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Abstract: When the random sample size is assumed to converge weakly and to be independent of
the basic variables, the asymptotic distributions of extreme, intermediate, and central order statistics,
as well as record values, for a mixture of two stationary Gaussian sequences under an equi-correlated
setup are derived. Furthermore, sufficient conditions for convergence are derived in each case. An
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1. Introduction

In the literature, mixture distributions appear frequently and naturally when a statistical population
contains two or more subpopulations. They are also occasionally used to represent non-normal
distributions. A mixture distribution, which is a convex combination of two or more probability
density functions (PDFs), is a powerful and flexible tool for modelling complex data as it combines
the properties of the individual PDFs, see [1–6]. Besides this major use, Doğru and Arslan [7] and
Titterington et al. [8] showed that mixture models are frequently used in a variety of applications.
Given two distribution functions (DFs) FX1(x) = P(X1 ≤ x) and FX2(x) = P(X2 ≤ x), and weights
p and q = 1 − p, such that p, q ≥ 0, the mixing model of FX1 and FX2 can be defined by its DF as
FX(x) = pFX1(x) + qFX2(x). The random variable (RV) X in the mixing model is defined (cf. [6, 9]) as

X = BpX1 + BqX2, (1.1)
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where Bp = 1 − Bq is a Bernoulli distributed RV with parameter p = 1 − q, and the RVs X1 and X2 are
independent of Bp (and Bq). The mixing model can now be expressed in terms of RVs rather than DFs.
Furthermore, the dependence structure between the two RVs X1 and X2 has no bearing on the mixing
model. Recently, the representation (1.1) was employed by Barakat et al. [6, 10] to obtain the quantile
function of the mixing model. Moreover, this depiction was a key component in investigating the limit
distributions of extreme, intermediate, and central order statistics (OSs), as well as record values, of
the mixture of two stationary Gaussian sequences (SGSs) under an equi-correlated setup by Barakat
and Dwes [11]. The limit DFs of order RVs under the equi-correlated setting have been researched
by many academics, [12–16] are a few examples of publications on this topic and its importance. Our
goal in this work is to extend the results of Barakat and Dwes [11] when the sample size is assumed to
be an RV, which is independent of the basic variables.

Random sample sizes come up naturally in topics like sequential analysis, branching processes,
damage models, and rarefaction of point processes. Random minima and maxima also appear in
the study of floods, droughts, and breaking strength difficulties. One of the most important reasons
for random sizes to appear in statistical experiments is that some observations may be lost in many
biological and agricultural situations for a variety of causes, making it impossible to have a set sample
size. Also, the sample size can sometimes be determined by the occurrence of certain random events
making the sample size random. In reality, there are two scenarios in every application. The statistician
does not influence the relationship between the sample size and the underlying RVs in the first scenario
since the random sample size is generated by the problem itself. Among the authors who worked on this
scenario are [17–21]. On the other hand, if the random sample size is introduced as a model extension
(primarily for statistical inference), it may normally be assumed to be independent of the underlying
model. In this study, we adopt the second scenario, where we assume the random size is a positive
integer-valued RV νn, which is independent of the basic variables, and the DF P(νn ≤ x) = An(x)
converges weakly to a non-degenerate limit DF. Among the authors who worked on this scenario
are [17–19, 22, 23].

In the rest of this introductory section, we give a concrete formulation of the main problem of the
paper and display some auxiliary results. Let’s say there are two SGSs, {X1,i} and {X2,i}, i = 1, 2, ..., n.
Furthermore, let {X j,i}, j = 1, 2, have zero mean, unit variance and constant correlation coefficient
r j,n = E(X j,iX j,k) ≥ 0, i , k, written X j,i ∼ Gas(0, 1, r j,n). The sequence {X j,i}, j = 1, 2, can be
represented by X j,i =

√r j,nY j,0 +
√

1 − r j,nY j,i, i = 1, 2, ..., n, where Y j,0,Y j,1, ...,Y j,n are i.i.d standard
normal variables (cf. [21]). Moreover, if we assume that the two SGSs {X1,i} and {X2,i} are independent
without sacrificing generality, then by (1.1), the mixture of these sequences are

Xi = BpX1,i + BqX2,i, i = 1, 2, ..., n, (1.2)

where each of the sequences {X1,i} and {X2,i} is independent of Bp (and Bq). On the other hand, (1.2)
can be exemplified by Xi = Z0,n + Zi,n, i = 1, 2, ..., n, where

Zi,n :=
{

Bp
√

r1,nY1,0 + Bq
√

r2,nY2,0, if i = 0,
Bp

√
1 − r1,nY1,i + Bq

√
1 − r2,nY2,i, if i > 0,

(1.3)

P(Z0,n ≤ z) = pΦ

(
z
√

r1,n

)
+ qΦ

(
z
√

r2,n

)
, Φ(.) is the standard normal DF, and Z1,n,Z2,n, ..., Zn,n are i.i.d RVs
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with common DF

F (z) := P(Zi,n ≤ z) = pΦ

 z√
1 − r1,n

 + qΦ

 z√
1 − r2,n

 . (1.4)

Thus, for any 1 ≤ s ≤ n, the sth OS based on the sequence {Xi} can be written as

Xs:n = Z0,n + Zs:n, (1.5)

where Zs:n is the sth OS based on the sequence {Zi,n}, i = 1, 2, ..., n.
The OSs Xs:n and Xs′n:n := Xn−s+1:n are called the sth lower and upper extremes, respectively, if

the rank s ≥ 1 was fixed with respect to n. Using the well-known connection max(x1, x2, ..., xn) =

−min(−x1,−x2, ...,−xn), any result for the lower OSs may be deduced from the upper OSs, and vice
versa. There are two categories of OSs based on their rank nature, plus extreme OSs. If max(sn, n −
sn + 1) → ∞, as n → ∞, a sequence Xsn:n is termed a sequence of OSs with variable rank. As a result,
two specific variable ranks are of particular interest: (1) sn

n → 0 (or sn
n → 1), as n→ ∞, which we shall

call the lower (or the upper) intermediate rank case, and (2) sn
n → λ (0 < λ < 1), as n → ∞, which

will be referred to as the case of central ranks. The λth sample quantile is a familiar example of central
OSs, where sn = [λn], 0 < λ < 1, and [x] denotes the largest integer not exceeding x.

