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Abstract: In this paper, an inverse problem of determining the space-dependent volatility from
the observed market prices of options with different strikes is studied. Being different from other
inverse volatility problem with classical parabolic equations, we apply the linearization method and
introduce some variable substitutions to convert the original problem into an inverse source problem in
a degenerate parabolic equation in a bounded area, from which an unknown volatility can be recovered
and deficiencies caused by artificial truncation can be solved. Based on the optimal control framework,
the problem is transformed into an optimization problem and the existence of the minimizer is
established. After the necessary conditions are deduced, the uniqueness and stability of the minimizer
are proved. Then, the Landweber iterative method is used to obtain a stable numerical solution of the
inverse problem and some numerical experiments are also performed. The numerical results show that
the algorithm which we proposed is robust and the unknown coefficient is recovered quite well.
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1. Introduction

An option is a contract that gives an option holder the right to buy (call option) or sell (put option) an
underlying asset with the strike price at a certain date or at any time before that date. Some contracts,
known as the “American option”, allow the holder to exercise at any time before an expiration date,
whereas options that can only be exercised on the maturity date are called “European options”. In this
paper, we focus on the European call option.
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In the last 20 years, the parameter inversion problem in the option pricing field has been extensively
studied by many scholars, and the results of these studies have all relied on the famous Black-Scholes
model. An important parameter in the Black-Scholes model is the volatility of the underlying asset
associated with the option, which has a significant impact on the market value of the options, and as
such, many scholars and practitioners in the financial industry have focused intensively on the volatility
of an underlying asset in option pricing. In the real market, the volatility of the underlying asset price
cannot be directly observed, and it is certainly unpredictable. However, the market price of an option
is directly observable and provides information about volatility.

The derivation of the Black-Scholes partial differential equations builds on the basic components
of derivatives theory, such as delta hedging and no arbitrage. One of the erroneous assumptions of the
Black-Scholes model is that the volatility of the underlying asset is a constant. Empirical research on
implied volatility shows that implied volatility depends on strike prices. The value of a call option is
obviously a function of various parameters in the contract, such as the strike price K and the remaining
time to maturity T − t, where T is the expiration time and t is the current time. For our inverse problem,
we will just use u(s, t; K,T ) for the option value.
Problem P1: Considering the option on the stock without paying the dividend, it is well known that
u(s, t; K,T ) for a call option satisfies the following Black-Sholes equation [1]{

∂u
∂t + 1

2σ
2(s)s2 ∂2u

∂s2 + sµ∂u
∂s − ru = 0, (s, t) ∈ R+ × (0,T ),

u(s,T ) = (s − K)+ = max(0, s − K), s ∈ R+.
(1.1)

Here, s is the price of the underlying stock, K is the strike price, T is the time of expiry and µ and r are,
respectively, the risk-neutral drift and the risk-free interest rate, which are assumed to be constants.
The parameter σ(s) is the volatility coefficient to be identified. We assume that

1
2
σ2(s) =

1
2
σ2

0 + g(s),

where g(s) is a small perturbation of the constant σ0. Given the following additional condition:

u(s∗, 0,K,T ) = u∗(K,T ), K ∈ R+, (1.2)

where s∗ is the market price of the stock at time t∗ = 0 and u∗(K,T ) indicates the market price of the
option with the strike K at a given expiry time T . The inverse problem is to determine the functions u
and σ satisfying (1.1) and (1.2), respectively.

