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1. Introduction

In various countries, coronaviruses have been tested, and in December 2012, the Middle East
respiration syndrome coronavirus (MERS-CoV) was found in Saudi Arabia [1–3]. This virus was
found in animals in the Middle Eastern countries and after that, it was very alarming and threatening
when the same virus was also tested in human beings [4]. It was also observed that this disease spreads
through already contaminated individuals [5]. For many years, MERS-CoV has caused numerous
fatality and disease cases. Researchers examined MERS-CoV for the most part in the riding camels,
which became a reservoir source to spread this virus. It was observed that the transmission rate of
diseases from animals to humans is low while this transmission rate is high from one human to another.
From animal to human transmission has been discussed in [6–8].

To study infectious diseases, mathematical modeling is the best tool. With the help of this, one can
study the transmission and spread of disease among the same species and between different species
[9–13]. Mathematical modeling can give the best understanding of the transmission dynamics of every
epidemic. Fractional order mathematical models help to understand the transmission of diseases, the
spread of disease, and its effect on the population that an integer-order mathematical model can not
completely describe. For the last many years, fractional-order differential equations have been used to
model real-world problems with a larger degree of accuracy.

The uses of differential equations with fractional order are remarkable in physical and medical
sciences, finance and different disciplines of mathematics [14–21]. Numerous forms of fractional-
order operators are introduced in partial differential equations modeling and their applications have
been found in several fields like biological sciences, chemical, engineering, and statistical sciences.
Many investigations in mathematical models have been made by using fractional operators [22–30].

In the presented work, we study a mathematical model presented in [31]. Here MERS-CoV
transmission elements are presented mathematically between human and camel. The population is
divided into seven compartments as follows: the susceptible class S̊ (t), the exposed population E̊(t),
I̊(t) as the infected class, the asymptomatic population class Å(t), the hospitalized class H̊(t), the
recovery class R̊(t) and camel class C̊(t) which is the reservoir for MERS-Cov.

Dt(S̊ (t)) = Λ
′

− τI̊S̊ − ηψÅS̊ − ζρH̊S̊ − βC̊S̊ − π̇S̊ ,

Dt(E̊(t)) = τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ − (µ + π̇)E̊,

Dt(I̊(t)) = µνE̊ − (γ + λ)I̊ − (π̇ + π
′

)I̊,

Dt(Å(t)) = µ(1 − ν)E̊ − (κ + π̇)Å,

Dt(H̊(t)) = γI̊ + κÅ − (% + π̇)H̊,

Dt(R̊(t)) = λI̊ + %H̊ − π̇R̊,

Dt(C̊(t)) = ε I̊ + εÅ − ωC̊,

(1.1)

where Λ′ is the rate of a newborn, τ, η, ζ, and β are the disorder transmission rates, ψ shows the
asymptomatic patient rate, µ represents the continuation to infectious class, γ is the average rate of
symptomatic individuals hospitalized, the mortality rate is π̇, infectious individual retrieved without
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hospitalization at a rate λ, ρ is the approximate rate of translatability of a hospitalized patient, the
recovery rate of a hospitalized individual is shown by %, the camel lifetime rate is ω, ε is the rate of
symptomatic individuals and ε is the number of asymptomatic infected individuals spread virus from
population C̊.

By taking the Caputo fractional derivative of Model (1.1), we get

CDθ
t (S̊ (t)) = Λ

′

− τI̊S̊ − ηψÅS̊ − ζρH̊S̊ − βC̊S̊ − π̇S̊ ,
CDθ

t (E̊(t)) = τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ − (µ + π̇)E̊,
CDθ

t (I̊(t)) = µνE̊ − (γ + λ)I̊ − (π̇ + π
′

)I̊,
CDθ

t (Å(t)) = µ(1 − ν)E̊ − (κ + π̇)Å,
CDθ

t (H̊(t)) = γI̊ + κÅ − (% + π̇)H̊,
CDθ

t (R̊(t)) = λI̊ + %H̊ − π̇R̊,
CDθ

t (C̊(t)) = ε I̊ + εÅ − ωC̊

(1.2)

