dual coordinates x̂i = (xi + εx∗i ) ∈ D. If x̂=x + εx∗ is a non-null
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dual vector the norm
∥∥∥̂x

∥∥∥ of x̂ is defined by

∥∥∥̂x
∥∥∥ =

√∣∣∣< x̂, x̂ >
∣∣∣ =

√
|< x, x >|+ε

1
2
√
|< x, x >|

< x, x >
|< x, x >|

2 < x, x∗ >

= ‖x‖ + ε
1
‖x‖

< x, x >
|< x, x >|

< x, x∗ > .

If x is spacelike vector, we have

∥∥∥̂x
∥∥∥ = ‖x‖ + ε

1
‖x‖

< x, x∗ >= ‖x‖
(
1 + ε

1
‖x‖2

< x, x∗ >
)
.

If x is timelike vector, we have

∥∥∥̂x
∥∥∥ = ‖x‖ − ε

1
‖x‖

< x, x∗ >= ‖x‖
(
1 − ε

1
‖x‖2

< x, x∗ >
)
.

Therefore,
∥∥∥̂x

∥∥∥ is called a spacelike (resp. timelike) dual unit vector if
∥∥∥̂x

∥∥∥2
=1(resp.

∥∥∥̂x
∥∥∥2

= − 1). The
hyperbolic, and Lorentzian (de Sitter space) dual unit spheres with the center 0̂ , respectively, are:

H2
+ =

{̂
x∈D3

1 |< x̂, x̂ >= x̂2
1 − x̂2

2 + x̂2
3 = −1

}
,

and

S2
1 =

{̂
x∈D3

1 |< x̂, x̂ >= x̂2
1 − x̂2

2 + x̂2
3 = 1

}
.

It is clear that

< x̂, x̂ >= ±1⇐⇒ < x, x >= ±1, < x∗, x >=0. (2.2)

It follows that Eqs (2.1) and (2.2) are corresponding. Therefore, we have the following map (E.
Study’s map): The dual spheres are shaped as a pair of couple hyperboloids. The common asymptotic
cone represents the set of null (lightlike) lines, the ring shaped hyperboloid represents the set of
spacelike lines, and the oval shaped hyperboloid forms the set of timelike lines, opposite points of
each hyperboloid represent the pair of opposite vectors on a line (see Figure 1). Therefore, a timelike
ruled surface is then a spherical curve on H2

+, and a timelike (or spacelike) ruled surface is a regular
curve on S2

1 [16–18].
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Figure 1. The dual hyperbolic and dual Lorentzian unit spheres.

3. The Blaschke approach

In this section, we define the Blaschke approach for ruled surfaces by bearing in mind the E. Study
map. Therefore, based on the notations in Section 2, a smooth dual curve

t ∈ R 7→ x̂(t) ∈ S2
1,

is a timelike ( resp. spacelike) ruled surface in Minkowski 3-space E3
1. x̂(t) are identified with

the rulings of the surface and from now on we do not discriminate among ruled surface and its
parametrizing dual curve. It will be considered a spacelike ruled surface in our study, and let us denote
this surface by (X). The vector

t̂(t) = t + εt∗ =
dx̂(t)

dt

∥∥∥∥∥∥dx̂(t)
dt

∥∥∥∥∥∥−1

is timelike dual unit tangent vector on x̂(t). Introducing the spacelike dual unit vector ĝ(t) = g(t) +

εg∗(t) = x̂ × t̂ we have the moving frame {̂x(t), t̂(t), ĝ(t)} on x̂(t), named Blaschke frame. Then,