The inverse volatility problem for the Black-Scholes equation has been discussed intensively in the
literature. The inverse problem was first considered by Dupire in [1]. He applied the symmetric
property of the transition probability density function to replace the option pricing inverse problem
with an equation containing the parameters K and T, which have duality, and proposed Dupire’s
formula for calculating implied volatility. Although this formula is seriously ill-posed, Dupire’s
solution lays an important foundation for later scholars to study this problem. In [2], the authors
reduce the identification of volatility to an inverse parabolic problem with terminal observation and
establish uniqueness and stability results by using Carleman estimates. This approach produces a
nonlinear Fredholm integral equation in which the approximated solution is obtained by solving the
integral equation iteratively. In [3], a time-dependent and a space-dependent volatility have been
studied, respectively. A class of non-Gaussian stochastic processes has been generated in the study of
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spatially correlated volatility. The problem is transformed into a known inverse coefficient problem
with final observations and uniqueness and stability theorems are established by using the dual
equations. In [4], Jiang and Tao used an optimal control framework to determine the implied volatility
and carried out a rigorous mathematical analysis of the inverse problem, proving that the approximate
optimal solution converges to an appropriate solution to the original problem. Similar results are
derived in [5]. In [6,7], the inverse problem of identifying the principal coefficient is investigated
when the solution is known, and a well-posed approximation algorithm to identify the coefficient is
proposed. The existence, uniqueness and stability of such solutions are proved. The Tikhonov
regularization method has always been an important tool for solving ill-posed problems. In [7], a new
two-dimensional numerical differentiation method is proposed through Tikhonov regularization.
Convergence analysis and numerical examples are given. The authors of [8] studied the stable
identification problem of the local volatility surface σ(S , t) in the Black-Scholes/Dupire equation
from the market price of European options. The stability and convergence of the approximation
obtained by Tikhonov regularization. In the case of a known term-structure of volatility, based on the
assumption that the volatility is constant for time σ(S , t) = σ(S ), the convergence rate under simple
smoothness and decay conditions on the true volatility is proved. In recent years, linearization
techniques have been applied to the inverse problem of option pricing. In [9–12], linearization
techniques are applied to transform the problem into an inverse source problem from which unknown
volatility can be recovered. A stable numerical solution to the inverse problem is obtained by using
the integral equation method and the Landweber iteration method. Both the theoretical analysis and
the numerical examples demonstrate the effectiveness of the proposed method.

The inverse Problem P1 was first considered in [10], where the non-linear problem is linearized to
the following Problem P2:
Problem P2: Consider the following parabolic equation [10]: Vτ −

1
2σ

2
0Vyy +

(
1
2σ

2
0 + µ

)
Vy + (r − µ)V = α0(y, τ)g(y), (y, τ) ∈ R × (0,T ),

V(y, 0) = 0, y ∈ R,
(1.3)

where σ0 is a positive constant, α0(y, τ) is a known function and

g(y) = g∗(s∗ey)

is the unknown coefficient. Assume that an additional condition is given as follows:

V(y,T ) = V(y), y ∈ R, (1.4)

where V(y) = u∗(s∗ey,T ) − V0(y,T ) is a known function and V0 is the final data for the unperturbed
problem (i.e., with volatilityσ2

0). More detail is given in Section 2. Then, we shall identify the functions
u and g from the above condition.

It is worth mentioning that the aforementioned scholars and their research have made outstanding
contributions to the inverse volatility problem in option pricing. However, there are some deficiencies
in these studies that need to be improved. One of the significant deficiencies is to consider that the
original Problem P2 is in the unbounded region, so many scholars conduct numerical simulations by
artificial truncation. There is a potential trouble with this approach, that is, if we truncate the interval
too large, it will increase the amount of calculation, and if the truncation interval is too small, it will
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increase the error. In practical applications, this approach will fail to precisely control the volatility risk.
In order to solve this deficiency, our main objective in this paper is to use some variable substitution
that transforms Problem P2 into the following degenerate Problem P:
Taking

x = arctan y, W = V.

Problem P: Consider the following degenerate parabolic equation:
Wτ −

1
2σ

2
0 cos4 xWxx +

[
σ2

0 sin x cos3 x +
(

1
2σ

2
0 + µ

)
cos2 x

]
Wx + (r − µ)W = α(x, τ)g(x),

(x, τ) ∈ Q =
(
−π2 ,

π
2

)
× (0,T ],

W(x, 0) = 0, − π
2 < x < π

2 ,

(1.5)

with the additional condition

V(y,T ) = W(tan x,T ) = w(x), x ∈
(
−
π

2
,
π

2

)
, (1.6)

in which

α(x, τ) = s∗
1

σ0
√

2πτ
e
−

(tan x)2

2τσ2
0

+c′∗tan x+d∗τ
, c′ =

1
2

+
µ

σ2
0

, d = −
1

2σ2
0

(
σ2

0

2
+ µ

)2

+ µ − r,

g(x) = g∗(s∗etan x),
1
2
σ2

0 cos4(−
π

2
) =

1
2
σ2

0 cos4(
π

2
) = 0,

1
2
σ2

0 cos4 x > 0, x ∈ (−
π

2
,
π

2
), (1.7)

and g(x) is an unknown source term in (1.5). We shall determine the functions W and g satisfying (1.5)
and (1.6).