In a series of RVs, successive maxima, or values that rigorously exceed all previous values, are
recorded. Let {Xn, n ≥ 1} be i.i.d RVs with a common DF FX(x). Then, X j is an (upper) record
value if X j > Xi, ∀i < j, and as a result X1 is a record value. The record time sequence {Tn, n ≥ 1}
is the sequence of times at which records occur. Thus, T1 = 1, Tn = min{ j : X j > XTn−1 , n > 1}.
Consequently, the record value sequence {Rn} is given by Rn = XTn (cf. Arnold et al. [24]). The record
value XRn based on the sequence {Xi}, represented by (1.2), can be represented as

XRn = Z0,n + ZRn, (1.6)

where ZRn is the record value based on the sequence {Zi,n}, given by (1.3).
In the sequel, the following result will be frequently needed:

Lemma 1.1 (cf. [11]). Let η1, η2, ..., ηn be i.i.d RVs with a mixture DF

Fη(x) =

k∑
j=1

p jF j(α j,nx),
k∑

j=1

p j = 1, α j,n > 0,

where {F j(.)} is a sequence of non-degenerate DFs. Furthermore, let Gn(x) = anx + bn, an > 0, be a
suitable linear transformation. Then,

1) the limit distribution of the extreme OS ηn−s+1:n of the sequence {ηi} is given by

Fηn−s+1:n(Gn(x)) := P(ηn−s+1:n ≤ Gn(x))
w
−−→n

 k∏
j=1

Ψ
p j

j (x)

 s−1∑
l=0

(
−

k∑
j=1

p j log Ψ j(x)
)l

l!
,

if F j(α j,nGn(x)) belongs to the max-domain of attraction of the non-degenerate max-type Ψ j(x),
written F j(α j,nGn(x)) ∈ D(Ψ j(x)), j = 1, 2, ..., k,
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2) the limit distribution of central OS ηn−sn+1:n (where
√

n( sn
n − λ) −−→n 0) of the sequence {ηi} is given

by

Fηn−sn+1:n(Gn(x)) := P(ηn−sn+1:n ≤ Gn(x))
w
−−→n Φ

 k∑
j=1

p ju j (x; λ)

 ,
if F j(α j,nGn(x)) belongs to the central-domain of attraction of the non-degenerate type Φ(u j(x; λ)),
written F j(α j,nGn(x)) ∈ Dλ(Φ(u j(x; λ))), j = 1, 2, ..., k,

3) the limit distribution of intermediate OS ηn−sn+1:n of the sequence {ηi} (where sn
n −−→n 0) is given by

Fηn−sn+1:n(Gn(x)) := P(ηn−sn+1:n ≤ Gn(x))
w
−−→n Φ

 k∑
j=1

p jν j (x)

 ,
if F j(α j,nGn(x))belongs to the intermediate-domain of attraction of the non-degenerate type
Φ(ν j(x)), written F j(α j,nGn(x)) ∈ Din(Φ(ν j(x))), j = 1, 2, ..., k.

In the first part of the lemma, there are only three conceivable max-types, according to the Extremal
Type Theorem (cf. [21,25]), namely max-Weibull, Fréchet, and Gumbel types. Moreover, in the second
part of the lemma, according to the result of [26], there are only four possible limit types for Φ(ui(x; λ)).
Finally, in the third part of the lemma, according to the result of [27], there are only three possible
limit types for Φ(νi(x)).

In the second section of this paper, we study the asymptotic distribution of upper extreme OSs
based on the mixture of two SGSs given by (1.2), when the random sample size is assumed to converge
weakly and to be independent of the basic variables. In the third section, we obtain the parallel results
for the central OSs. In the fourth section, the asymptotic behavior of the intermediate OSs of the
mixture of two SGSs is studied under the previous assumptions. In the last section, the asymptotic
behavior of the record in the mixture of two SGSs, given in (1.6), is studied under the previous
assumptions.

Everywhere in what follows, the symbols −−→n ,
w
−−→n , and

p
−−→n symbolize convergence, converge

weakly, and converge in probability, as n → ∞, respectively. Moreover, (∗) denotes the convolution
operation.

2. Asymptotic behavior of extreme OSs in a mixture of two SGSs with a random index

According to the relation Φ(anx + bn) ∈ D(Ψ3(x)) (cf. [25]), where

an = (2 log n)−
1
2 ,

bn = 1
an
−

an
2 (log log n + log 4π),

}
(2.1)

the Gumbel type Ψ3(x) = exp(− exp(−x)) is the only important type in our study. The asymptotic
distribution of extreme OS Xνn−s+1:νn regarding the sequence (1.2) (and consequently the sequence (1.5))
is determined by the following theorem when the sample size νn is assumed to converge weakly and to
be independent of the basic variables.
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Theorem 2.1. Let an, bn be defined as in (2.1) and νn be a sequence of integer-valued RVs independent
of {Xi} such that An(nx)

w
−−→n A(x), where P(νn ≤ x) = An(x), A(+0) = 0, and A(x) is a non-degenerate

DF. Furthermore, let r j,n log n −−→n τ j ≥ 0, j = 1, 2. Then,

FXνn−s+1:νn
(anx + bn) := P(Xνn−s+1:νn ≤ anx + bn)

w
−−→n

∫ ∞

0
Ψ(x, τ1, τ2, z)dA(z),

where

Ψ(x, τ1, τ2, z) = H
[
pu

(
x + τ1 − log z

)
+ qu

(
x + τ2 − log z

)]
∗
[
pΩ (x, τ1) + qΩ (x, τ2)

]
,

u(x) = e−x, H(x) = e−x
s−1∑
l=0

xl

l! ,

Ω(x, τ) :=

 Φ
(

x
√

2τ

)
, if τ > 0,

I(0,∞) (x) , if τ = 0,

and IA(x) is the indicator function of the set A.
Additionally, let max(r1,n log n, r2,n log n) −−→n ∞. Then,

1) FXνn−s+1:νn
(
√

r1,nx + bn)
w
−−→n pΦ(x) + qΦ(τx), if r j,n log n −−→n ∞, j = 1, 2,

√
r1,n

r2,n
−−→n τ > 0, and r1,n

is a slowly varying function (SVF) of n (cf. [28]), i.e.,
r1,nθ

r1,n
−−→n 1, ∀θ > 0.

2) FXνn−s+1:νn
(
√

r2,nx + bn)
w
−−→n pI(0,∞)(x) + qΦ(x), if r j,n log n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is

an SVF of n, or if r1,n log n −−→n τ1 ≥ 0, r2,n log n −−→n ∞, and r2,n is an SVF of n.

3) FXνn−s+1:νn
(
√

r1,nx + bn)
w
−−→n pΦ(x) + qI(0,∞)(x), if r j,n log n −−→n ∞, j = 1, 2, r2,n

r1,n
−−→n 0, and r1,n is

an SVF of n, or if r1,n log n −−→n ∞, r2,n log n −−→n τ2 ≥ 0, and r1,n is an SVF of n.

Proof. Let Pnm = P(νn = m). Thus, from the law of total probability, we obtain

FXνn−s+1:νn
(anx + bn) =

∞∑
m=s

FXm−s+1:m(anx + bn)Pnm. (2.2)

Assume that m = [nz], then the sum in (2.2) can be represented by the Riemann-Stieltjes integral as

FXνn−s+1:νn
(anx + bn) =

∞∫
0

FXnz−s+1:nz(anx + bn)dAn(nz). (2.3)

Under the condition r j,n log n −−→n τ j ≥ 0, j = 1, 2, and by (1.5), the DF of Xnz−s+1:nz is expressed by

FXnz−s+1:nz(anx + bn) = P (Xnz−s+1:nz ≤ anx + bn) = P (Unz + Vnz ≤ x) , (2.4)

where Unz =
Z0,nz

an
and Vnz =

Znz−s+1:nz−bn
an

are independent. From (1.3), Unz = Bp

√
r1,nz

an
Y1,0 +Bq

√
r2,nz

an
Y2,0, but

√r j,nz

an
=

√
2r j,nz log n −−→n

√
2τ j, then

Unz
p
−−→n


0, if τ1 = τ2 = 0,
Bq
√

2τ2Y2,0, if τ1 = 0, τ2 > 0,
Bp
√

2τ1Y1,0, if τ1 > 0, τ2 = 0,
Bp
√

2τ1Y1,0 + Bq
√

2τ2Y2,0, if τ1, τ2 > 0.
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Thus, by using the law of total probability and some simple algebra, we get

P (Unz ≤ x)
w
−−→n


pI(0,∞) (x) + qΦ

(
x
√

2τ2

)
, if τ1 = 0, τ2 > 0,

pΦ
(

x
√

2τ1

)
+ qI(0,∞) (x) , if τ1 > 0, τ2 = 0,

pΦ
(

x
√

2τ1

)
+ qΦ

(
x
√

2τ2

)
, if τ1, τ2 > 0.