< x̂, x̂ > = − < t̂,̂t>= < ĝ,̂g>=1,
ĝ = x̂ × t̂, x̂ = t̂ × ĝ, t̂ = x̂ × ĝ,

}
AIMS Mathematics Volume 7, Issue 10, 17843–17858.
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and the Blaschke formulae read [16]:

d
dt


x̂
t̂
ĝ

 =


0 p̂ 0
p̂ 0 q̂
0 q̂ 0




x̂
t̂
ĝ

 , (3.1)

where

p̂(t) = p(t) + εp∗(t) =

∥∥∥∥∥∥dx̂(t)
dt

∥∥∥∥∥∥ , q̂ = q + εq∗ = − det(̂x,
dx̂(t)

dt
,

d2̂x(t)
dt2 ),

are the Blaschke invariants of the timelike dual curve x̂(t) ∈ S2
1. The dual unit vectors x̂, t̂, and ĝ

congruous to three concurrent mutually orthogonal oriented lines in E3
1 and they intersected at a point

c on x̂ named central point. The trajectory of the central points is the striction curve c(t) on (X).
The dual arc-length ŝ of x̂(t) is defined by

dŝ = ds + εds∗ =

∥∥∥∥∥∥dx̂(t)
dt

∥∥∥∥∥∥ dt = p̂(t)dt. (3.2)

Thus the Blaschke formulae become
x̂′

t̂′

ĝ′

 =


0 1 0
1 0 γ̂

0 γ̂ 0




x̂
t̂
ĝ

 = ω̂ ×


x̂
t̂
ĝ

 ; (′=
d
dŝ

), (3.3)

where ω̂ = ω + εω∗ = χ̂̂x + ĝ is the Darboux vector, and γ̂(̂s) := γ + εγ∗ is the dual geodesic curvature
of x̂(̂s) on S2

1. The tangent vector of c(s), is specified by [16]:

dc
ds

= Γ(s)x + µ(s)g, (3.4)

which is a spacelike curve. The functions γ(s), Γ(s) and µ(s) are the curvature (construction) functions
of the ruled surface. These functions described as follows: γ is the geodesic curvature of the timelike
spherical image curve x = x(s); Γ defines the angle between the ruling of (X) and the tangent to the
striction curve; and µ is the distribution parameter at the ruling. These functions provide an approach
for constructing spacelike ruled surfaces by the equation

(X) : y(s, v) =

s∫
0

(Γ(s)x(s) + µ(s)g(s)) ds + vx(s). (3.5)

The timelike unit normal vector field at any point is also given by

e(s, v) =

∂y(s,v)
∂s ×

∂y(s,v)
∂v∥∥∥∂y(s,v)

∂s ×
∂y(s,v)
∂v

∥∥∥ = ±
µt + vg√
µ2 − v2

; |µ| > |v| , (3.6)

which is the timelike central normal t at the striction point (v = 0). So, we can find a hyperbolic
rotation angel φ such that

e(s, v) = cosh φt − sinh φg.
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It is obvious that:
tanh φ =

v
µ
.

This result is a Minkowski version of the well known Chasles Theorem [1–3].
The spacelike dual unit vector with the same sense as the Darboux vector ω̂ is also given by

b̂(̂s) := b + εb∗ =
ω̂∥∥∥ω̂∥∥∥=

χ̂√
γ̂2 + 1

x̂ +
1√
γ̂2 + 1

ĝ.

It is obvious that b̂(̂s) is the Disteli-axis of (X). Let ψ̂ = ψ + εψ∗ be the spacelike dual angle (dual
radius of curvature) between b̂ and x̂. Then,

b̂(̂s) = cos ψ̂̂x + sin ψ̂̂g, with cot ψ̂ =
q̂
p̂
. (3.7)

This dual angle is measured from the vector b̂(̂s) to x̂. In fact, it is important to consider the relations
between the timelike dual curve x̂(t) ∈ S2

1 and the dual curvature κ̂(̂s), as well as the dual torsion τ̂(̂s).
Therefore, the Serret-Frenet frame is made up of the set {̂t(̂s), n̂(̂s), b̂(̂s)}where n̂ = b̂×̂t is the principal
spacelike dual unit vector. Then, the relative orientation is given by:

t̂
n̂
b̂

 =


0 1 0

− sin ψ̂ 0 cos ψ̂
cos ψ̂ 0 sin ψ̂




x̂
t̂
ĝ

 .
Similarly, we can describe the dual Serret-Frenet formulae

t̂′

n̂′

b̂′

 =


0 κ̂ 0
κ̂ 0 τ̂

0 −̂τ 0




t̂
n̂
b̂

 , (3.8)

where
γ̂(̂s) = γ + ε (Γ − γµ) = cotψ − εψ∗(1 + cot2 ψ),
κ̂(̂s) := κ + εκ∗ =

√
1 + γ̂2 = 1

sin ψ̂
= 1

ρ̂(̂s) ,

τ̂(̂s) := τ + ετ∗ = ±ψ̂
′

= ±
γ̂
′

1+γ̂2 .