One can find that with substitutions our Problem P becomes determining the source term in the
degenerate parabolic equation with terminal data. Unlike the classical parabolic equation, the
mathematical model in our paper may allow degeneration at some part of the boundary, which may
lead to missing corresponding boundary conditions (see, e.g., [13–15]). A lot of work has been done
on the identification of the coefficients in degenerate parabolic equations. In [16], an inverse problem
of simultaneously reconstructing the initial value and source coefficient is investigated for the
following degenerate parabolic equation:{

ut − (a(x)ux)ux = f (x), (x, t) ∈ (0, 1) × (0,T ],
u(x, 0) = φ(x), x ∈ (0, 1).

The uniqueness and conditional stability of the solution for the original problem are proved by a
Carleman estimate, and the iteration algorithm of the Landweber type is designed to obtain the
numerical solution. In [17], an inverse problem for the restoration of source temperature from the
information of the final observation is studied. The uniqueness is obtained by taking an integral
transform and using Liouville’s theorem (complex analysis). With the implication of integral identity,
a Lipschitz stability for the inverse problem is constructed. In [18], the authors study the inverse
problem of the reconstruction of the degenerate diffusion coefficient in the following parabolic
equation

∂tu − ∂x(xαa(x)∂xu) = f (x, t), (x, t) ∈ (0, l) × (0,T ),
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the uniqueness and Lipschitz stability for identification of a constant coefficient a(x) and power α by
the interior data at some time are proved by the energy method. Based on the global Carleman
estimates for hyperbolic problems and an inversion of the integral transform, the uniqueness results
for identification of a general coefficient a(x) and power α from boundary data on one side of the
space interval are obtained. In [19], based on the optimal control framework, an inverse problem of
determining the radiative coefficient in the degenerate parabolic equation from the final data is
transformed into an optimization problem. The existence, necessary conditions, uniqueness and
stability of the minimizer are proved. The convergence of the minimizer for noisy input data is
obtained by minor modification to the cost functional and some a priori regularity conditions imposed
on the forward operator. Not attempting to review all we mention the most recent paper [20] on the
basis of the study of the unique solvability of the direct problem, in which authors prove the existence
and uniqueness theorems for inverse problems of determination of lower order coefficient in the
Black-Scholes type equation with the additional condition of integral observation. For other topics
about the degenerate parabolic equations, e.g., the null controllability, we may refer the readers to
[21–27] and the reference therein.

The contribution of this paper is two-fold. Theoretically speaking, we first apply the linearization
method and variable substitutions to transform the Problem P2 into an inverse source Problem P
with a degenerate parabolic equation in a bounded area, from which an unknown volatility can be
recovered. Based on the optimal control framework, we transform the Problem P into an optimization
problem and establish the existence, necessary conditions, uniqueness and stability of the minimizer.
Furthermore, in the numerical part, we design an iteration algorithm of the Landweber type to solve
the inverse problem. To the best of our knowledge, that is the first paper which is concerned with
determining the space-dependent volatility in option pricing by using the theory of degenerate parabolic
equations.

The remainder of this paper is organized as follows. In Section 2, the linearization method and
variable substitutions are applied to transform the original problem into a degenerate parabolic equation
and the well-posedness of the degenerate parabolic equation is proved. On the basis of the optimal
control framework, the existence of the minimizer is proved in Section 3. In Section 4, the necessary
conditions of the optimization problem are deduced. The uniqueness and stability of the minimizer
are established in Section 5. In Section 6, a Landweber iterative method is designed to obtain a stable
numerical solution to the inverse problem. Some numerical experiments are presented to show the
validity of the inversion method in Section 7.