with the initial conditions

S̊ (0) = M1, E̊(0) = M2, I̊(0) = M3, Å(0) = M4,

H̊(0) = M5, R̊(0) = M6, C̊(0) = M7,

where each initial value is either equal to zero or greater than zero.
For a better study of the model’s behavior, various fractional operators have been given in the

literature like Riemann-Liouville (RL), truncated derivative, Katugampola, Atangana-Koca, Caputo,
Caputo-Fabrizio Atangana-Baleanu, Atangana beta-derivative, Atangana bi-order, and many other
operators. Fractional-order differential equations describe the dynamical systems with memory.
Especially, nonlinear systems describing different phenomena can be modeled with fractional
derivatives [32–34]. The selected model is studied using Caputo fractional differential operator. The
applications of the Caputo fractional operator in the mathematical modeling of real-world problems
are remarkable. One can see the references [13,24,26] in order to study the details. In Section 2, some
existing results and important definitions are given which will be helpful to prove our main findings.
In Section 3, the selected model’s positivity and boundedness are investigated. Section 4 represents
the construction of the analytical solution of the selected fractional mathematical model by using the
Laplace Adomian decomposition method (LADM) and convergence analysis of the method. Section
5 represents the analytical solution of the selected fractional model via homotopy petrubation method
(HPM) while in Sections 6 and 7, discussion about the plotted graphs and concluding remarks are
given, respectively.

2. Preliminaries

Here, we give some definitions from [35, 36].

Definition 2.1. Let the function F ∈ L1([0,∞),R), the RL fractional integral of order θ is given as

Iθt F(t) =
1

Γ(θ)

∫ t

0

F(η)
(t − η)1−θ dη, θ > 0, (2.1)

existence of the right-hand side integral holds true.
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Definition 2.2. Let F be the function; then, the following mathematical form exits and is called the
Caputo fractional order derivative:

CDθ
t F(t) =

1
Γ(n − θ)

∫ t

0
(t − η)n−θ−1F(n)(η)dη

Also, n = [θ] + 1 and if θ belongs to (0, 1), then we have

CDθ
t F(t) =

1
Γ(1 − θ)

∫ t

0

F′(η)
(t − η)θ

dζ.

Lemma 2.1. The following result holds true for fractional differential equations:

Iθ[CDθq](t) = q(t) + γ0 + γ1t + γ2t2 + · · · + γn−1tn−1

Definition 2.3. The Laplace transform of the Caputo fractional derivative can be defined as

L[CDθ
t g(t)] = sθG(s) −

m−1∑
j=0

sθ− j−1gk(0), θ ∈ [m − 1,m],m ∈ N.

Definition 2.4. The construction of homotopy for an equation V(r, q) : Ω × [0 × 1]→ R is

H(V, q) = (1 − q)[L(V) − L(v0)] + q[L(V) + M(V) − f (r)] = 0,

where L and M are, respectively, the linear and nonlinear parts of the equation. r belongs to Ω and q
belongs to [0, 1] which is the embedding parameter.

3. Boundedness and positivity of the model

Here, the boundedness and positivity of the solution of System (1.1) are presented. We follow the
theorems given in [37–40] to obtain the desired results.

Theorem 3.1. There exists a domain in which all positive solutions of the system have the ultimate
upper bound.

Proof. Let
N̊ = S̊ + E̊ + I̊ + Å + R̊ + H̊;

then
dN̊(t)

dt
= Λ′ − π′ I̊ − π̇N̊

N̊(0) = N̊0 ≥ 0, which implies

N̊(t) ≤ N̊(t) ≤ N̊0e−θt +
Λ′

π̇
(1 − e−θt)

N̊(t) ≤ Λ′

π̇
as t → ∞, so the feasible region of the considered model is

Θ = {(S̊ , E̊, I̊, Å, R̊, H̊ ∈ R6
+ : N̊ ≤

Λ′

π̇
, C̊ ∈ R+ : C̊ ≤

Λ′(ε + ε)
π̇ω

}

�
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Theorem 3.2. The set R7
+ is a positive invariant set with respect to the given System (1.1).