 (3.9)

Proposition 1. If the dual geodesic curvature function γ̂(̂s) is constant, x̂(̂s) is a timelike dual
circle on S2

1.
Proof. From Eq (3.9) we can find that γ̂(̂s)=constant yields that τ̂(̂s) = 0, and κ̂(̂s) is constant, which
implies x̂(̂s) is a timelike dual circle on S2

1.
Definition 1. A non-developable spacelike ruled surface (X) is named as a constant Disteli-axis
spacelike ruled surface if its dual geodesic curvature γ̂(̂s) is constant.

Via the E. Study map, the constant Disteli-axis spacelike ruled surface (X) is traced by a one-
parameter helical motion with constant pitch h along the spacelike Disteli-axis b̂, by the oriented
spacelike line x̂ located at a Lorentzian constant distance ψ∗ and Lorentzian constant angle ψ relative
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to the spacelike Disteli-axis b̂. In the special case, if γ̂(̂s) = 0, then x̂(̂s) is a timelike great dual circle
on S2

1, that is,

ĉ = {̂x∈S2
1 |< x̂, b̂ >= 0, with

∥∥∥∥̂b
∥∥∥∥ = 1}. (3.10)

In this case, all the rulings of (X) intersected orthogonally with the spacelike Disteli-axis b̂, that is,
ψ = π

2 , and ψ∗ = 0. Thus, we have γ̂(̂s) = 0 ⇔ (X) is a spacelike helicoidal surface. The constant
Disteli-axis ruled, and the helicoidal surface are essential to the curvature theory of ruled surfaces. We
will therefore inspect them in some detail later.

Notice that in Eq (3.4): (a) if µ = 0( dc
ds ‖ x), then (X) is a spacelike tangential developable ruled

surface. Namely, the Blaschke frame {x(s), t(s), g(s)} turn out to the usual Serret-Frenet frame and the
striction curve c(s) turns out to be the edge of regression of (X). Let υ be arc length parameter of c(s)
and {e1(υ), e2(υ), e3(υ)} is the usual Serret-Frenet frame of c. Then,

d
dυ


e1

e2

e3

 =


0 κ 0
κ 0 τ

0 τ 0




e1

e2

e3

 ,
where κ(υ) and τ(υ) are the natural curvature and torsion of the striction curve c(u), respectively;

κ(υ) =
1

Γ(υ)
, τ(υ) =

γ(υ)
Γ(υ)

, with Γ(υ) , 0. (3.11)

Therefore, the curvature function Γ(υ) is the radius of curvature of the spacelike striction curve c(υ).
We arrive therefore at the conclusion that the spacelike striction curve c(υ) is the edge of regression
of (X). In view of [21], we summarize this result in the following:
Theorem 1. Any spacelike ruled surface (X) with the curvature function

Γ(υ) = b sinh θ − b cosh θ; θ =

υ∫
0

τdυ,

with real constants (a, b) , (0, 0) is a spacelike tangential surface of a spacelike curve lies on a
Lorentzian sphere of radius

√
b2 − a2.

Corollary 1. The curvature function κ(υ) and torsion function τ(υ) of the spherical curve in Theorem 1,
respectively, are:

κ(υ) =
1

b sinh θ − b cosh θ
, and τ(υ) =

γ(υ)
b sinh θ − b cosh θ

.