Consequently,

Unz
p
−−→n 0, if τ1 = τ2 = 0,

P (Unz ≤ x)
w
−−→n pΩ (x, τ1) + qΩ (x, τ2) , if max(τ1, τ2) > 0.

 (2.5)

In addition, we have
P(Vnz ≤ x) = P(Znz−s+1:nz ≤ anx + bn), (2.6)

where Znz−s+1:nz is the sth upper extreme OS based on the sequence {Zi,n} given by (1.3), and
Z1,nz,Z2,nz, ...Znz,nz are i.i.d RVs with the common DF F (.) given by (1.4). Hence,

F (anx + bn) = pΦ

 anx + bn√
1 − r1,nz

 + qΦ

 anx + bn√
1 − r2,nz

 . (2.7)

The limit DF of Znz−s+1:nz can be found from Lemma 1.1 by determining the domain of attraction

for the DF Φ

(
an x+bn√

1−r j,nz

)
:= Φ

(
a∗j,nzx + b∗j,nz

)
. We can do that using the Khinchin’s type theorem and

Extreme Value Theorem. First, from the assumption r j,n log n −−→n τ j (i.e., r j,nz log nz −−→n τ j), thus

r j,n −−→n 0 (i.e., r j,nz −−→n 0), we get
a∗j,nz

anz
= 1√

1−r j,nz

√
log nz
√

log n
−−→n 1. By using the relations (1 − r j,nz)−

1
2 =

1 + 1
2r j,nz(1 + o(1)), a−1

nz =
√

2 log n +
log z
√

2 log n
(1 + o(1)), log log nz = log log n + log(1 +

log z
log n ) and

bnz
anz

= 2 log nz − 1
2 (log log nz + log 4π) and taking into consideration that log log n

log n −−→n 0 (by using the
L’Hopital’s rule), we get

b∗j,nz − bnz

anz
=

a−1
nz bn√

1 − r j,nz
−

bnz

anz
=

[
1 +

1
2

r j,nz(1 + o(1))
]  √2 log n +

log z√
2 log n

(1 + o(1))


×

 √2 log n −
1

2
√

2 log n
(log log n + log 4π)

 − 2 log nz +
1
2

(log log nz + log 4π)

= 2 log n −
1
2

(log log n + log 4π) + log z(1 + o(1)) −
log z

4 log n
(1 + o(1))(log log n + log 4π)

+

[
log n+log nz+o(1) log z−

1
2

(log log n + log 4π)−
log z

4 log n
(1 + o(1))(log log n+log 4π)

]
×

1
2

r j,nz(1 + o(1)) − 2 log n − 2 log z +
1
2

log log n +
1
2

log(1 +
log z
log n

) +
1
2

log 4π −−→n − log z + τ j.
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Consequently, the Khinchin’s type theorem and Extreme Value Theorem yield

Φnz

 anx + bn√
1 − r j,nz

 w
−−→n Ψ3(x + τ j − log z). (2.8)

Therefore, from (2.6)–(2.8), and Lemma 1.1, we get

P(Vnz ≤ x)
w
−−→n Ψ

p
3(x + τ1 − log z)Ψq

3(x + τ2 − log z)

×

s−1∑
l=0

[
−p log Ψ3(x + τ1 − log z) − q log Ψ3(x + τ2 − log z)

]l

l!

= exp
{
−

[
pu

(
x + τ1 − log z

)
+ qu

(
x + τ2 − log z

)]}
×

s−1∑
l=0

[
pu

(
x + τ1 − log z

)
+ qu

(
x + τ2 − log z

)]l

l!

= H
[
pu

(
x + τ1 − log z

)
+ qu

(
x + τ2 − log z

)]
, (2.9)

for any finite interval of length z. Therefore, from (2.4), (2.5), (2.9) and Lemma 2.2.1 in [21], we
get FXnz−s+1:nz(anx + bn)

w
−−→n Ψ(x, τ1, τ2, z) uniformly with respect to x over any finite interval of z (the

convergence is uniform because of the continuity of the limit in x), where Ψ is defined in the theorem.
Now, let c be a continuity point of A(x) such that 1−A(c) < ε. By using (2.3) and the triangle inequality,
we get ∣∣∣∣∣FXνn−s+1:νn

(anx + bn) −
∫ ∞

0
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣
=

∣∣∣∣∣∫ ∞

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ ∞

0
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣
=

∣∣∣∣∣∫ c

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dA(z)

+

∫ ∞

c
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ ∞

c
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣
≤

∣∣∣∣∣∫ c

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣
+

∣∣∣∣∣∫ ∞

c
FXnz−s+1:nz(anx + bn)dAn(nz)

∣∣∣∣∣ − ∣∣∣∣∣∫ ∞

c
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣ .

(2.10)

The second term of the right-hand side in (2.10) can be estimated by∣∣∣∣∣∫ ∞

c
FXnz−s+1:nz(anx + bn)dAn(nz)

∣∣∣∣∣ ≤ |1 − An(nc)|

≤ |1 − A(c) − [An(nc) − A(c)]| ≤ 2ε.
(2.11)

The third term of the right-hand side in (2.10) can be estimated by∣∣∣∣∣∫ ∞

c
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣ ≤ |1 − A(c)| ≤ ε. (2.12)
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Moreover, using the triangle inequality, the first term of the right-hand side in (2.10) can be estimated
by ∣∣∣∣∣∫ c

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z) dA(z)

∣∣∣∣∣
≤

∣∣∣∣∣∫ c

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz)

∣∣∣∣∣
+

∣∣∣∣∣∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣ .
(2.13)

Additionally, the first term of the right-hand side in (2.13) can be estimated by∣∣∣∣∣∫ c

0
FXnz−s+1:nz(anx + bn)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz)

∣∣∣∣∣
=

∫ c

0

∣∣∣FXnz−s+1:nz(anx + bn) − Ψ(x, τ1, τ2, z)
∣∣∣ dAn(nz)

≤

∫ c

0
ε dAn(nz) = ε (An(nc) − An(0)) ≤ ε,

(2.14)

since FXnz−s+1:nz(anx+bn)
w
−−→n Ψ(x, τ1, τ2, z) uniformly over the finite interval [0, c] .Moreover, the second

term of the right-hand side in (2.13) can be estimated by constructing Riemann sums. Specifically,
assume that n0 is a fixed number and that 0 = c0 < c1 < ... < cn0 = c are continuity points of A(x).
Moreover, n0 and ci are chosen such that∣∣∣∣∣∣∣

∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz) −

n0∑
i=1

Ψ(x, τ1, τ2, ci) [An(nci) − An(nci−1)]

