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1. Introduction

There is no doubt that the theory of limits of probability occupies a prominent place in classical
probability theory. They were widely utilized in various sectors, including statistics, finance, and
economics. The classical limit theory of probability considers only additive probabilities and additive
expectations. It is mainly applicable to deterministic models. Many phenomena arising from quantum
mechanics and risk measures are uncertain. They cannot be measured by additive probabilities
and expectations, highlighting the limitations of applying the limit theory of probability space. So,
can there be a new metric for the portrayal of uncertain phenomena? Having been prompted by
the exigencies of modeling uncertainty in practice, academician Peng [1, 2] constructed a general
theoretical framework for sub-linear expectations under general function space. This theoretical
framework breaks away from the traditional linear probability space. It allows the stochasticity and risk
generated by models of uncertainty to be depicted in terms of capacity and non-linear expectation. It’s
apparent that such a new expectation bridges the gap of the narrow scope of application of probability
theory and open up a new horizon for the development and application of limit theory.

As a nascent theoretical system, it naturally arouses strong research interest among scholars. So
far, in terms of the definition, properties, and research tools, academics have continuously made
significant efforts to improve the content and have achieved many excellent works under the sub-linear
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expectations. In Peng’s framework, we can see that plenty limit theorems have recently progressively
emerged, containing the celebrated (weighted) central limit theory (see Peng [3], Li and Shi [4], Zhang
and Chen [5], Li [6], Liu and Zhang [7]), strong law of large numbers (SLLN) (see Chen [8], Wu
and Jiang [9], Huang and Wu [10], Zhan and Wu [11], Ma and Wu [12] ), weak LLN (see Chen et
al. [13], Hu [14]), Marcinkiewicz-Zygmund LLN (see Hu [15]), Marcinkiewicz’s SLLN (see Zhang
and Lin [16]). It is worth mentioning that Zhang [17–19] obtained exponential inequalities, Rosenthal
inequalities and strong limit theorems under the sub-linear expectations, and his results provide robust
tools for scholars to continue to explore the convergence of diverse categories of series under the
sub-linear expectations. Recently, Wu [20] established strong limit theorems, Ding [21] investigated
a general form of precise asymptotics for complete convergence. In the setting of non-additive
probabilities, Guo and Zhang [22] gave the definition of m-dependent sequence of random variables,
and created moderate deviation principle, Feng [23] introduced pseudo-independence and investigated
the logarithmic law of weighted sums, Xu and Zhang [24] made a suitable innovation in the conditions
of theorems by relaxing the conditions to obtain a law of logarithm, Liu and Zhang [25] presented
the concept of a strictly stationary sequence, and acquired the law of the iterated logarithm (LIL), Wu
and Lu [26], and Zhang [27] studied the Chover’s, Chung’s LIL, respectively, Guo et al. [28] obtained
the Hartman-Wintner LIL. By analyzing the results of the existing studies, it is not unexpected to
observe that the intense interest of many scholars in sub-linear expectations has yielded numerous rich
results that enrich the content of non-linear expectations. Moreover, we can see that many classical
limit theories under the sub-linear expectations are derived from probability space, and the extension
of probability space theory has emerged as a new research trend. Limit theorems for sub-linear
expectation space are fraught with more unknowns and challenges than those for probability space,
because the expectation and capacity do not have additive properties.

Encouraged by the non-linear expectations, we focus on an array of END random variables and
establish almost sure convergence theorems. Zhang [19] defined END in Peng’s framework. Since
then, the scope of research on random variables has been expanded. The problems considered have
become more and more relevant to real-life situations, providing a reliable aid to model uncertainty
problems. This paper aims to promote the results of Da Silva [29] from linear to non-linear space and
obtain an almost sure convergence theorem. Furthermore, we give two conditions on upper integrals
based on the theorem and yield deterministic bounds for END random variables.

The following is the outline for this paper. Section 2 briefly summarizes some of the properties,
definitions, and descriptions of the special notations involved in this work. Not only that, but we
have also enumerated some significant lemmas that will play a key role in our subsequent proofs. In
Section 3, we establish an almost sure convergence theorem based on some conditions and present
corollaries relied on different upper integration conditions to obtain deterministic bounds. The last
section is a detailed proof of the theorem and corollaries of the third section.

2. Preliminaries

We use the framework and notions of Peng [1]. Let (Ω,F ) be a given measurable space and letH be
a linear space of real functions defined on (Ω,F ) such that if X1, X2, . . . , Xn ∈ H then ϕ(X1, . . . , Xn) ∈
H for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions ϕ
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satisfying

|ϕ(x) − ϕ(y)| ≤ c(1 + |x|m + |y|m)|x − y|, ∀ x, y ∈ Rn,

for some c > 0, m ∈ N depending on ϕ. H is considered as a space of random variables. In this case
we denote X ∈ H .