(b) if Γ(s) = 0, then the striction curve is tangent to g; it is normal to the ruling through c(s); e1 = g(s),
e2 = t(s), e3 = x(s). In this case (X) a spacelike binormal ruled surface. Similarly, we find

κ(υ) =
γ(υ)
µ(υ)

, and τ(υ) =
1
µ(υ)

, with µ(υ) , 0. (3.12)

Therefore, the curvature function µ(υ) is the radius of torsion of the spacelike striction curve c(υ) of
the binormal surface. Hence, we summarize this result in the following:
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Theorem 2. Any spacelike ruled surface (X) with the curvature function

µ(υ) = γ(υ) (b sinh θ − b cosh θ) ; θ =

υ∫
0

τdυ,

with real constants (a, b) , (0, 0) is a spacelike binormal surface of a spacelike curve lies on a
Lorentzian sphere of radius

√
b2 − a2.

Corollary 2. The curvature function κ(υ) and torsion function τ(υ) of the spherical curve in Theorem 2,
respectively, are:

κ(υ) =
(υ)

b sinh θ − b cosh θ
, and τ(υ) =

1
γ(υ) (b sinh θ − b cosh θ)

.

4. Bertrand offsets of spacelike ruled surfaces

In this section, we define the Bertrand offsets of spacelike ruled and developable surfaces, then a
theory comparable to the theory of Bertrand curves can be developed for such surfaces.
Definition 2. Let (X) and (X) be two non-developable spacelike ruled surfaces in E3

1. The surface (X)
is said to be Bertrand offsets of (X) if there exists a one-to-one correspondence between their rulings
such that both surfaces have a common timelike central normal at the corresponding striction points.

Let us examine a non-developable spacelike ruled surface (X) parametrized by

x̂(̂s)=x̂1̂x + x̂2̂t + x̂3̂g, (4.1)

where x̂i = x̂i(̂s), (i = 1, 2, 3) are its dual coordinate functions. Then

x̂2
1 − x̂2

2 + x̂2
3 = 1. (4.2)

Differentiating Eqs (4.1), (4.2) and with the aid of Eq (3.3), we find:

x̂
′

= (x̂
′

1 + x̂2)̂x + (x̂
′

2 + x̂1 + γ̂x̂3)̂t + (x̂
′

3 + γ̂x̂2)̂g,
x̂1 x̂

′

1 − x̂2 x̂
′

2 + x̂3 x̂
′

3 = 0.

 (4.3)

If we assume that the dual curves x̂ = x̂(̂s) and x̂=x̂(̂s) are Bertrand offsets, that is, t̂=̂t, then we have

(x̂
′

1 + x̂2) = 0, (x̂
′

2 + x̂1 + γ̂x̂3) =< x̂
′

, t̂ >, (x̂
′

3 + γ̂x̂2) = 0. (4.4)

Substituting Eq (4.4) into the second expression of Eq (4.3) and simplifying it, we obtain

x̂2 = 0. (4.5)

From Eqs (4.4) and (4.5) we get:

x̂
′

1 = 0, x̂1 + γ̂x̂3 =< x̂
′

, t̂ >, x̂
′

3 = 0⇒ x̂1 = ĉ1, x̂3 = ĉ3 ∈ D, (4.6)
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where ĉ1 and ĉ3 are dual constants of integrations. Therefore, we can find a constant spacelike dual
angle ϑ̂ = ϑ + εϑ∗ such that ĉ1 = cos ϑ̂ and ĉ3 = − sin ϑ̂. Thus, as a result the following theorem can
be given:
Theorem 3. The offset spacelike dual angle among the generating spacelike lines of a non-developable
spacelike ruled surface and its spacelike Bertrand offset at corresponding central points remains
constant.

It is clear from the above results that a spacelike ruled surface, in general, has a double infinity
of spacelike Bertrand offsets. Each spacelike Bertrand offset can be traced by a constant linear offset
ϑ∗ ∈ R and a constant angular offset ϑ ∈ [0, 2π]. Any two spacelike surfaces of this family of spacelike
ruled surfaces are reciprocal of one another; if (X) is a spacelike Bertrand offset of (X), then (X) is also
a spacelike Bertrand offset of (X). Then, Eq (4.1) become:

x̂(̂s)= cos ϑ̂̂x(̂s) − sin ϑ̂̂g(̂s). (4.7)

Since t̂(=̂t), at the congruent points on the two striction curves of (X) and (X), we have:
x̂(̂s)

t̂(̂s)
ĝ(̂s)

 =


cos ϑ̂ 0 − sin ϑ̂

0 1 0
sin ϑ̂ 0 cos ϑ̂




x̂(̂s)
t̂(̂s)
ĝ(̂s)

 . (4.8)

The above equation is precisely the same as its similar equation for Bertrand curves [4]. If ϑ = 0 and
ϑ = π/2 then the Bertrand offsets are named to be oriented offsets and right offsets, respectively.