∣∣∣∣∣∣∣ < ε,
and ∣∣∣∣∣∣∣

∫ c

0
Ψ(x, τ1, τ2, z)dA(z) −

n0∑
i=1

Ψ(x, τ1, τ2, ci) [A(ci) − A(ci−1)]

∣∣∣∣∣∣∣ < ε.
Thus, once again, by the triangle inequality,∣∣∣∣∣∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz) −

∫ c

0
Ψ(x, τ1, τ2, z)dA(z)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ c

0
Ψ(x, τ1, τ2, z)dAn(nz) −

n0∑
i=1

Ψ(x, τ1, τ2, ci) [An(nci) − An(nci−1)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ c

0
Ψ(x, τ1, τ2, z)dA(z) −

n0∑
i=1

Ψ(x, τ1, τ2, ci) [A(ci) − A(ci−1)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
n0∑
i=1

Ψ(x, τ1, τ2, ci) {[An(nci) − A(ci)] − [An(nci−1) − A(ci−1)]}

∣∣∣∣∣∣∣ < 3ε.

Combining this fact with (2.14), the left-hand side term of (2.13) becomes smaller than 4ε for large
n. Also, combining this fact with (2.11) and (2.12), the left-hand side term of (2.10) becomes smaller
than 7ε for large n. The proof for the first part of the theorem is completed.
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Turn now to the conditions r j,n log n −−→n ∞, j = 1, 2,
√

r1,n

r2,n
−−→n τ > 0, and r1,n is an SVF of n.

From (1.5), we get

FXnz−s+1:nz(
√

r1,nx + bn) = P
(
Xnz−s+1:nz ≤

√
r1,nx + bn

)
= P (Unz + Vnz ≤ x) , (2.15)

where Unz =
Z0,nz
√

r1,n
and Vnz =

Znz−s+1:nz−bn
√

r1,n
are independent. From (1.3), Unz = Bp

√
r1,nz

r1,n
Y1,0 +

Bq

√
r2,nz

r1,n
Y2,0

p
−−→n BpY1,0 + Bq

1
τ
Y2,0 since

√
r2,nz

r1,n
=

√
r2,nz

r1,nz

√
r1,nz

r1,n

p
−−→n

1
τ

(from our conditions). Therefore,

P (Unz ≤ x)
w
−−→n pΦ(x) + qΦ(τx). (2.16)

While, |Vnz| ≤

∣∣∣∣Znz−s+1:nz−bnz
√

r1,n

∣∣∣∣ + |Ln| , where Ln =
bnz−bn
√

r1,n
. Then, for every ε > 0, we get

P (|Vnz| ≥ ε) ≤ P
(∣∣∣∣∣Znz−s+1:nz − bnz

anz

∣∣∣∣∣ anz
√

r1,n
+ |Ln| ≥ ε

)
= P

(∣∣∣∣∣Znz−s+1:nz − bnz

anz

∣∣∣∣∣ ≥ √r1,n

anz
(ε − |Ln|)

)
−−→n 0,

(2.17)

since
√

r1,n

anz
=

√
r1,nz

anz

√
r1,n

r1,nz
=

√
2r1,nz log nz

√
r1,n

r1,nz
−→n ∞ and Ln −−→n 0 (as we will show). Using the

relations a−1
nz =

√
2 log n +

log z
√

2 log n
(1 + o(1)) , anz = 1√

2 log n
[1 − log z

2 log n (1 +o(1))] and log log nz =

log log n + log(1 +
log z
log n ), we obtain

Ln =
1
√

r1,n

{
1

anz
−

1
an
−

1
2

[
anz(log log nz + log 4π) − an(log log n + log 4π)

]}
,

but

1
√

r1,n
(

1
anz
−

1
an

) =
1
√

r1,n

 √2 log n +
log z√
2 log n

(1 + o(1)) −
√

2 log n


=

log z√
2r1,n log n

(1 + o(1)) −−→n 0,

and

1
2
√

r1,n

[
anz(log log nz + log 4π) − an(log log n + log 4π)

]
=

1
2
√

r1,n

 1√
2 log n

(
1 −

log z
2 log n

(1 + o(1))
)

(log log n + log(1 +
log z
log n

) + log 4π)

−
1√

2 log n
(log log n + log 4π)

 =

1

2
√

2r1,n log n

[
log(1 +

log z
log n

) −
log z

2 log n
(1 + o(1))(log log n + log(1 +

log z
log n

) + log 4π)
]

−−→n 0.
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Finally, from (2.15)–(2.17), and Lemma 2.2.1 in [21], we get

FXnz−s+1:nz(
√

r1,nx + bn)
w
−−→n pΦ(x) + qΦ(τx).

Thus, the remainder proof of this case is precisely the same as that of the first case.
Consider the conditions r j,n log n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is an SVF of n, or if r1,n log n −−→n

τ1 ≥ 0, r2,n log n −−→n ∞, and r2,n is an SVF of n. Using the same technique, we get

FXnz−s+1:nz(
√

r2,nx + bn) = P (Unz + Vnz ≤ x)
w
−−→n pI(0,∞)(x) + qΦ(x),

where Unz =
Z0,nz
√

r2,n
= Bp

√
r1,nz

r2,n
Y1,0 + Bq

√
r2,nz

r2,n
Y2,0

p
−−→n BqY2,0 and P (|Vnz| ≥ ε) −−→n 0 since |Vnz| =∣∣∣∣Znz−s+1:nz−bn

√
r2,n

∣∣∣∣ ≤ ∣∣∣∣Znz−s+1:nz−bnz
√

r2,n

∣∣∣∣ + |Ln| , and Ln =
bnz−bn
√

r2,n
−→n 0. The remainder proof of this case is precisely the

same as that of the first case. Finally, it is easy to see that the proof of the last case is similar as that of
the second case. The theorem is now fully proved. �

Example 2.1. When 0 ≤ τ1, τ2 < ∞, it is natural to look for the limitations on νn, under which we get
the relation lim

n→∞
FXνn−s+1:νn

(anx + bn) = lim
n→∞

FXn−s+1:n(anx + bn). In view of Theorem 2.1, the last equation
is satisfied, if and only if, the DF A(z) is degenerate at one, which means the asymptotically almost
randomlessness of νn. This situation practically happens if we have the RV νn following shifted Poisson
DF, with probability mass function (PMF) P(νn = x) =

e−λnλ
x−ρ
n

(x−ρ)! , x = ρ, ρ + 1, ..., for some integer ρ > 1,
where λn

n
−→n 1. Another practical and important case is when we assume that the random sample

size follows the shifted geometric RV νn, with PMF P(νn = x) = pn(1 − pn)x−ρ, x = ρ + 1, ρ + 2, ...,

where npn −→n 1. Clearly, the characteristic function ψ(t) = E(e
iνnt

n ) =
pne

iρt
n

1−(1−pn)e
it
n
−→n

1
1−it . Therefore,

P(νn ≤ nz) w
−→n

1 − e−z, z > 0. As an important result of this case when r j,n log n −−→n τ j = 0, j = 1, 2,
since u(x − log z) = zu(x) and Ψ(x, 0, 0, z) = H(u(x − log z)), we get

FXνn−s+1:νn
(anx + bn)

w
−−→n

s−1∑
l=0

ul(x)
l!