Definition 2.1. (Peng [1]) A sub-linear expectation Ê on H is a function Ê : H → R̄ satisfying the
following properties: for all X,Y ∈ H , we have
(a) Monotonicity: If X ≥ Y then Ê(X) ≥ Ê(Y);
(b) Constant preserving: Ê(c) = c;
(c) Sub-additivity: Ê(X + Y) ≤ Ê(X) + Ê(Y); whenever Ê(X) + Ê(Y) is not of the form +∞ − ∞ or
−∞ +∞;
(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.

Here R̄ := [−∞,∞]. The triple (Ω,H , Ê) is called a sub-linear expectation space.
Give a sub-linear expectation Ê, let us denote the conjugate expectation ε̂ of Ê by

ε̂(X) := −Ê(−X), ∀X ∈ H .

From the definition, it is easily shown that for all X,Y ∈ H

ε̂(X) ≤ Ê(X), Ê(X + c) = Ê(X) + c,

|Ê(X − Y)| ≤ Ê(|X − Y |) and Ê(X − Y) ≥ Ê(X) − Ê(Y).

If Ê(Y) = ε̂(Y), then Ê(X + aY) = Ê(X) + aÊ(Y) for any a ∈ R.
Next, we consider the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A

function V : G → [0, 1] is called a capacity if

V(∅) = 0, V(Ω) = 1 and V(A) ≤ V(B) ∀A ⊆ B, A, B ∈ G.

It is called to be sub-additive if V(A ∪ B) ≤ V(A) + V(B) for all A, B ∈ G with A ∪ B ∈ G. In the
sub-linear space (Ω,H , Ê), we denote a pair (V,V) of capacities by

V(A) := inf{Ê(ξ); I(A) ≤ ξ, ξ ∈ H}, V(A) := 1 − V(Ac), ∀A ∈ F ,

where V(Ac) is the complement set of A. It is obvious that V is sub-additive, and

V(A) ≤ V(A), ∀A ∈ F ; V(A) = Ê(I(A)), V(A) = ε̂(I(A)), if I(A) ∈ H .

Property 2.1. For all B ∈ F , if η ≤ I(B) ≤ ξ, η, ξ ∈ H , then

Ê(η) ≤ V(B) ≤ Ê(ξ). (2.1)

Remark 2.1. From (2.1), for all X ∈ H , y > 0, γ > 0, it emerges that V(|X| ≥ y) ≤ Ê(|X|γ)/yγ, which
is the well-known Markov’s inequality.

Remark 2.2. Mathematical expectation corresponds to the integral in (Ω,A, P), where the integral
depends on a probability. In (Ω,H , Ê), capacity is an alternative to probability, so what is the
relationship between the capacity and integral? The following is the definition of the upper integral.
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Definition 2.2. For all |X| ∈ H , define

CV(|X|) :=
∫ ∞

0
V (|X| > x) dx.

From the above definition, we cannot help but think of the definition of mathematical expectation
in probability space, E(|X|) :=

∫ ∞
0

P (|X| > x) dx. In (Ω,H , Ê), Ê(|X|) and CV(|X|) are not related in the
general situations. From Zhang [17], we can learn that Ê(|X|) ≤ CV(|X|) if one of the following three
circumstances is satisfied: (i) Ê is countably sub-additive; (ii) Ê(|X| −d)I(|X| > d)→ 0, as d → ∞; (iii)
|X| is bounded.

Definition 2.3. (Zhang [19] extended negative dependence (END)) In (Ω,H , Ê), r.v. {Xn; n ≥ 1} is
known as being upper (lower) END, if for a certain controlling constant M ≥ 1 that makes

Ê

 n∏
i=1

ϕi (Xi)

 ≤ M
n∏

i=1

Ê (ϕi (Xi)) , ∀n ≥ 2,

as long as ϕi(x) is non-negative, ϕi(x) ∈ Cb,Lip (R), i ≥ 1, are all non-decreasing (resp. all non-
increasing).

What is clear is that suppose {Xn; n ≥ 1} is a END r.v. and for i ≥ 1, fi (x) ∈ Cl,Lip(R) are all
non-decreasing (resp. all non-increasing), so { fn (Xn) ; n ≥ 1} is as well an END r.v. sequence.

Remark 2.3. The definition of the independence can be found in Peng [1]. Zhang [18] introduced
negative dependence (ND), this is the first extension of the study of r.v. in (Ω,H , Ê) since Peng first
introduced the definition of independence. Immediately following, Zhang [19] presented the concept
of END, which further expanded the scope of the study of random variables, and it is based on this
relatively broad random variable that this paper is based on.

Definition 2.4. (Zhang [17]) (i) A sub-linear expectation Ê : H → R is called to be countably sub-
additive if it satisfies

Ê(X) ≤
∞∑

n=1

Ê(Xn), whenever X ≤
∞∑

n=1

Xn, X, Xn ∈ H , X ≥ 0, Xn ≥ 0, n ≥ 1.