Now, we give some theorems and results between (X) and (X). Let ŝ be the arc length of x̂(̂s), then:

d

dŝ


x̂(̂s)

t̂(̂s)
ĝ(̂s)

 =


0 1 0
1 0 γ̂

0 γ̂ 0




x̂(̂s)

t̂(̂s)
ĝ(̂s)

 , (4.9)

where

1 =
(
cos ϑ̂ − γ̂ sin ϑ̂

) dŝ

dŝ
, γ̂(̂s) =

(
sin ϑ̂ + γ̂ cos ϑ̂

) dŝ

dŝ
. (4.10)

By eliminating dŝ
dŝ

we gain:

(̂γ − γ̂) cos ϑ̂ − (1 + γ̂γ̂) sin ϑ̂ = 0. (4.11)

This is a new dual characterization of the Bertrand offsets of spacelike ruled surfaces in terms of their
dual geodesic curvature.
Theorem 4. Two non-developable spacelike ruled surfaces (X) and (X) are Bertrand offsets iff the
Eq (4.11) is held.
Corollary 3. The Bertrand offset of a spacelike constant Disteli-axis ruled surface is a spacelike
constant Disteli-axis ruled surface too.
Corollary 4. The Bertrand offset of a spacelike helicoidal surface, in general, does not have to be a
helicoidal surface and can be a regular spacelike ruled surface.

AIMS Mathematics Volume 7, Issue 10, 17843–17858.



17852

Furthermore, for the spacelike ruled surface (X), let e(s, v) be the timelike unit normal vector of an
arbitrary point. Then, as in Eq (3.6) , we have

e(s, v) =
µ t − vg√
µ2
− v2

, (4.12)

where µ is the distribution parameter of (X). It is clear from Eqs (3.6) and (4.12) that the timelike
central normal to a spacelike ruled surface and its Bertrand offsets are not the same. This shows that
the Bertrand offsets of a spacelike ruled surface are, generally, not parallel offsets. Now, it seems
natural to put the following question: Under what condition (X) and (X) are parallel offsets? The
answer can be given as follows:
Theorem 5. Two non-developable spacelike ruled surfaces (X) and (X) are parallel offsets iff µ = µ,
and each axis of the Blaschke frame of (X) is collinear with the corresponding axis of (X).
Proof. Suppose (X) and (X) are parallel offsets, or e(s, v) × e(s, v) = 0. Then, we have:

v2 sinϑt + v(µ cosϑ − µ)x − v sinϑg = 0. (4.13)

This equation must hold true for any value v , 0, which leads to ϑ = 0 and µ = µ. �
As a result the following corollaries can be given:

Corollary 5. Two developable spacelike ruled surfaces (X) and (X) are parallel offsets iff each axis of
the Blaschke frame of (X) is collinear with the corresponding axis of (X).
Corollary 6. A developable spacelike ruled surface and a non-developable spacelike surface can’t be
parallel offsets.
Example 1. In this example, we will construct the spacelike constant Disteli-axis ruled surface (X).
Since γ̂(̂s) is constant, from Eqs (3.3) and (3.9) we obtain the ODE t̂