Proof. From (1.1), we have
dV
dt

=M(V(t)), V(0) = V0 ≥ 0,

M(V(t)) =

(
M1(V(t)),M2(V(t)),M3(V(t)),M4(V(t)),M5(V(t)),M6(V(t)),M7(V(t))

)T

.

We observed that 

dS̊
dt
|S̊ =0 = Λ

′

≥ 0,

dE̊
dt
|E̊=0 = τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ ≥ 0,

dI̊
dt
|I̊=0 = µνE̊ ≥ 0,

dÅ
dt
|Å=0 = µ(1 − ν)E̊ ≥ 0,

dH̊
dt
|H̊=0 = γI̊ + κÅ ≥ 0,

dR̊
dt
|R̊=0 = λI̊ + %H̊ ≥ 0,

dC̊
dt
|C̊=0 = ε I̊ + εÅ ≥ 0.

Hence, R7
+ is an invariant set. �

For the further study of the qualitative analysis of the model one can see [31], in which stability
analysis of the model, uniqueness and existence of the solution are investigated.
Many non-linear mathematical models have been solved to obtain numerical and analytical solutions.
Mathematicians introduced numerical and analytical solutions schemes like the finite element scheme,
finite-difference scheme, variational iteration method, Homotpy perturbabtion method, Laplace
Adomian decomposition and many more. The Laplace Adomian decomposition method and homotopy
scheme are easy and reliable for many nonlinear fractional models to obtain the approximate solutions
[11, 12, 41–43].

4. Construction of the approximate solution for Model (1.2) via the LADM

The LADM is a strong mathematical tool in which the Adomian decomposition method is coupled
with the Laplace transform. One can convert a differential equation to an algebraic equation using
a Laplace transform. Also, the decomposition of nonlinear terms in the terms of the Adomain
polynomials is an advantage. We follow a general approach by considering the Laplace transform
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of the understudied Model (1.2) with the following initial conditions:



L
[

CDθ
t (S̊ (t))

]
= L

[
Λ
′

− τI̊S̊ − ηψÅS̊ − ζρH̊S̊ − βC̊S̊ − π̇S̊
]
,

L
[

CDθ
t (E̊(t))

]
= L

[
τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ − (µ + π̇)E̊

]
,

L
[

CDθ
t (I̊(t))

]
= L

[
µνE̊ − (γ + λ)I̊ − (π̇ + π

′

)I̊
]
,

L
[

CDθ
t (Å(t))

]
= L

[
µ(1 − ν)E̊ − (κ + π̇)Å

]
,

L
[

CDθ
t (H̊(t))

]
= L

[
γI̊ + κÅ − (% + π̇)H̊

]
,

L
[

CDθ
t (R̊(t))

]
= L

[
λI̊ + %H̊ − π̇R̊

]
,

L
[

CDθ
t (C̊(t))

]
= L

[
ε I̊ + εÅ − ωC̊

]
.

(4.1)

By the initial conditions, Eq (4.1) becomes



L[S̊ (t)] =
M1

s
+

1
sθ
L

[
Λ
′

− τI̊S̊ − ηψÅS̊ − ζρH̊S̊ − βC̊S̊ − π̇S̊
]
,

L[E̊(t)] =
M2

s
+

1
sθ
L

[
τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ − (µ + π̇)E̊

]
,

L[I̊(t)] =
M3

s
+

1
sθ
L

[
µνE̊ − (γ + λ)I̊ − (π̇ + π

′

)I̊
]
,

L[Å(t)] =
M4

s
+

1
sθ
L

[
µ(1 − ν)E̊ − (κ + π̇)Å

]
,

L[H̊(t)] =
M5

s
+

1
sθ
L

[
γI̊ + κÅ − (% + π̇)H̊

]
,

L[R̊(t)] =
M6

s
+

1
sθ
L

[
λI̊ + %H̊ − π̇R̊

]
,

L[C̊(t)] =
M7

s
+

1
sθ
L

[
ε I̊ + εÅ − ωC̊

]
.