(ii) A function V : F → [0, 1] is called to be countably sub-additive if

V

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

V (An) , ∀An ∈ F .

Wu and Jiang [9] described in detail the almost sure convergence under Ê. Moreover, Wu and
Lu [26] gave an example to elaborate on Xn → X a.s. V cannot derive Xn → X a.s. V.

Under sub-linear expectations, since expectation and capacity are uncertain, almost sure
convergence is different from the traditional probability space, so many of the criteria that hold in
probability space do not necessarily apply to sub-linear expectations. Therefore, it is more challenging
to study the almost sure convergence theorems under sub-linear expectations.

Our main purpose in defining a function g(x) ∈ Cl,Lip(R) is to modify the indicator function so that
a function like I(|x| ≤ a) remains continuous, which we define as follows.
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For 0 < µ < 1, suppose that the even function g(x) ∈ Cl,Lip(R) and g(x) ↓ in x > 0, such that
0 ≤ g(x) ≤ 1 for all x and g(x) = 1 if |x| ≤ µ, g(x) = 0 if |x| ≥ 1. Then

I(|x| ≤ µ) ≤ g(x) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1 − g(x) ≤ I(|x| > µ). (2.2)

In the whole process of this work, c refers to a positive constant that varies according to location.
an � bn denotes that there is a constant c > 0 such that an ≤ cbn for sufficiently large n. I(·) denotes
indicator function. log n := ln{max(n, e)}. an ∼ bn means limn→∞

an
bn

= 1.
The following auxiliary tools are required to prove our results.
According to the definition of capacity, we know that capacity is sub-additive, but not necessarily

countably sub-additive. When Borel-Cantelli’s lemma from probability space is generalized to sub-
linear expectations, the first section of the lemma requires the addition of the condition that the capacity
is countably sub-additive.

Lemma 2.1. (Zhang [17] Borel-Cantelli’s lemma) Assume that {Am; m ≥ 1} represents a sequence
of occurrences in F , and V is countably sub-additive. As long as

∑∞
m=1 V (Am) < ∞, concluding

V
(⋂∞

m=1
⋃∞

i=m Ai
)

= 0.

Lemma 2.2. (Zhong and Wu [30]) Assume X ∈ H , p > 0, β > 0, and the slowly varying function is
represented by l(x). Then,

CV
(
|X|pl

(
|X|1/β

))
< ∞ ⇔

∞∑
n=1

nβp−1l(n)V
(
|X| > cnβ

)
< ∞, f or any c > 0. (2.3)

Lemma 2.3. (Zhang [19]) Let {Xk; k ≥ 1} be a sequence of upper END r.v. in (Ω,H , Ê), and Ê (Xk) ≤ 0.
Then for every x, y > 0,

V (S n>x) ≤ V
(
max
1≤k≤n

Xk>y
)

+ M exp
{
−

x2

2 (xy + Bn)

(
1 +

2
3

log
(
1 +

xy
Bn

))}
, (2.4)

where Bn =
∑n

k=1 Ê(X2
k ).

3. Main results

Theorem 3.1. It is assumed thatV and Ê are countably sub-additive. Suppose that {Xnk, 1 ≤ k ≤ n, n ≥
1} is an array of row-wise upper END r.v., where there are a r.v. X and a constant c0, fulfilling

1
n

n∑
k=1

Ê(h (|Xnk|)) ≤ c0Ê(h(|X|)), for n ≥ 1, h ∈ Cl,Lip(R) and h ≥ 0. (3.1)

Let {cn, n ≥ 1} and {dn, n ≥ 1} both be positive increasing constants sequences, with
supn≥1 c4n/(ncn) < ∞ and n/

√
dn log n ↑. If

n∑
k=1

Ê(X2
nk) ≤ dn/4, (3.2)

a := lim sup
n→∞

2cn

√
log n/dn < ∞, (3.3)
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∞∑
n=1

ncn√
dn log n

V
(
|X| > µ2cn

)
< ∞, (3.4)

where µ is the same as in (2.2).
Then

lim sup
n→∞

1√
dn log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤ a +

√
2 + a2 a.s. V. (3.5)

Further, if {Xnk, 1 ≤ k ≤ n, n ≥ 1} is lower END, then

lim inf
n→∞

1√
dn log n

n∑
k=1

(Xnk − ε̂(Xnk)) ≥ −a −
√

2 + a2 a.s. V. (3.6)

In particular, if {Xnk, 1 ≤ k ≤ n, n ≥ 1} is END and Ê(Xnk) = ε̂(Xnk), then

lim sup
n→∞

1√
dn log n

∣∣∣∣∣∣∣
n∑

k=1

(
Xnk − Ê(Xnk)