′′

− κ̂2̂t = 0. Without loss of the
generalization, we may choose t̂(0) = (0, 1, 0). Then, the general solution of the ODE is:

t̂(̂s) =
(̂
b1 sinh

(̂
κ ŝ

)
, cosh

(̂
κ ŝ

)
+ b̂2 sinh

(̂
κ ŝ

)
, b̂3 sinh

(̂
κ ŝ

))
,

for some dual constants b̂1, b̂2, and b̂3. Since
∥∥∥̂t

∥∥∥2
= −1, we get b̂2 = 0, and b̂2

1 + b̂2
3 = 1, it follows that

x̂(̂u) is given by
x̂(̂s) =

(̂
b1ρ̂ cosh

(̂
κ ŝ

)
+ d̂1, ρ̂ sinh

(̂
κ ŝ

)
, b̂3ρ̂ cosh

(̂
κ ŝ

)
+ d̂3

)
,

for some dual constants d̂2, and d̂3 satisfying b̂1d̂1 + b̂3d̂3 = 0, and d̂2
1 + d̂2

3 = 1 − ρ̂2. We now change
the dual coordinates by 

x̃1

x̃2

x̃3

 =


b̂1 0 b̂3

0 1 0
−̂b3 0 b̂1




x̂1

x̂2

x̂3

 ,
from which we obtain

x̂(̂s) =
(
sin ψ̂ cosh

(̂
κ ŝ

)
, sin ψ̂ sinh

(̂
κ ŝ

)
, d̂

)
(4.14)

for a dual constant d̂ = b̂1d̂3 − b̂3d̂1, with d̂ = ± cos ψ̂. Notice that x̂(̂s) does not depend on the choice
of the lower sign or upper sign of ±. Therefore, through the paper we choice the upper sign, that is,

x̂(ϕ̂) =
(
sin ψ̂ cosh ϕ̂, sin ψ̂ sinh ϕ̂, cos ψ̂

)
, (4.15)
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where ϕ̂ = κ̂ ŝ. It is a timelike dual spherical curve with the dual curvature κ̂ =
√
γ̂2 + 1 on the

Lorentzian dual unit sphere S2
1. Let ϕ̂ = ϕ(1 + εh); h denoting the constant pitch of the helical motion,

and ϕ is the motion parameter, then Eq (29) parametrize a spacelike ruled surface. Thus, the Blaschke
frame is as follows: 

x̂(ϕ)
t̂(ϕ)
ĝ(ϕ)

 =


sin ψ̂ cosh ϕ̂ sin ψ̂ sinh ϕ̂ cos ψ̂
sinh ϕ̂ cosh ϕ̂ 0
− cos ψ̂ cosh ϕ̂ − cos ψ̂ sinh ϕ̂ sin ψ̂




f̂1

f̂2

f̂3

 . (4.16)

It is easily seen that
p̂(ϕ) = (1 + εh) sin ψ̂, q̂(ϕ) = (1 + εh) cos ψ̂,

dŝ = p̂(ϕ)dϕ, γ̂(ϕ) =: q̂(ϕ)
p̂(ϕ) = cot ψ̂.

 (4.17)

From the real and dual parts of Eqs (31), we obtain

µ = ψ∗ cotψ + h, and Γ = −ψ∗ + h cotψ. (4.18)

The spacelike Disteli-axis can be expressed as

b̂ = cos ψ̂̂x + sin ψ̂̂g. (4.19)

It is easily seen from the Eqs (4.16) and (4.19) that b̂ = f̂3. This shows that the axis of the helical
motion is the constant spacelike Disteli-axis b̂. Furthermore, the equation of (X) in terms of the Plücker
coordinates can be obtained as: If we separate x̂(ϕ) into real and dual parts we reach

x(ϕ) = (sinψ coshϕ, sinψ sinhϕ, cosψ) , (4.20)

and

x∗(ϕ) =


x̃∗1
x̃∗2
x̃∗3

 =


ϕ∗ sinhϕ sinψ + ψ∗ cosψ coshϕ
ϕ∗ coshϕ sinψ + ψ∗ cosψ sinhϕ

−ψ∗ sinψ

 . (4.21)

Let r(r1, r2, r3) denote a point on x̂. Since α×x = x∗ we have the system of linear equations in r1, r2,

and r3:
r2 cosψ − r3 sinψ sinhϕ = x̃∗1,
r1 cosψ − r3 sinψ coshϕ = x̃∗2,

(r1 sinhϕ − r2 coshϕ) sinψ = x̃∗3.