∫ ∞

0
zle−z(1−u(x))dz =

s−1∑
l=0

e−lx

(1 − e−x)l+1 .

3. Asymptotic behavior of central OSs in a mixture of two SGSs with a random index

There are only four conceivable limit types for Φ(ui(x; λ)) in Lemma 1.1, as shown in [26]. But the
only used type in our study is the normal type because of the following lemma.

Lemma 3.1 (cf. [11]). Let η1, η2, ..., ηn be i.i.d RVs with a common DF Fη and a PDF fη. Then,
Fηn−sn+1:n(cnx + xλ)

w
−−→n Φ(x) as

√
n( sn

n − λ) −−→n 0, where Fη(xλ) = 1 − λ, fη(xλ) > 0, 0 < λ < 1,

and cn =
√
λ(1−λ)
√

n fη(xλ) .

Lemma 3.1 was previously presented in [26] for ηsn:n with the same limit, but the normalizing
constants are c′n =

√
λ′(1−λ′)
√

n fη(xλ′ )
and xλ′ , where Fη(xλ′) = λ′ = 1 − λ. Consequently, c′n = cn and xλ′ = xλ.

When the random sample size is considered to converge weakly and to be independent of the basic
variables, the asymptotic distribution of the central OS Xνn−sνn +1:νn regarding the sequence (1.5) is
derived by the following theorem.
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Theorem 3.1. Let Φ(xλ) = 1−λ, cn =
√
λ(1−λ)

ϕ(xλ)
√

n and {νn} be a sequence of integer-valued RVs independent

of {Xi} such that An(nx)
w
−−→n A(x), where P(νn ≤ x) = An(x), A(x) is a non-degenerate DF, and ϕ(x)

is the PDF of a standard normal variable. When
√

n( sn
n − λ) −−→n 0, the asymptotic distribution of the

central OS Xs′(νn):νn := Xνn−sνn +1:νn is given by:

1) FXs′(νn):νn
(cnx + xλ)

w
−−→n

∫ ∞
0

Ψ∗(x, τ1, τ2, z)dA(z), if nr j,n −−→n τ j ≥ 0, for j = 1, 2, where

Ψ∗(x, τ1, τ2, z) = pΦ

((
1 +

τ1ϕ
2(xλ)

λ(1−λ)

)− 1
2 √zx

)
+ qΦ

((
1 +

τ2ϕ
2(xλ)

λ(1−λ)

)− 1
2 √zx

)
.

2) FXs′(νn):νn

(√
r1,nx + xλ

) w
−−→n pΦ(x) + qΦ(τx), if nr j,n −−→n ∞, j = 1, 2,

√
r1,n

r2,n
−−→n τ > 0 and r1,n is an

SVF of n.
3) FXs′(νn):νn

(√
r2,nx + xλ

) w
−−→n pI(0,∞)(x) + qΦ(x), if nr j,n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is an SVF

of n, or if nr1,n −−→n τ1 ≥ 0, nr2,n −−→n ∞, and r2,n is an SVF of n.

4) FXs′(νn):νn

(√
r1,nx + xλ

) w
−−→n pΦ(x) + qI(0,∞)(x), if nr j,n −−→n ∞, j = 1, 2, r2,n

r1,n
−−→n 0, and r1,n is an SVF

of n, or if nr1,n −−→n ∞, nr2,n −−→n τ2 ≥ 0, and r1,n is an SVF of n.

Proof. By starting the proof as we have done in Theorem 2.1, we get the corresponding equation
to (2.3) as

FXs′(νn):νn
(cnx + xλ) =

∞∫
0

FXs′(nz):nz(cnx + xλ)dAn(nz). (3.1)

The condition, nr j,n −−→n τ j ≥ 0, j = 1, 2, implies that the DF of Xs′(nz):nz is expressed as

FXs′(nz):nz
(cnx + xλ) = P

(
Xs′(nz):nz ≤ cnx + xλ

)
= P (Unz + Vnz ≤ x) , (3.2)

where Unz =
Z0,nz

cn
and Vnz =

Zs′(nz):nz−xλ
cn

are independent. According to (1.3), Unz = Bp

√
r1,nz

cn
Y1,0 +

Bq

√
r2,nz

cn
Y2,0, but

√r j,nz

cn
= ϕ (xλ)

√
nr j,nz

λ(1−λ) −−→n ϕ (xλ)
√

τ j

λ(1−λ)z , thus

Unz
p
−−→n Bp

√
τ1ϕ2 (xλ)
λ (1 − λ) z

Y1,0 + Bq

√
τ2ϕ2 (xλ)
λ (1 − λ) z

Y2,0. (3.3)

Additionally, we have

P(Vnz ≤ x) = P(Zs′(nz):nz ≤ cnx + xλ) = FZs′(nz):nz(cnx + xλ), (3.4)

where Zs′(nz):nz is a central OS based on the sequence {Zi,n}, given by (1.3), and Z1,nz, Z2,nz, ..., Znz,nz are
i.i.d RVs with the common DF F (.) given by (1.4). Hence,

F (cnx + xλ) = pΦ

 cnx + xλ√
1 − r1,nz

 + qΦ

 cnx + xλ√
1 − r2,nz

 . (3.5)

Using the Khinchin’s type theorem and Lemma 3.1, we will show that

Φ

 cn√
1 − r j,nz

x +
xλ√

1 − r j,nz

 := Φ
(
c∗j,nzx + b∗j,nz

)
∈ Dλ(Φ(

√
zx)), j = 1, 2, (3.6)
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because
c∗j,nz

cnz
=

√
z

√
1−r j,nz

−−→n
√

z (from nr j,n −−→n τ j) and
b∗j,nz−xλ

cnz
= xλ

cnz

(
1√

1−r j,nz
− 1

)
−−→n 0, which can be

proved using (1 − r j,nz)−
1
2 = 1 + 1

2r j,nz(1 + o(1)) and r j,nz
√

nz −−→n 0. Therefore, from (3.4)–(3.6) and
Lemma 1.1, we get

P(Vnz ≤ x)
w
−−→n Φ

(√
zx

)
, (3.7)

over any finite interval of length z. Thus, from (3.2), a combination of (3.3) and (3.7) yields
FXs′(nz):nz

(cnx + xλ)
w
−−→n Ψ∗(x, τ1, τ2, z) uniformly with respect to x for any finite interval of z (the

convergence is uniform because of the continuity of the limit in x). Using this convergence and (3.1),
the remainder proof of this case is precisely the same as that of the first case of Theorem 2.1.