)∣∣∣∣∣∣∣ ≤ a +
√

2 + a2 a.s. V. (3.7)

Remark 3.1. The conclusion of Theorem 3.1 is very widespread. For cn and dn, we can choose distinct
values depending on the corresponding requirements, thus yielding distinct outcomes. For instance,
when cn =

√
dn/4 log n, dn = 4c0nÊ(X2), condition (3.4) turns into

Ê(X2) < ∞, CV(X4 log |X|) < ∞. (3.8)

Corollary 3.1. If {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of row-wise END r.v.. Suppose that both Ê and V
are countably sub-additive. Conditions (3.1) and (3.8) also hold, then

lim sup
n→∞

1√
n log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤ 2(1 +

√
3)

√
c0Ê(X2) a.s. V, (3.9)

and

lim inf
n→∞

1√
n log n

n∑
k=1

(Xnk − ε̂(Xnk)) ≥ −2(1 +
√

3)
√

c0Ê(X2) a.s. V. (3.10)

Particularly, if Ê(Xnk) = ε̂(Xnk), then

lim sup
n→∞

1√
n log n

∣∣∣∣∣∣∣
n∑

k=1

(
Xnk − Ê(Xnk)

)∣∣∣∣∣∣∣ ≤ 2(1 +
√

3)
√

c0Ê(X2) a.s. V, (3.11)

where c0 is the same as in (3.1).

Remark 3.2. Furthermore, taking dn = c0n log log n/(2 log n), cn = 1
4

√
dn/ log n in Theorem 3.1,

condition (3.4) turns into

Ê(X2) < ∞, CV

(
|X|4(log |X|)3

(log log |X|)2

)
< ∞. (3.12)

Thus, we can obtain the following outcome.
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Corollary 3.2. If {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of row-wise END r.v.. Suppose that both Ê and V
are countably sub-additive. Conditions (3.1), (3.12) are also satisfied. Supposed that (3.2) holds with
dn = c0n log log n/(2 log n), then

lim sup
n→∞

1√
2n log log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤
√

c0 a.s. V, (3.13)

and

lim inf
n→∞

1√
2n log log n

n∑
k=1

(Xnk − ε̂(Xnk)) ≥ −
√

c0 a.s. V. (3.14)

Particularly, if Ê(Xnk) = ε̂(Xnk), then

lim sup
n→∞

1√
2n log log n

∣∣∣∣∣∣∣
n∑

k=1

(
Xnk − Ê(Xnk)

)∣∣∣∣∣∣∣≤√c0 a.s. V, (3.15)

where c0 is the same as in (3.1).

Remark 3.3. The result of Corollary 3.2 is similar to the Hartman-Wintner LIL in probability space.

Remark 3.4. Our Theorem 3.1 and Corollary 3.1 extend the findings of Da Silva [29] from (Ω,A, P)
to the (Ω,H , Ê).

Remark 3.5. (3.1) is very close to the interpretation of weak average dominance in (Ω,A, P). This
definition is weaker than the definition of stochastic domination. In (Ω,H , Ê), stochastic domination
is usually defined as that Ê( f (|Xnk|)) ≤ cÊ( f (|X|)), for n ≥ 1, 1 ≤ k ≤ n, 0 ≤ f ∈ Cl,Lip(R), which
is a weaker condition than the identically distributed (Peng [1]). Because of this, condition (3.1) is
relatively weak.

4. Proof of main result

Proof of Theorem 3.1. We first prove (3.5). For fixed n ≥ 1, and for any 1 ≤ k ≤ n, denote

Ynk := −cnI(Xnk < −cn) + XnkI(|Xnk| ≤ cn) + cnI(Xnk > cn),
Y ′nk := Xnk − Ynk = (Xnk + cn)I(Xnk < −cn) + (Xnk − cn)I(Xnk > cn).

(4.1)

Noting that

1√
dn log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
=

1√
dn log n

n∑
k=1

(
Ynk − Ê(Ynk)

)
+

1√
dn log n

n∑
k=1

Y ′nk

+
1√

dn log n

n∑
k=1

(
Ê(Ynk) − Ê(Xnk)

)
:=I1 + I2 + I3.
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Accordingly, to prove (3.5), simply verify the following

lim sup
n→∞

I1 ≤ a +
√

2 + a2 a.s. V, (4.2)

lim sup
n→∞

I2 ≤ 0 a.s. V, (4.3)

lim
n→∞

I3 = 0. (4.4)

First, we prove (4.2). For arbitrary ε > 0,
{
Ynk − Ê(Ynk), 1 ≤ k ≤ n, n ≥ 1

}
satisfies the requirements

of Lemma 2.3, taking x =
√

dn log n
(
a +
√

2 + a2 + ε
)
, y = 2cn in (2.4), we obtain

V
(
S n>

√
dn log n

(
a +
√

2 + a2 + ε
))

≤V
(
max
1≤k≤n

Xk>2cn

)
+ M exp

−
( √

dn log n
(
a +
√

2 + a2 + ε
))2

2
( √

dn log n
(
a +
√

2 + a2 + ε
)

2cn + Bn

) 1 +
2
3

log

1 +

√
dn log n

(
a +
√

2 + a2 + ε
)

2cn

Bn



 .