(4.2)

The solutions in an infinite series form for S̊ , E̊, I̊, Å, H̊, R̊ and C̊ are given below

S̊ (t) =

∞∑
n=0

S̊ n(t), E̊(t) =

∞∑
n=0

E̊n(t), I̊(t) =

∞∑
n=0

I̊n(t), Å(t) =

∞∑
n=0

Ån(t)

H̊(t) =

∞∑
n=0

H̊n(t), R̊(t) =

∞∑
n=0

R̊n(t), C̊(t) =

∞∑
n=0

C̊n(t),

(4.3)

where

I̊(t)S̊ (t) =

∞∑
n=0

Wn(t), Å(t)S̊ (t) =

∞∑
n=0

Xn(t), H̊(t)S̊ (t) =

∞∑
n=0

Yn(t), C̊(t)S̊ (t) =

∞∑
n=0

Zn(t)
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are the nonlinear terms of the Adomian polynomials where

Wn(t) =
1
n!

dn

dΛn

 n∑
i=0

Λi I̊i(t)
n∑

i=0

λiS̊ i(t)


Λ=0

Xn(t) =
1
n!

dn

dΛn

 n∑
i=0

ΛiÅi(t)
n∑

i=0

ΛiS̊ i(t)


Λ=0

Yn(t) =
1
n!

dn

dΛn

 n∑
i=0

ΛiH̊i(t)
n∑

i=0

ΛiS̊ i(t)


Λ=0

Zn(t) =
1
n!

dn

dΛn

 n∑
i=0

ΛiC̊i(t)
n∑

i=0

ΛiS̊ i(t)


Λ=0

.

(4.4)

From Eqs (4.3), (4.4) and (4.2) and by comparing the terms on both sides, we obtain

L[S̊ 0(t)] =
M1

s
,L[E̊0(t)] =

M2

s
,L[I̊0(t)] =

M3

s
,L[Å0(t)] =

M4

s
,

L[H̊0(t)] =
M5

s
,L[R̊0(t)] =

M6

s
,L[C̊0(t)] =

M7

s
,

L[S̊ 1(t)] =
1
sθ
L

[
Λ
′

− τI̊0S̊ 0 − ηψÅ0S̊ 0 − ζρH̊0S̊ 0 − βC̊0S̊ 0 − π̇S̊ 0

]
,

L[E̊1(t)] =
1
sθ
L

[
τI̊0S̊ 0 + ηψÅ0S̊ 0 + ζρH̊0S̊ 0 + βC̊0S̊ 0 − (µ + π̇)E̊0

]
,

L[I̊1(t)] =
1
sθ
L

[
µνE̊0 − (γ + λ)I̊0 − (π̇ + π

′

)I̊0

]
,

L[Å1(t)] =
1
sθ
L

[
µ(1 − ν)E̊0 − (κ + π̇)Å0

]
,

L[H̊1(t)] =
1
sθ
L

[
γI̊0 + κÅ0 − (% + π̇)H̊0

]
,

L[R̊1(t)] =
1
sθ
L

[
λI̊0 + %H̊0 − π̇R̊0

]
,

L[C̊1(t)] =
1
sθ
L

[
ε I̊0 + εÅ0 − ωC̊0

]
,

...