The matrix of coefficients of unknowns r1, r2, and r3 is

0 cosψ − sinψ sinhϕ
cosψ 0 − sinψ coshϕ
sinψ sinhϕ − sinψ coshϕ 0

 ,
its rank is 2 with s , 0, and ϑ , pπ (p is an integer). In addition the rank of the augmented matrix

0 − sinϑ − cosϑ sinh s x∗1
sinϑ 0 − cosϑ cosh s x∗2
cosϑ sinh s − cosϑ cosh s 0 x∗3

 ,
AIMS Mathematics Volume 7, Issue 10, 17843–17858.
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is 2. Hence this system has infinitely many solutions parametrized with

r1 = ψ∗ sinhϕ + (ϕ∗ + r3) tanψ coshϕ,
r2 = ψ∗ coshϕ + (ϕ∗ + r3) tanψ sinhϕ, ,

r1 sinhϕ − r2 coshϕ = −ϕ∗.

(4.22)

Since r3 is taken at random, then we may take ϕ∗ + r3 = 0. In this case, Eq (4.22) reduces to

r1 = ψ∗ sinhϕ, r2 = ψ∗ coshϕ, r3 = −hϕ. (4.23)

We now simply find the base curve as;

r(ϕ) = (ψ∗ sinhϕ, ψ∗ coshϕ,−hϕ) .

It can be show that < r′ , x′ >= 0; (′ = d
dϕ ) so the base curve of (X) is its striction curve. Thus, if

(x, y, z) are the coordinates of y, then the spacelike ruled surface (X) is

(X) : y(ϕ, v) =


ψ∗ sinhϕ + v sinψ coshϕ
ψ∗ coshϕ + v sinψ sinhϕ

−hϕ + v cosψ

 , (4.24)

or

(X) : −
x2

ψ∗2
+

y2

ψ∗2
+

Z2

χ2 = 1, (4.25)

where χ = ψ∗ cotψ, and Z = z+hϕ. The constants h, ψ and ψ∗ can control the shape of (X). So, (X) is a
3-parameter family of Lorentzian unit spheres. The intersection of each Lorentzian unit sphere and the
corresponding spacelike plane z = −hϕ is a one-parameter family of Lorentzian circles −x2 + y2 = ψ∗2.
Therefore, the envelope of (X) is a one-parameter family of Lorentzian cylinders. Take ψ∗ = 0, ψ = π

2 ,
and h = 2 for example, then the striction curve is the spacelike Disteli-axis, and the spacelike helicoidal
surface is shown in Figure 2; −2.5 ≤ v ≤ 2.5, and −1.7 ≤ ϕ ≤ 1.7.
Example 2. In this example, we verify the idea of Corollary 4.
In view of Eqs (4.8), (4.11) and (4.16) we have: γ̂ = 0 (ψ = π

2 , ψ∗ = 0)⇔ γ̂ = cot ϑ̂, and

x̂(ϕ̂) =
(
cos ϑ̂ cosh ϕ̂, cos ϑ̂ sinh ϕ̂,− sin ϑ̂

)
. (4.26)

The equation of the striction curve of (X), in terms of (X), can therefore be written as:

r(ϕ) := r(ϕ) + ϑ∗t(ϕ) = (0, 0,−hϕ) + ϑ∗ (sinhϕ, coshϕ, 0) . (4.27)

By a similar procedure, we have

x = ϑ∗ sinhϕ + v cosϑ coshϕ,
y = ϑ∗ coshϕ + v cosϑ sinhϕ,
z = −hϕ − v sinϑ,


or

(X) : −
x2

ϑ∗2
+

y2

ϑ∗2
+

Z
2

χ2 = 1, (4.28)
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where χ = ϑ∗ cotϑ, and Z = z + hϕ. The constants h, ϑ and ϑ∗ can control the shape of the surface
(X). Hence, (X) has the same geometrical properties as in Eq (4.25). Take ϑ = π

3 , ϑ∗ = 1and h = 2 for
example, the spacelike Bertrand offset is shown Figure 3, where −3 ≤ v ≤ 3, and 0 ≤ ϕ ≤ 2π. The
graph of the spacelike helicoidal surface (X) with its Bertrand offset (X) is shown in Figure 4.