(4.5)

By |Ynk| = min{|Xnk|, cn}, it is easy to get that

|Ynk − Ê(Ynk)| ≤ |Ynk| + |Ê(Ynk)| ≤ |Ynk| + Ê(|Ynk|) ≤ 2cn,

and V
(
max1≤k≤n(Ynk − Ê(Ynk))>2cn

)
= 0. By Cr inequality, we get Ê(Ynk − Ê(Ynk))2 ≤ 2(Ê(|Ynk|

2) +

|Ê(Ynk)|2) ≤ 4Ê(|Ynk|
2), and by (3.2), so it’s not hard to find that

n∑
k=1

Ê
(
Ynk − Ê(Ynk)

)2
≤ 4

n∑
k=1

Ê(|Ynk|
2) ≤ 4

n∑
k=1

Ê(|Xnk|
2) ≤ dn.

From (4.5), we have access to

∞∑
n=1

V

 n∑
k=1

(
Ynk − Ê(Ynk)

)
>

√
dn log n

(
a +
√

2 + a2 + ε
)

≤ M
∞∑

n=1

exp

− dn log n
(
a +
√

2 + a2 + ε
)2

2
(
2cn

√
dn log n

(
a +
√

2 + a2 + ε
)

+ dn

) 1 +
2
3

log

1 +

√
dn log n

(
a +
√

2 + a2 + ε
)

2cn

dn





≤ M
∞∑

n=1

exp

−
(
a +
√

2 + a2 + ε
)2

2
(

2cn

√
log n

(
a+
√

2+a2+ε
)
+
√

dn
√

dn

) log n


= M

∞∑
n=1

exp

−
(
a +
√

2 + a2 + ε
)2

2
(
2cn

√
log n

dn

(
a +
√

2 + a2 + ε
)

+ 1
) log n

 . (4.6)
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Note that

r := lim inf
n→∞

(
a +
√

2 + a2 + ε
)2

2
(
2cn

√
log n

dn

(
a +
√

2 + a2 + ε
)

+ 1
)

=

(
a +
√

2 + a2 + ε
)2

2
(
lim supn→∞ 2cn

√
log n

dn

(
a +
√

2 + a2 + ε
)

+ 1
)

=

(
a +
√

2 + a2 + ε
)2

2
(
a
(
a +
√

2 + a2 + ε
)

+ 1
)

=
2a2 + 2a

√
2 + a2 + 2aε + 2 + ε2 + 2

√
2 + a2ε

2a2 + 2a
√

2 + a2 + 2aε + 2
>1.

Thus, by (4.6), taking 1 < r1 < r, we have

∞∑
n=1

V

 n∑
k=1

(
Ynk − Ê(Ynk)

)
>

√
dn log n

(
a +
√

2 + a2 + ε
) � ∞∑

n=1

exp(log n−r1) =

∞∑
n=1

n−r1 < ∞.

By Borel-Cantelli’s lemma, we get

V

 n∑
k=1

(
Ynk − Ê(Ynk)

)
>

√
dn log n

(
a +
√

2 + a2 + ε
)

; i.o.

 = 0.

It means
lim sup

n→∞
I1 ≤ a +

√
2 + a2 a.s. V. (4.7)

Next, we prove (4.4). For any n, it is always possible to find an i satisfying 2i ≤ n < 2i+1. By (3.4),
and n/

√
dn log n ↑, we get

∞∑
n=1

ncn√
dn log n

V
(
|X| > µ2cn

)
=

∞∑
i=0

∑
2i≤n<2i+1

ncn√
dn log n

V
(
|X| > µ2cn

)
≥

∞∑
i=1

∑
2i≤n<2i+1

2i√
d2i log 2i

c2iV
(
|X| > µ2c2i+1

)
=

∞∑
i=1

(2i)2√
d2i log 2i

c2iV
(
|X| > µ2c2i+1

)
.