L[S̊ n+1(t)] =
1
sθ
L

[
Λ
′

− τI̊nS̊ n − ηψÅnS̊ n − ζρH̊nS̊ n − βC̊nS̊ n − π̇S̊ n

]
,

L[E̊n+1(t)] =
1
sθ
L

[
τI̊nS̊ n + ηψÅnS̊ n + ζρH̊nS̊ n + βC̊nS̊ n − (µ + π̇)E̊n

]
,

L[I̊n+1(t)] =
1
sθ
L

[
µνE̊n − (γ + λ)I̊n − (π̇ + π

′

)I̊n

]
,

L[Ån+1(t)] =
1
sθ
L

[
µ(1 − ν)E̊n − (κ + π̇)Ån

]
,

L[H̊n+1(t)] =
1
sθ
L

[
γI̊n + κÅn − (% + π̇)H̊n

]
,

L[R̊n+1(t)] =
1
sθ
L

[
λI̊n + %H̊n − π̇R̊n

]
,

L[C̊n+1(t)] =
1
sθ
L

[
ε I̊n + εÅn − ωC̊n

]
.

(4.5)
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By the Laplace inverse transform, we get

S̊ 0(t) = L−1
[
M1

s

]
= M1, E̊0(t) = L−1

[
M2

s

]
= M2, I̊0(t) = L−1

[
M3

s

]
= M3,

Å0(t) = L−1
[
M4

s

]
= M4, H̊0(t) =

[
M5

s

]
= M5,

R̊0(t) = L−1
[
M6

s

]
= M6, C̊0(t) =

[
M7

s

]
= M7,

S̊ 1(t) =
[
Λ
′

− τM3M1 − ηψM4M1 − ζρM5M1 − βM7M1 − π̇M1

] tθ

Γ(θ + 1)
,

E̊1(t) =
[
τM3M1 + ηψM4M1 + ζρM5M1 + βM7M1 − (µ + π̇)M2

] tθ

Γ(θ + 1)
,

I̊1(t) =
[
µνM2 − (γ + λ)M3 − (π̇ + π

′

)M3

] tθ

Γ(θ + 1)
,

Å1(t) =
[
µ(1 − ν)M2 − (κ + π̇)M4

] tθ

Γ(θ + 1)
,

H̊1(t) =
[
γM3 + κM4 − (% + π̇)M5

] tθ

Γ(θ + 1)
,

R̊1(t) =
[
λM3 + %M5 − π̇M6

] tθ

Γ(θ + 1)
,

C̊1(t) = [εM3 + εM4 − ωM7]
tθ

Γ(θ + 1)
,

S̊ 2(t) = Λ
′ tθ

Γ(θ + 1)
−

[
τ(M3s1 + i1M1) + ηψ(M4s1 + a1M1)

+ζρ(M5s1 + h1M1) + β(M7s1 + c1M1) + π̇M1
] t2θ

Γ(2θ + 1)
,

E̊2(t) =
[
τ(M3s1 + i1M1) + ηψ(M4s1 + a1M1) + ζρ(M5s1 + h1M1)

+β(M7s1 + c1M1) − (µ + π̇)e1
] t2θ

Γ(2θ + 1)
,

1̊2(t) =
[
µνe1 − (γ + λ)i1 − (π̇ + π

′

)i1

] t2θ

Γ(2θ + 1)
,

Å2(t) =
[
µ(1 − ν)e1 − (κ + π̇)a1

] t2θ

Γ(2θ + 1)
,

H̊2(t) =
[
γi1 + κa1 − (% + π̇)h1

] t2θ

Γ(2θ + 1)
,

R̊2(t) =
[
λi1 + %h1 − π̇i1

] t2θ

Γ(2θ + 1)
,

C̊2(t) = [εi1 + εa1 − ωc1]
t2θ

Γ(2θ + 1)
.

(4.6)
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In the same way, one can get the renaming terms, where

s1 = Λ
′

− τM3M1 − ηψM4M1 − ζρM5M1 − βM7M1 − π̇M1,

e1 = τM3M1 + ηψM4M1 + ζρM5M1 + βM7M1 − (µ + π̇)M2,

i1 = µνM2 − (γ + λ)M3 − (π̇ + π
′

)M3,

a1 = µ(1 − ν)M2 − (κ + π̇)M4,

h1 = γM3 + κM4 − (% + π̇)M5,

r1 = λM3 + %M5 − π̇M6,

c1 = εM3 + εM4 − ωM7.