Turn now to the conditions nr j,n −−→n ∞, j = 1, 2,
√

r1,n

r2,n
−−→n τ > 0, and r1,n is an SVF of n. From (1.5),

we get

FXs′(nz):nz

(√
r1,nx + xλ

)
= P

(
Z0,nz
√

r1,n
+

Zs′(nz):nz − xλ
√

r1,n
≤ x

)
. (3.8)

From (1.3), Z0,nz
√

r1,n
= Bp

√
r1,nz

r1,n
Y1,0 + Bq

√
r2,nz

r1,n
Y2,0

p
−−→n BpY1,0 + Bq

1
τ
Y2,0 since

√
r2,nz

r1,n
=

√
r2,nz

r1,nz

√
r1,nz

r1,n

p
−−→n

1
τ

(from our conditions). Thus,

P
(

Z0,nz
√

r1,n
≤ x

)
w
−−→n pΦ(x) + qΦ(τx). (3.9)

In addition, for every ε > 0, we get

p


∣∣∣Zs′(nz):nz − xλ

∣∣∣
√

r1,n
> ε

 = p


∣∣∣Zs′(nz):nz − xλ

∣∣∣
cnz

>

√
r1,n

cnz
ε

 −−→n 0, (3.10)

since
√

r1,n

cnz
= ϕ(xλ)

√
nzr1,n

λ(1−λ) −−→n ∞. Finally, from (3.8) and Lemma 2.2.1 in [21], a combination of (3.9)

and (3.10) yields FXs′(nz):nz

(√
r1,nx + xλ

) w
−−→n pΦ(x) + qΦ(τx). Using this convergence and (3.1), the

remainder proof of this case is precisely the same as that of the first case of Theorem 2.1.
Consider the conditions nr j,n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is an SVF of n, or nr1,n −−→n

τ1 ≥ 0, nr2,n −−→n ∞, and r2,n is an SVF of n. In the same manner, we get FXs′(nz):nz(
√

r2,nx + xλ) =

P
(

Z0,nz
√

r2,n
+

Zs′(nz):nz−xλ
√

r2,n
≤ x

)
w
−−→n pI(0,∞)(x) + qΦ(x) since Z0,nz

√
r2,n

= Bp

√
r1,nz

r2,n
Y1,0 + Bq

√
r2,nz

r2,n
Y2,0

p
−−→n BqY2,0 and

P
(
|Zs′(nz):nz−xλ|
√

r2,n
≥ ε

)
−−→n 0 because

√
r2,n

cn
=

ϕ(xλ)√nr2,n
√
λ(1−λ)

−−→n ∞. The remainder proof of this case is precisely
the same as that of Theorem 2.1. Finally, it is easy to see that the proof of the fourth case is similar as
that of the third case. �

Example 3.1. Let 0 ≤ τ1, τ2 < ∞. Furthermore, let the random sample size follow the shifted geometric
RV νn, with PMF P(νn = x) = pn(1 − pn)x−ρ, x = ρ + 1, ρ + 2, ..., where npn −→n 1. In view of
Example 2.1, we get An(nz) w

−→n
A(x), where A(x) is the standard negative exponential distribution.

Now, an application of Theorem 3.1 yields

Λ(x) :=
∫ ∞

0
Ψ∗(x, τ1, τ2, z)dA(z) =

∫ ∞

0
(pΦ(σ1x

√
z) + qΦ(σ2x

√
z))e−zdz,
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where σi = (1 +
τiϕ

2(xλ)
λ(1−λ) )−

1
2 , i = 1, 2. Therefore, if x > 0, we get after some algebra

Λ(x) =
p
2

(
1 +

σ1x
2 + σ2

1x2

)
+

q
2

(
1 +

σ2x
2 + σ2

2x2

)
.

Similarly, if x < 0 after some calculations, we get Λ(x) =
p
2

(
1 + σ1 x

2+σ2
1 x2

)
+

q
2

(
1 + σ2 x

2+σ2
2 x2

)
. Therefore, for

all x, we have Λ(x) =
p
2

(
1 + σ1 x

2+σ2
1 x2

)
+

q
2

(
1 + σ2 x

2+σ2
2 x2

)
. This DF has no moments even if the order is less

than one.

4. Asymptotic behavior of intermediate OSs in a mixture of two SGSs with a random index

There are only three conceivable limit types for Φ(νi(x)) in Lemma 1.1, as shown in [27]. But the
only used type in our study is the normal type because of the following lemma.

Lemma 4.1 (cf. [11]). Let η1, η2, ..., ηn be i.i.d RVs from the standard normal distribution Φ(x), then the
asymptotic distribution of any upper intermediate OS ηn−sn+1:n is given by Φηn−sn+1:n(anx + bn)

w
−−→n Φ(x),

where an =
√

sn

nϕ(bn) ∼
1

bn
√

sn
, Φ(bn) = 1 − sn

n , and bn ∼
√

2 log n
sn
, as n −→ ∞.

Lemma 4.1 was previously presented, but for a lower intermediate OS ηsn:n in [29].
The next theorem gives the asymptotic distribution of the upper intermediate OS Xνn−sνn +1:νn of the

sequence (1.5) under the Chibisov rank sequence sn ∼ lnα, 0 < α < 1 (see [3, 27]), where the sample
size νn is supposed to converge weakly and to be independent of the basic variables.

Theorem 4.1. let sn ∼ lnα, 0 < α < 1 an =
√

sn

nϕ(bn) ∼
1

bn
√

sn
, Φ(bn) = 1 − sn

n and bn ∼
√

2 log n
sn
,

as n −→ ∞. Furthermore, let {νn} be a sequence of integer-valued RVs independent of {Xi} such that
An(nx)

w
−−→n A(x), where A(x) is a non-degenerate DF. Then, for any upper intermediate OS Xs′(νn):νn :=

Xνn−sνn +1:νn we have

1) FXs′(νn):νn

(
anx + bnν

) w
−−→n

∫ ∞
0

Ψ†(x, τ1, τ2, z)dA(z), if snr j,n log n −−→n τ j ≥ 0, for j = 1, 2, where

Ψ†(x, τ1, τ2, z) = pΦ
(

zα/2 x
√

1+2τ1(1−α)

)
+ qΦ

(
zα/2 x

√
1+2τ2(1−α)

)
.

2) FXs′(νn):νn

(√
r1,nx + bνn

) w
−−→n pΦ(x) + qΦ(τx), if snr j,n log n −−→n ∞, j = 1, 2,

√
r1,n

r2,n
−−→n τ > 0, and

r1,n is an SVF of n.
3) FXs′(νn):νn

(√
r2,nx + bνn

) w
−−→n pI(0,∞)(x)+qΦ(x), if snr j,n log n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is an

SVF of n, or snr1,n log n −−→n τ1 ≥ 0, snr2,n log n −−→n ∞, and r2,n is an SVF of n.

4) FXs′(νn):νn

(√
r1,nx + bνn

) w
−−→n pΦ(x)+qI(0,∞)(x), if snr j,n log n −−→n ∞, j = 1, 2, r2,n

r1,n
−−→n 0, and r1,n is an

SVF of n, or snr1,n log n −−→n ∞, snr2,n log n −−→n τ2 ≥ 0, and r1,n is an SVF of n.

Proof. By starting the proof as we have done in Theorem 2.1, we get the corresponding equation
to (2.3) as

FXs′(νn):νn
(anx + bnν) =

∞∫
0

FXs′(nz):nz(anx + bnz)dAn(nz). (4.1)
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First, under the condition snr j,n log n −−→n τ j ≥ 0, for j = 1, 2, and from (1.5), the DF of Xs′(nz):nz is
expressed as

FXs′(nz):nz
(anx + bnz) = P

(
Xs′(nz):nz ≤ anx + bnz

)
= P (Unz + Vnz ≤ x) , (4.2)

where Unz =
Z0,nz

an
and Vnz =

Zs′(nz):nz−bnz

an
are independent. From (1.3), we get Unz = Bp

√
r1,nz

an
Y1,0 +

Bq

√
r2,nz

an
Y2,0, but

√r j,nz

an
∼

√
2r j,nzsn log n (1 − log sn

log n ) =
√

2snzr j,nz log(nz)
√

sn
snz

log n
log(nz) (1 − log sn

log n ) −−→n√
2τ jz−α(1 − α) since log n

sn
= log n (1 − log sn

log n ), snz
sn
∼ zα, log sn

log n −−→n α and log(nz)
log n = 1 +

log z
log n −−→n 1.