Thus, (3.4) implies

∞∑
i=1

(2i)2√
d2i log 2i

c2iV
(
|X| > µ2c2i+1

)
< ∞. (4.8)
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For j ≥ 1, we assume that g j(x) ∈ Cl,Lip(R) be an even function, and for all x, g j(x) ∈ [0, 1], satisfying

g j (x) =

{
1, c2 j−1 < |x| ≤ c2 j ,

0, |x| ≤ µc2 j−1 or |x| > (1 + µ)c2 j ,

where µ is the identical to that in (2.2).
This shows

I (c2 j−1 < |X| ≤ c2 j) ≤g j (|X|) ≤ I (µc2 j−1 < |X| ≤ (1 + µ) c2 j) ,

|X|l g
(
|X|
c2i

)
≤ cl

1+

i∑
j=1

|X|lg j(|X|), ∀l > 0,
(4.9)

and

1 − g
(
|X|
c2i

)
≤ I (|X| > µc2i) ≤ I

(
|X|
µ
> c2i−1

)
=

∞∑
j=i

I
(
c2 j−1 <

|X|
µ
≤ c2 j

)
≤

∞∑
j=i

g j

(
|X|
µ

)
. (4.10)

According to the (4.1), (2.2), and the definition of Y ′nk can be known that

|Y ′nk| ≤ |Xnk + cn|I(Xnk < −cn) + |Xnk − cn|I(Xnk > cn)
= (|Xnk| − cn)I(|Xnk| > cn)

≤ |Xnk|

(
1 − g

(
|Xnk|

cn

))
.

(4.11)

Combined with (2.1), (3.1), (4.9), (4.10), (4.11), g(x) ↓ in x > 0, n/
√

dn log n ↑, 2i ≤ n < 2i+1,
supn≥1 c4n/(ncn) < ∞, and Ê is countably sub-additive, we can obtain

|I3| ≤
1√

dn log n

n∑
k=1

∣∣∣Ê(Ynk) − Ê(Xnk)
∣∣∣

≤
1√

dn log n

n∑
k=1

Ê (|Xnk − Ynk|)

=
1√

dn log n

n∑
k=1

Ê
(∣∣∣Y ′nk

∣∣∣)
≤

1√
dn log n

n∑
k=1

Ê

(
|Xnk|

(
1 − g

(
|Xnk|

cn

)))
�

1√
dn log n

nÊ
(
|X|

(
1 − g

(
|X|
cn

)))
≤

2i+1√
d2i+1 log 2i+1

Ê

(
|X|

(
1 − g

(
|X|
c2i

)))
≤

2i+1√
d2i+1 log 2i+1

∞∑
j=i

Ê

(
|X|g j

(
|X|
µ

))
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�
2i+1√

d2i+1 log 2i+1

∞∑
j=i

c2 jV
(
|X| > µ2c2 j−1

)
�

∞∑
j=i

c2 j

2 j−2c2 j−2

(2 j−2)2√
d2 j−2 log 2 j−2

c2 j−2V
(
|X| > µ2c2 j−1

)
�

∞∑
j=i

(2 j−2)2√
d2 j−2 log 2 j−2

c2 j−2V
(
|X| > µ2c2 j−1

)
. (4.12)

Combining with (4.8), we obtain

∞∑
j=3

(2 j−2)2√
d2 j−2 log 2 j−2

c2 j−2V
(
|X| > µ2c2 j−1

)
=

∞∑
j=1

(2 j)2√
d2 j log 2 j

c2 jV
(
|X| > µ2c2 j+1

)
< ∞. (4.13)

So, we have

I3 → 0, as n → ∞. (4.14)

Now, we shall demonstrate (4.3). By (3.1), (4.8), (4.11), (4.13), n/
√

dn log n ↑, supn≥1 c4n/(ncn) <
∞, Markov’s inequality, and Ê is countably sub-additive, we get that for every ε > 0,

∞∑
n=2

V

 1√
dn log n

n∑
k=1

Y ′nk > ε


�

∞∑
n=2

1√
dn log n

n∑
k=1

Ê
(∣∣∣Y ′nk

∣∣∣)
≤

∞∑
n=2

1√
dn log n

n∑
k=1

Ê

(
|Xnk|

(
1 − g

(
|Xnk|

cn

)))
�

∞∑
n=2

1√
dn log n

nÊ
(
|X|

(
1 − g

(
|X|
cn

)))
≤

∞∑
i=1

∑
2i≤n<2i+1

1√
d2i+1 log 2i+1

2i+1Ê

(
|X|

(
1 − g

(
|X|
c2i

)))

�

∞∑
i=1

(2i)2√
d2i+1 log 2i+1

∞∑
j=i

Ê

(
|X|g j

(
|X|
µ

))

≤

∞∑
j=3

Ê

(
|X|g j

(
|X|
µ

)) j∑
i=1

(2i)2√
d2i log 2i

�

∞∑
j=3

(2 j)2√
d2 j log 2 j

c2 jV
(
|X| > µ2c2 j−1

)
�

∞∑
j=3

c2 j

2 j−2c2 j−2

(2 j−2)2√
d2 j−2 log 2 j−2

c2 j−2V
(
|X| > µ2c2 j−1

)
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�

∞∑
j=3

(2 j−2)2√
d2 j−2 log 2 j−2

c2 j−2V
(
|X| > µ2c2 j−1

)
< ∞.