We present the following theorem to show the convergence analysis:

Theorem 4.1. Let Z be a Banach space and Y be a contractive nonlinear operator Y : Z → Z such
that ∀ z, z′ ∈ Z, and‖Y(z)− Y(z′)‖ ≤ k‖y− y′‖, 0 < k < 1 Then Y has a unique point z such that Y(z) = z
where y = (S̊ , E̊, I̊, Å, H̊, R̊, C̊). By using the Adomian decomposition method, Eq (4.6) yields

zn = zn−1, zn−1 =

n−1∑
i=1

zi, n = 1, 2, 3...

and let z0 =∈ Sr(y) where
Sr(z) = z′ ∈ Z; ‖z − z′‖ < r

then, we have
(i) zn ∈ Sr(z) and (ii) lim

n→∞
yn = z.

Proof. For (i), we use mathematical induction for n = 1; we have

‖z0 − z‖ = ‖Y(z0) − Y(z)‖ ≤ k‖z0 − z‖.

Let the result holds true for n − 1; then,

‖z0 − z‖ ≤ kn−1‖z0 − z‖.

We have

‖zn − z‖ = ‖Y(zn−1) − Y(z)‖ ≤ k‖zn−1 − z‖ ≤ kn‖z0 − z‖

i.e.,
‖zn − z‖ ≤ kn‖zn − z‖ ≤ knr < r,

=⇒ zn ∈ Sr(z).

Now for (ii), since ‖zn − z‖ ≤ kn‖zn − z‖ and as lim
n→∞

kn = 0 we therefore have
lim
n→∞
‖zn − z‖ = 0 =⇒ zn = z. �
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5. Construction of the approximate solution for Model (1.2) via the HPM

In this section, the HPM is being considered for Model (1.2) according to [42,44]. By constructing
the general homotopy technique for the considered model, we get



(1 − p)
[

CDθ
t (S̊ (t)) − CDθ

t (S̊ 0(t))
]

= p
[

CDθ
t (S̊ (t)) − Λ

′

+ τI̊S̊ + ηψÅS̊ + ζρH̊S̊ + βC̊S̊ + π̇S̊
]
,

(1 − p)
[

CDθ
t (E̊(t)) − CDθ

t (E̊(t))
]

= p
[

CDθ
t (E̊0(t)) − τI̊S̊ − ηψÅS̊ − ζρH̊S̊ − βC̊S̊ + (µ + π̇)E̊

]
,

(1 − p)
[

CDθ
t (I̊(t)) − CDθ

t (I̊0(t))
]

= p
[

CDθ
t (I̊(t)) − µνE̊ + (γ + λ)I̊ + (π̇ + π

′

)I̊
]
,

(1 − p)
[

CDθ
t (Å(t)) − CDθ

t (Å0(t))
]

= p
[

CDθ
t (Å(t)) − µ(1 − ν)E̊ + (κ + π̇)Å

]
,

(1 − p)
[

CDθ
t (H̊(t) − CDθ

t (H̊0(t)))
]

= p
[

CDθ
t (H̊(t)) − γI̊ − κÅ − (% + π̇)H̊

]
,

(1 − p)
[

CDθ
t (R̊(t)) − CDθ

t (R̊0(t))
]

= p
[

CDθ
t (R̊(t)) − λI̊ − %H̊ + π̇R̊

]
,

(1 − p)
[

CDθ
t (C̊(t)) − CDθ

t (C̊0(t))
]

= p
[

CDθ
t (C̊(t)) − ε I̊ − εÅ + ωC̊

]
.