Thus,
Unz

p
−−→n Bp

√
2τ1(1 − α) z−

α
2 Y1,0 + Bq

√
2τ2(1 − α) z−

α
2 Y2,0. (4.3)

In addition,
P(Vnz ≤ x) = P(Zs′(nz):nz ≤ anx + bnz) = FZs′(nz):nz(anx + bnz), (4.4)

where Zs′(nz):nz is an intermediate OS based on the sequence {Zi,n}, given by (1.3), and Z1,nz,Z2,nz, ...Znz,nz

are i.i.d RVs with the common DF (1.4). Therefore,

F (anx + bnz) = pΦ

 anx + bnz√
1 − r1,nz

 + qΦ

 anx + bnz√
1 − r2,nz

 . (4.5)

Using Khinchin’s type theorem and Lemma 4.1, we will show that

Φ

 an√
1 − r j,nz

x +
bnz√

1 − r j,nz

 := Φ
(
a∗j,nzx + b∗j,nz

)
∈ Din(Φ(zα/2x)), j = 1, 2. (4.6)

Now, we need the limit of
a∗j,nz

anz
and

b∗j,nz−bnz

anz
. First, we get

a∗j,nz

anz
= an

anz

1√
1−r j,nz

, but r j,nz −−→n 0 (from

snr j,n log n −−→n τ j) and an
anz
∼

√
snz
sn

√
log nz

snz
log n

sn
−−→n zα/2 since snz

sn
∼ zα, log nz

snz
= log(nz) (1 − log snz

log(nz) ),

log n
sn

= log n (1− log sn
log n ), log snz

log(nz) −−→n α, log sn
log n −−→n α and log(nz)

log n = 1 +
log z
log n −−→n 1. Thus

a∗j,nz

anz
−−→n zα/2. Second,

we get
b∗j,nz−bnz

anz
=

bnz
anz

(
1√

1−r j,nz
− 1

)
, but (1 − r j,nz)−

1
2 = 1 + 1

2r j,nz(1 + o(1)) and bnz
anz
∼ 2
√

snz log nz
snz

. Thus
b∗j,nz−bnz

anz
∼ r j,nz

√
snz log(nz) (1 − log snz

log(nz) )(1 + o(1)) −−→n 0 (from snr j,n log n −−→n τ j). Consequently, from
(4.4)–(4.6) and Lemma 1.1, we get

P(Vnz ≤ x)
w
−−→n Φ

(
zα/2x

)
, (4.7)

over any finite interval of length z. Thus, from (4.2), a combination of (4.3) and (4.7) yields
FXs′(nz):nz

(anx + bn)
w
−−→n Ψ†(x, τ1, τ2, z) uniformly with respect to x for any finite interval of z (the

convergence is uniform because of the continuity of the limit in x). Using this convergence and (4.1),
the remainder proof of this case is precisely the same as that of the first case of Theorem 2.1.

Turn now to the conditions snr j,n log n −−→n ∞, j = 1, 2,
√

r1,n

r2,n
−−→n τ > 0 and r1,n is an SVF of n.

From (1.5), we get

FXs′(nz):nz

(√
r1,nx + bnz

)
= P

(
Z0,nz
√

r1,n
+

Zs′(nz):nz − bnz
√

r1,n
≤ x

)
. (4.8)
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From (1.3), Z0,nz
√

r1,n
= Bp

√
r1,nz

r1,n
Y1,0 + Bq

√
r2,nz

r1,n
Y2,0

p
−−→n BpY1,0 + Bq

1
τ
Y2,0. Therefore,

P
(

Z0,nz
√

r1,n
≤ x

)
w
−−→n pΦ(x) + qΦ(τx). (4.9)

Additionally, for every ε > 0, we obtain

p


∣∣∣Zs′(nz):nz − bnz

∣∣∣
√

r1,n
> ε

 = p


∣∣∣Zs′(nz):nz − bnz

∣∣∣
anz

>

√
r1,n

anz
ε

 −−→n 0, (4.10)

since
√

r1,n

anz
∼

√
2snzr1,nz log(nz)

(
1 − log snz

log(nz)

)√
r1,n

r1,nz
−−→n ∞. Finally, from (4.8) and Lemma 2.2.1 in [21],

a combination of (4.9) and (4.10) yields FXs′(nz):nz

(√
r1,nx + bnz

) w
−−→n pΦ(x) + qΦ(τx). Using this

convergence and Eq (4.1), the remainder proof of this case is precisely the same as that of the first
case of Theorem 2.1.

In the same manner, under the conditions snr j,n log n −−→n ∞, j = 1, 2, r1,n

r2,n
−−→n 0, and r2,n is an SVF of

n, or snr1,n log n −−→n τ1 ≥ 0, snr2,n log n −−→n ∞, and r2,n is an SVF of n, we get FXs′(nz):nz

(√
r2,nx + bnz

)
=

P
(

Z0,nz
√

r2,n
+

Zs′(nz):nz−bnz
√

r2,n
≤ x

)
w
−−→n pI(0,∞)(x) + qΦ(x) since Z0,nz

√
r2,n

= Bp

√
r1,nz

r2,n
Y1,0 + Bq

√
r2,nz

r2,n
Y2,0

p
−−→n BqY2,0 and

P
(
|Zs′(nz):nz−bnz|
√

r2,n
≥ ε

)
−−→n 0, because

√
r2,n

anz
−−→n ∞. The remainder proof of this case is precisely the same

as that of Theorem 2.1.
Again, in the same manner, under the conditions snr j,n log n −−→n ∞, j = 1, 2, r2,n

r1,n
−−→n 0, and

r1,n is an SVF of n, or snr1,n log n −−→n ∞, snr2,n log n −−→n τ2 ≥ 0, and r1,n is an SVF of n, we get

FXs′(nz):nz

(√
r1,nx + bnz

) w
−−→n pΦ(x)+qI(0,∞)(x) since Z0,nz

√
r1,n

p
−−→n BpY1,0 and p

(
|Zs′(nz):nz−bnz|
√

r1,n
≥ ε

)
−−→n 0, ∀ε > 0.