Thus, by Borel-Cantelli’s lemma, it is fairly straightforward to obtain

lim sup
n→∞

I2 ≤ 0 a.s. V. (4.15)

Together with (4.7) and (4.14) hold, yields the (3.5).
Further considerations, if {Xnk, 1 ≤ k ≤ n, n ≥ 1} is lower END, then {−Xnk, 1 ≤ k ≤ n, n ≥ 1} is

upper END. In (3.5), replace {Xnk, 1 ≤ k ≤ n, n ≥ 1} with {−Xnk, 1 ≤ k ≤ n, n ≥ 1}, from ε̂(Xnk) :=
−Ê(−Xnk), for which we have

a +
√

2 + a2 ≥ lim sup
n→∞

1√
dn log n

n∑
k=1

(
−Xnk − Ê(−Xnk)

)
= − lim inf

n→∞

1√
dn log n

n∑
k=1

(Xnk − ε̂(Xnk)) a.s. V.

(4.16)

From this it is clear that

lim inf
n→∞

1√
dn log n

n∑
k=1

(Xnk − ε̂(Xnk)) ≥ −a −
√

2 + a2 a.s. V.

That is to say (3.6) also holds.
In particular, if {Xnk, 1 ≤ k ≤ n, n ≥ 1} is END and Ê(Xnk) = ε̂(Xnk), then (3.7) holds from (3.5) and

(3.6).
Consequently, we complete the proof of Theorem 3.1.

Proof of Corollary 3.1. Taking dn = 4c0nÊ(X2), by (3.1), we obtain

n∑
k=1

Ê(X2
nk) ≤ c0nÊ(X2) = dn/4. (4.17)

Thus, the condition of (3.2) holds. Putting cn =
√

dn/(4 log n), by condition (3.3) in Theorem 3.1, we
have

a = lim sup
n→∞

2cn

√
log n

dn

= lim sup
n→∞

2

√
dn

4 log n
×

√
log n

dn

= 1 < ∞.

Taking p = 4, β = 1 and l (|X|) = log |X| in (2.3) in Lemma 2.2. For any c > 0, we can gain that

CV
(
|X|4 log |X|

)
< ∞ ⇔

∞∑
n=2

n3 log nV (|X| > cn) < ∞,
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⇔

∫ ∞

2
y3 log yV (|X| > cy) dy < ∞. (4.18)

Next, by cn =
√

dn
4 log n =

√
c0nÊ(X2)

log n , we consider that

∞∑
n=2

ncn√
dn log n

V
(
|X| > µ2cn

)
=

∞∑
n=2

n

√
dn

4 log n
×

1√
dn log n

V
(
|X| > µ2cn

)
=

∞∑
n=2

n
2 log n

V
(
|X| > µ2cn

)
∼

∫ ∞

2

x
2 log x

V
(
|X| > µ2cx

)
dx

(
cx =

√
c0xÊ(X2)/ log x

)
=

∫ ∞

2

x
2 log x

V
(
|X| > c

√
x/ log x

)
dx. (4.19)

Let y =
√

x/ log x, then x→ ∞⇔ y→ ∞.
Note that

y2 =
x

log x
. (4.20)

Taking the logarithm on both sides of (4.20), we have

2 log y = log x − log log x ∼ log x, x→ ∞. (4.21)

Take the derivative of both sides of (4.20) with respect to y, we get

2y =
log x − 1
(log x)2 · x

′
y,

and combined with (4.21), we have

x′y =
2y(log x)2

log x − 1
∼ 2y log x ∼ 4y log y, y→ ∞. (4.22)

Combined (4.19) and (4.20), we can get

h(y) :=
x

2 log x
x′y ∼ 2y3 log y.

Hence, for 1 > 0, there exists a constant M1 > 0, such that when y ≥ M1, we have

h(y) ≤ 4y3 log y.

By (3.8), (4.18), (4.19), and (4.20)–(4.22), we obtain∫ ∞

2

x
2 log x

V(|X| > c
√

x/ log x) dx
(

let y =
√

x/ log x, b =
√

2/ log 2
)
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≤

∫ M1

b
h(y)V(|X| > cy) dy +

∫ ∞

M1

4y3 log yV(|X| > cy) dy

< ∞. (4.23)

It follows that assumptions (3.4) in Theorem 3.1 is also fulfilled. Next, we verify that

sup
n≥1

c4n

ncn
= sup

n≥1

√
c04nÊ(X2)

log 4n

n
√

c0nÊ(X2)
log n

= sup
n≥1

2
n

√
log n

log 4n
≤ 3 < ∞.

and

n√
dn log n

=
n√

4c0nÊ(X2) log n
= c

√
n

log n
,

apparently, n√
dn log n

↑, as n→ ∞.