(5.1)
If we put p = 0 in Eq (5.1), then the reduced system of equations is easy to handle and a solution can
be easily obtained. If we put p = 1, then we get System (1.2). So, using Eq (4.3) in Eq (5.1) we get the
following equations by equating the powers of p:

p0 :


S̊ 0(t) = M1, E̊0(t) = M2, I̊0(t) = M3,

Å0(t) = M4, H̊0(t) = M5,

R̊0(t) = M6, C̊0(t) = M7;

(5.2)

similarly

p1 :



S̊ 1(t) =
[
Λ
′

− τM3M1 − ηψM4M1 − ζρM5M1 − βM7M1 − π̇M1

] tθ

Γ(θ + 1)
,

E̊1(t) =
[
τM3M1 + ηψM4M1 + ζρM5M1 + βM7M1 − (µ + π̇)M2

] tθ

Γ(θ + 1)
,

I̊1(t) =
[
µνM2 − (γ + λ)M3 − (π̇ + π

′

)M3

] tθ

Γ(θ + 1)
,

Å1(t) =
[
µ(1 − ν)M2 − (κ + π̇)M4

] tθ

Γ(θ + 1)
,

H̊1(t) =
[
γM3 + κM4 − (% + π̇)M5

] tθ

Γ(θ + 1)
,

R̊1(t) =
[
λM3 + %M5 − π̇M6

] tθ

Γ(θ + 1)
,

C̊1(t) = [εM3 + εM4 − ωM7]
tθ

Γ(θ + 1)

(5.3)
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and

p2 :



S̊ 2(t) = Λ
′ tθ

Γ(θ + 1)
−

[
τ(M3s1 + i1M1) + ηψ(M4s1 + a1M1)

+ζρ(M5s1 + h1M1) + β(M7s1 + c1M1) + π̇M1
] t2θ

Γ(2θ + 1)
,

E̊2(t) =
[
τ(M3s1 + i1M1) + ηψ(M4s1 + a1M1) + ζρ(M5s1 + h1M1)

+ β(M7s1 + c1M1) − (µ + π̇)e1

] t2θ

Γ(2θ + 1)
,

1̊2(t) =
[
µνe1 − (γ + λ)i1 − (π̇ + π

′

)i1

] t2θ

Γ(2θ + 1)
,

Å2(t) =
[
µ(1 − ν)e1 − (κ + π̇)a1

] t2θ

Γ(2θ + 1)
,

H̊2(t) =
[
γi1 + κa1 − (% + π̇)h1

] t2θ

Γ(2θ + 1)
,

R̊2(t) =
[
λi1 + %h1 − π̇i1

] t2θ

Γ(2θ + 1)
,

C̊2(t) = [εi1 + εa1 − ωc1]
t2θ

Γ(2θ + 1)
.

(5.4)

6. Discussion

Here, we discuss the validation of the results for the established iterative scheme and the selected
fractional derivative by the behavior of graphs. For this, the values given in the Table 1 were used. All
the compartments were simulated in different fractional orders as well as integer order θ = 1, against
the values shown in the table.

Table 1. Values of the parameters.

Notation Parameter values Notation Parameter values
M1 30 M2 25
M3 20 M4 15
M5 10 M6 9
M7 7 Λ

′

0.8
ζ 0.5 ψ 0.2
τ 0.1 π̇ 0.009
π
′

0.01 λ 0.1
µ 0.09 ν 0.05
% 0.7 ε 0.03
ε 0.06 ω 0.4
κ 0.2 β 0.001
γ 0.1 η 0.03
ρ 0.07 - -

The graph of the susceptible population class S̊ (t) represents simulation against θ =
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0.5, 0.7, 0.9, and 1.0 in Figure 1. At the start of the 1st week, a rapid decreasing behavior of the
curves can be seen, and after the 1st-week the susceptible population increases with time.

The graphs of the exposed population class E̊(t), and asymptotic population class Å(t) in Figures 2
and 4 respectively represent increasing behavior in the first week and then decrease as time increases.
After some time the curves show constant behavior.