The remainder proof of this case is precisely the same as that of Theorem 2.1. The theorem is now
fully proved. �

5. Asymptotic behavior of record values in a mixture of two SGSs with a random index

Chandler [30] wrote the seminal paper on the statistical treatment of record values. He studied the
stochastic behaviour of random record values generated by i.i.d observations in a continuous DF F. The
cumulative hazard function HF(x) = − log(F(x)) and its inverse Ψ(u) = H−1

F (u) = F−1(1 − exp(−u))
determine the basic features of the record values. For example, the DF of the upper record value Rn

may be expressed in terms of HF(x) as P(Rn ≤ x) = Γn(HF(x)) (cf. [24]), where Γn(x) = 1
Γ(n)

x∫
0

tn−1e−tdt

is the incomplete gamma ratio function. Resnick [31] uncovered the class of conceivable limit laws
for the upper record Rn. He connected these limit laws to the max-limit laws via the Duality theorem.
For further fascinating work on the relationship between OSs and record values, see [32]. Because
the upper record based on the standard normal distribution belongs to the domain of attraction of the
normal type, written DR(Φ), (cf. [24] ), the normal type is the only important type in our investigation.
Namely,

P
(
Rn ≤ (Φ−1(1 − e−(n+

√
n)) − Φ−1(1 − e−n))x + Φ−1(1 − e−n)

) w
−−→n Φ(x),
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where Φ−1(x) is the usual inverse function of Φ(x). Furthermore, using the mean value theorem, an
analogous simplified form of this limiting result is P(Rn ≤ anx + bn)

w
−−→n Φ(x), i.e., Φ(anx + bn) ∈

DR(Φ(x)), where an = 1
√

2
and bn = Φ−1(1 − e−n) (cf. Example 2.3.4 of [24]). We will need the

following lemma due to [11].

Lemma 5.1. Suppose ZRn is the upper record value corresponding to the DF F (z), represented in the
Eq (1.4). Then, P

(
ZRn ≤

√
1 − rn(anx + bn)

) w
−−→n Φ(x), where rn = min(r1,n, r2,n), 1 , max(r1,n, r2,n) 9

1, as n→ ∞, an = 1
√

2
and bn = Φ−1(1 − e−n).

The following theorem gives the limit distribution of record values regarding the sequence (1.6)
when the sample size is assumed to converge weakly and to be independent of the basic variables.

Theorem 5.1. Let XRνn be the upper record value based on X1, X2, ...Xνn , given by (1.2), where the
random sample size νn is a sequence of integer-valued RVs independent of {Xi} such that An(nx)

w
−−→n

A(x), and A(x) is a non-degenerate DF. Furthermore, let rn = min(r1,n, r2,nz), 1 , max(r1,n, r2,nz) 9 1,
as n→ ∞, an = 1

√
2

and bn = Φ−1(1− e−n). Then, the asymptotic distribution of the record XRνn is given
by:

1) P(XRνn ≤ anx+bνn)
w
−−→n Φ(x+τ), where τ =

{
τ1, if rn = r1,n,

τ2, if rn = r2,nz,
if r j,n

√
n −−→n τ j ≥ 0, for j = 1, 2,

2) P
(

XRνn ≤ anx + bνn

) w
−−→n pΦ(x + τ) + qΦ( x+τ

√
2r+1

), if r1,n
√

n −−→n τ ≥ 0, r2,n
√

n −−→n ∞, and r2,n −−→n

r > 0,
3) P

(
XRνn ≤ anx + bνn

) w
−−→n pΦ( x+τ

√
2r+1

) + qΦ(x + τ), if r1,n
√

n −−→n ∞, r2,n
√

n −−→n τ ≥ 0, and r1,n −−→n

r > 0,

4) P(XRνn ≤ anx +
√

1 − rνnbνn)
w
−−→n pΦ( x

√
1+2r1−r

) + qΦ( x
√

1+2r2−r
), where r =

{
r1, if rn = r1,n,

r2, if rn = r2,nz,
if

r j,n
√

n −−→n ∞ and r j,n −−→n r j, j = 1, 2.

Proof. By starting the proof as we have done in Theorem 2.1, we obtain the corresponding equation
to (2.3) as

P
(

XRνn ≤ anx + bνn

)
=

∞∫
0

P(XRnz ≤ anx + bnz) dAn(nz). (5.1)

Under the condition r j,n
√

n −−→n τ j ≥ 0, for j = 1, 2, by using (1.6), the DF of the record value XRnz is
expressed as

P(XRnz ≤ anx + bnz) = P (Unz + Vnz ≤ x) , (5.2)

where Unz =
Z0,nz

an
and Vnz = ZRnz−bnz

an
are independent. Clearly, Unz = Bp

√
r1,nz

an
Y1,0+Bq

√
r2,nz

an
Y2,0

p
−−→n 0, from

the condition r j,n
√

n −−→n τ j ≥ 0. On the other hand, assuming An = an
√

1 − rn and Bn = bn
√

1 − rn,

we get an
Anz

= 1√
1−rnz
−−→n 1 (from r j,n

√
n −−→n τ j, j = 1, 2) and bnz−Bnz

Anz
=

bnz
anz

[
1√

1−rnz
− 1

]
−−→n τ, that can be

proved using (1− rnz)−
1
2 = 1 + 1

2rnz(1 + ◦(1)) and bnz ∼
√

2n (cf. [14]). Therefore, from Lemma 5.1 and
the Khinchin’s type theorem, we get

P(Vnz ≤ x) = P(ZRnz ≤ anx + bnz)
w
−−→n Φ(x + τ). (5.3)
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Now, from the Eqs (5.2) and (5.3), and Lemma 2.2.1 in [21] plus Unz
p
−−→n 0, we get P(XRnz ≤ anx +

bnz)
w
−−→n Φ(x + τ). The remainder proof of this case is precisely the same as that of the first case of

Theorem 2.1 by using the relations (5.1) and the last relation.
Now, turning to the second case of the theorem, i.e., under the conditions r1,n

√
n −−→n τ ≥ 0,

r2,n
√

n −−→n ∞, and r2,n −−→n r > 0. We note that min(r1,n, r2,nz) = r1,n, for large n. Moreover, the Eqs (5.2)

and (5.3) still hold with the same previous sequences Unz and Vnz, but Unz
p
−−→n Bq

√
2rY2,0. Then, we

get P(XRnz ≤ anx + bnz)
w
−−→n pΦ(x + τ) + qΦ( x+τ

√
2r+1

). The remainder proof of this case is precisely the
same as that of the first case of Theorem 2.1 by using the relations (5.1) and the last relation. For the
third case, clearly we have min(r1,n, r2,nz) = r2,n, for large n. Moreover, the rest of the proof of this case
is similar to the proof of the second case. For brevity, the proof is omitted.

Finally, for proving the fourth case of the theorem, i.e., we adopt the conditions r j,n
√

n −−→n ∞, and

r j,n −−→n r j, j = 1, 2, use the representation (2.1), the distribution of the record value XRnz can be written
as

P(XRnz ≤ anx +
√

1 − rnzbnz) = P (Unz + Vnz ≤ x) ,

where Unz =
Z0,nz

an
and Vnz =

ZRnz−
√

1−rnzbnz

an
are independent. Clearly, Unz

p
−−→n Bp

√
2r1Y1,0 +Bq

√
2r2Y2,0.

On the other hand, again by assuming An = an
√

1 − rn and Bn = bn
√

1 − rn, we get an
Anz

= 1√
1−rnz

−−→n

1
√

1−r
and
√

1−rnzbnz−Bnz

Anz
= 0. Therefore, from Lemma 5.1 and the Khinchin’s type theorem, we get

P(Vnz ≤ x) = P(ZRnz ≤ anx +
√

1 − rnzbnz)
w
−−→n Φ(

x
√

1 − r
).

The rest of the proof is self-evident. The theorem is now fully proved. �
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