Figure 2. Spacelike helicoidal
surface.

Figure 3. Spacelike Bertrand
offset.

Figure 4. (X) and its Bertrand offset (X).

4.1. Properties of the striction curves

Now, we study the relationships among the striction curves of (X) and (X). Therefore, with the
using of Definition 2, the striction curve c(s) of (X) is

c(s) = c(s) + ϑt(s), (4.29)

from which we obtain
dc(s)

ds
ds
ds

= (Γ + ϑ∗)x + (µ + γϑ∗)g, (4.30)
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whereas, as in Eq (4.3) , is:
dc(s)

ds
= Γ(s)x(s) + µ(s)g(s). (4.31)

It follows from the Eqs (4.30) and (4.31) that:

ds
ds

=
Γ + ϑ∗

Γ cosϑ + µ sinϑ
=

µ + γϑ∗

−Γ sinϑ + µ cosϑ
. (4.32)

Hence, the following cases can be obtained:
Case (1) If (X) is a spacelike tangential surface, that is, µ = 0. In this case, from Eq (4.32) , it follows
that

µ = Γ
γϑ∗ cosϑ + (Γ + ϑ∗) sinϑ
γϑ∗ sinϑ − (Γ + ϑ∗) cosϑ

. (4.33)

Thus the Bertrand offset of a spacelike tangential is not spacelike tangential, that is, µ(s) , 0. If (X) is
also a spacelike tangential, that is, µ(s) = 0. In this case, we can obtain the relationships

(1 + ϑ∗κ(υ)) sinϑ + ϑ∗τ(υ) cosϑ = 0. (4.34)

Theorem 6. If (X) and (X) are two spacelike tangential Bertrand offsets then their striction curves are
spacelike Bertrand curves.

Furthermore, from Eq (48) the offset distance ϑ∗ is

ϑ∗ = −
sinϑ

κ(υ) sinϑ + τ(υ) cosϑ
. (4.35)

Hence, the following corollaries may be given:
Corollary 7. If (X) and (X) are two spacelike tangential Bertrand oriented offsets (ϑ = 0) then their
generators are coincident, that is, ϑ∗ = 0, and for τ(υ) , 0 they are coincident.
Corollary 8. If (X) and (X) are two spacelike tangential Bertrand right offsets (ϑ = π

2 ) then edge of
regression of (X) is a spacelike curve with constant curvature, that is, κ(υ) = 1/ϑ∗.
Case (2) If (X) is a spacelike binormal ruled surface of its spacelike striction curve, that is, Γ = 0. In
this case, from Eq (4.32) , it follows that

Γ = µ
ϑ∗ cosϑ − (γϑ∗ + µ) sinϑ
ϑ∗ sinϑ + (γϑ∗ + µ) cosϑ

. (4.36)

Thus the Bertrand offset of a spacelike binormal is not spacelike binormal, that is, Γ(s) , 0.
Furthermore, if the spacelike Bertrand offset (X) is also a spacelike binormal, then we have:

τ(υ)ϑ∗ cosϑ − (κ(υ)ϑ∗ + 1) sinϑ = 0. (4.37)

Theorem 7. If (X) and (X) are two spacelike binormal Bertrand offsets then their striction curves are
spacelike Bertrand curves.

From Eq (4.37) , we also have:

ϑ∗ = −
sinϑ

τ(υ) cosϑ − κ(υ) sinϑ
.

Hence, we can have all the corresponding corollaries for spacelike tangential; we omit the details here.

AIMS Mathematics Volume 7, Issue 10, 17843–17858.



17857

5. Conclusions

In this paper, we study Bertrand surface offsets by considering the E. Study map of lines in terms
of dual numbers in Minkowski 3-space E3

1. We obtain relationships between the invariants of Bertrand
offsets of spacelike ruled surfaces. Furthermore, we obtain some theorems and results characterizing
Bertrand offsets of spacelike ruled surface offsets. For future work we suggest that Gaussian and mean
curvatures of these Bertrand offsets can be calculated, when the Weingarten map for the Bertrand
offsets spacelike ruled surfaces is defined.
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