Based on the above verification, it is clear that the conditions (3.2), (3.3) and (3.4) of Theorem 3.1
are all satisfied. Hence, putting dn = 4c0nÊ(X2), a = 1 into (3.5), we can achieve

lim sup
n→∞

1√
4c0nÊ(X2) log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤ 1 +

√
3 a.s. V.

That is,

lim sup
n→∞

1√
n log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤ 2(1 +

√
3)

√
c0Ê(X2) a.s. V.

Similarly, (3.10) and (3.11) also hold.
As a result, Corollary 3.1 is established.

Proof of Corollary 3.2. For dn = c0n log log n/(2 log n), cn = 1
4

√
dn/ log n, and assumptions (3.1)

and (3.2) both hold. Hence, we just need to verify the following

a = lim sup
n→∞

2cn

√
log n

dn

= lim sup
n→∞

2 ×
1
4

√
dn

log n
×

√
log n

dn

=
1
2
< ∞.

Thus, (3.3) holds.
By (3.12), and similar considerations to those in (4.19), taking p = 4, β = 1 and l (|X|) =

(log |X|)3

(log log |X|)2

in (2.3) in Lemma 2.2. For any c > 0, we can gain that

CV

(
|X|4(log |X|)3

(log log |X|)2

)
< ∞ ⇔

∞∑
n=3

n3(log n)3

(log log n)2V (|X| > cn) < ∞,
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⇔

∫ ∞

3

y3(log y)3

(log log y)2V (|X| > cy) dy < ∞. (4.24)

Hence, by cn = 1
4

√
dn

log n = 1
4

√
c0n log log n

2 log2 n
=

√
c0n log log n

4
√

2 log n
, we have

∞∑
n=11

ncn√
dn log n

V
(
|X| > µ2cn

)
=

∞∑
n=11

n
4

√
dn

log n
×

1√
dn log n

V
(
|X| > µ2cn

)
=

∞∑
n=11

n
4 log n

V

|X| > µ2

√
c0n log log n

4
√

2 log n


∼

∫ ∞

11

x
4 log x

V

|X| > c

√
x log log x

log x

 dx. (4.25)

For (4.25), similar considerations to (4.23).

Let y =

√
x log log x
log x , and denote

f (y) :=
x

4 log x
x′y =

y2 log x
4 log log x

· x′y ∼
2y2 log y

4 log log y
·

8y(log y)2

log log y
=

4y3(log y)3

(log log y)2 .

Hence, for 1 > 0, there exists a constant M2 > 0, such that when y ≥ M2, we have

f (y) ≤
8y3(log y)3

(log log y)2 .

Combined (4.25), (4.24) and (3.12), we obtain∫ ∞

11

x
4 log x

V

|X| > c

√
x log log x

log x

 dx

 let y =

√
x log log x

log x


≤

∫ M2

b′
f (y)V(|X| > cy) dy +

∫ ∞

M2

8y3(log y)3

(log log y)2V(|X| > cy) dy

< ∞.

In this case, both cn and dn satisfy the conditions supn≥1
c4n
ncn

= supn≥1

√
c04n log log 4n

4
√

2 log 4n
×

4
√

2 log n

n
√

c0n log log n
< ∞

and n√
dn log n

↑ in Theorem 3.1.

We have verified that both cn and dn satisfy the conditions of Theorem 3.1, so we can bring both
dn = c0n log log n/(2 log n) and a = 1/2 into (3.5) to get that

lim sup
n→∞

1√
c0n log log n

2 log n log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤

1
2

+

√
2 +

(
1
2

)2

a.s. V. (4.26)
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That means

lim sup
n→∞

1√
2n log log n

n∑
k=1

(
Xnk − Ê(Xnk)

)
≤
√

c0 a.s. V.

In the (3.13), −Xnk instead of Xnk, one can get (3.14), and (3.15) can be obtained through (3.13)
and (3.14).

Thus, the proof is finished.

5. Conclusions

The key findings of this study emerge from the probability space. There have been numerous
findings on the limit theory, and when compared to the limit theory of probability space, it is clear that
studying limit theory under sub-linear expectations, and in particular almost sure convergence, appears
to be more intractable of the fact that the expectations and capacities are no longer additive. Moreover,
many rules that apply to probability space do not apply to sub-linear expectation space. Therefore,
applying the appropriate auxiliary tools to conduct research properly becomes essential. In this paper,
our research draws mainly on the notion of extended negative dependence proposed by Zhang [19].
Zhang [19] also constructed capacity inequalities, which provide a reliable aid to our proof process.
The results of this paper are general compared to some of the existing results. Since the theorem’s
conclusion is relatively broad, it is possible to take values for cn and dn and thus obtain a fixed constant
a and different corollaries. In future research work, we will further consider studying a wider range of
random variables or arrays and continue to learn the strong limit theorem and consider more interesting
outcomes.
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