As the infected and hospitalized population decreases, the recovered population increases with time
and then becomes constant. The fractional order dynamics of hospitalized and recovered classes
can be observed in Figures 3, 5 and 6 respectively. Also, the curves of the graph of Class C̊(t)
represent decreasing behavior as time increases and then become constant (see in Figure 7). This
means improvement can be expected in this population over time.

Simulation of the results of all compartments are calculated for θ = 0.5, 0.7, 0.8, 1. It can be seen
that the converging behavior of the curves for fractional orders is fast as compared to the integer order
1 due to the robust nature of the Caputo fractional derivative. The increasing and decreasing behavior
of the curves is fast at small fractional orders as compared to large fractional orders.
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Figure 1. Graphical presentation of approximate values at different fractional orders for the
susceptible class.

AIMS Mathematics Volume 7, Issue 10, 19267–19286.



19279

0 10 20 30 40 50 60 70

time t (Days)

5

10

15

20

25

30

35

40

45

50
E

xp
os

ed
 p

op
ul

at
io

n 
E

=0.5
=0.7
=0.9
=1.0

Figure 2. Graphical presentation of approximate values at different fractional orders for the
exposed class.
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Figure 3. Graphical presentation of approximate values at different fractional orders for the
infected class.
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Figure 4. Graphical presentation of approximate values at different fractional order for the
asymptomatic class.
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Figure 5. Graphical presentation of approximate values at different fractional orders for the
hospitalized class.
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Figure 6. Graphical presentation of approximate values at different fractional orders for the
recovered class.
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Figure 7. Graphical presentation of approximate values at different fractional orders for the
Camel class.

Next, the comparison graphs are given to compare the different compartments of the model for
θ = 1. We compare the plotted compartments of the proposed model obtained via LADM and HPM
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techniques for the first three calculated terms. One can see the similarity in simulations, concluding
that both schemes give the same results. For an efficient approximation for the nonlinear systems of
ordinary differential equations and partial differential equation, the LADM is an effective technique.
This technique is free of parameters, large or small, which is a big advantage of this method over the
others. It deals with the nonlinearization directly while in contrast, some other procedures consider
either linearization or discretization. This procedure demonstrates how the Laplace transform may be
used to obtain the approximate solution of a nonlinear system of differential equations of fractional
order by manipulating the decomposition method. Similarly, without the need for a linearization
process, the HPM is an efficient and powerful method for obtaining the solution to a nonlinear system.
This technique can take the ascendancy of the conventional perturbation technique while eliminating
its limitations. Here in Figure 8, we compared the approximate solutions obtained via the LADM
and HPM both methods. The graphical representation shows the similar approximate solution to the
proposed model.
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Figure 8. Comparison of approximate values of the LADM and HPM for the proposed model
at θ = 1.

7. Conclusions

The proposed model was investigated for approximate solutions via the LADM and HPM
introducing a global operator that is a Caputo fractional derivative for the first three terms. The obtained
results show that both methods give identical results for the problem under investigation. The results
were also investigated graphically for the different values of θ. The traditional numerical methods need
discretization, perturbation, transformation, or linearization to solve the nonlinear problems whereas,
in the LADM, each term of the series is a generalized polynomial called the Adomian polynomial.
Moreover, another advantage that it is free from rounding-off errors. Similarly, the HPM gives a very

AIMS Mathematics Volume 7, Issue 10, 19267–19286.



19283

quick convergence of the solution series in most cases. It also avoids linearization or discretization and
round-off errors. We can say that both methods are the best validation of a model of an arbitrary order
derivative. To obtain the numerical solution, the fractional-order differential model can be selected for
the larger accuracy in a more sophisticated way as compared to the differential model of integer-order.
Different epidemic and infectious disease mathematical models can be studied via fractional order
derivatives and the best choice of numerical techniques in order to obtain approximate solutions so that
health care centers can control the spread of diseases. For numerical computations and implementation,
Matlab15 is used.
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