2. Linearization and variable substitutions

We shall assume that the option price premium u(·, ·; K,T ) satisfies the equation dual to the Black-
Scholes equation (1.1) with respect to the strike price K and expiry time T :

∂u
∂T
−

1
2

K2σ2(K,T )
∂2u
∂K2 + µK

∂u
∂K

+ (r − µ)u = 0. (2.1)

Equation (2.1) was found by Dupire in [4].
In the lognormal variables,

y = ln
(K

s∗

)
, τ = T,
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a(y) = σ(s∗ey), U(y, τ) = u(s∗ey, τ). (2.2)

The inverse Problem P1 transforms into Uτ −
1
2a2(y)Uyy +

(
1
2a2(y, τ) + µ

)
Uy + (r − µ)U = 0, τ > 0,

U(y, 0) = s∗(1 − ey)+, y ∈ R,
(2.3)

with the additional market data
U(y,T ) = U(y), y ∈ R, (2.4)

where
U(y) = u∗(s∗ey,T ). (2.5)

The goal is to recover the unknown space-dependent volatility coefficient a(y) from the market data
U(y).

If
1
2

a2(y) =
1
2
σ2

0 + g(y),

we have
U = V0 + V + v,

where V0 is the solution of (2.3) when a = σ0 and v is quadratically small with respect function g. The
principal linear term V satisfies Vτ −

1
2σ

2
0Vyy +

(
1
2σ

2
0 + µ

)
Vy + (r − µ)V = α0(y, τ)g(y),

V(y, 0) = 0, y ∈ R,
(2.6)

with the additional final data

V(y,T ) = V(y) = U(y) − V0(y,T ), y ∈ R, (2.7)

in which

α0(y, τ) = s∗
1

σ0
√

2πτ
e
−

y2

2τσ2
0

+c′y+dτ
, c′ =

1
2

+
µ

σ2
0

, d = −
1

2σ2
0

(
σ2

0

2
+ µ

)2

+ µ − r

are known.
The recovery of g in (2.6) and (2.7) is a linear inverse source problem. However, because this is a

matter of unbounded areas, we make use of some variable substitutions here so that the above problem
is transformed into a linear inverse source degenerate parabolic problem in bounded areas.

Take
x = arctan y, W = V. (2.8)

Problem P: Consider the following parabolic equation:
Wτ −

1
2σ

2
0 cos4 xWxx +

[
σ2

0 sin x cos3 x +
(

1
2σ

2
0 + µ

)
cos2 x

]
Wx + (r − µ)W = α(x, τ)g(x),

(x, τ) ∈ Q =
(
−π2 ,

π
2

)
× (0,T ],

W(x, 0) = 0, − π
2 < x < π

2 ,

(2.9)

AIMS Mathematics Volume 7, Issue 10, 19237–19266.



19243

with the additional final data

V(y,T ) = W(tan x,T ) = w(x), x ∈
(
−
π

2
,
π

2

)
, (2.10)

in which

α(x, τ) = s∗
1

σ0
√

2πτ
e
−

(tan x)2

2τσ2
0

+c′∗tan x+d∗τ
, c′ =

1
2

+
µ

σ2
0

, d = −
1

2σ2
0

(
σ2

0

2
+ µ

)2

+ µ − r.

For the sake of analysis, we take
a(x) = σ2

0 cos4 x,

b(x) = σ2
0 sin x cos3 x +

(
1
2
σ2

0 + µ

)
cos2 x,

c = (r − µ),

W(x, 0) = ϕ(x),

f (x, τ) = α(x, τ)g(x),

where a(x), b(x), c, ϕ(x) and α(x, τ) are given smooth functions on (−π2 ,
π
2 ) which satisfy

a(−
π

2
) = a(

π

2
) = 0, a(x) > 0, x ∈ (−

π

2
,
π

2
), (2.11)

b(−
π

2
) = b(

π

2
) = 0,

and g(x) is an unknown source term in (2.9). We shall determine the functions W and g satisfying (2.9)
and (2.10).

Equation (2.9) belongs to the degenerate parabolic equations. Being different from the classical
parabolic equations, the degenerate one may get rid of the restriction of boundary conditions on some
degenerate part. By the well-known Fichera’s theory (see [15]), whether or not boundary conditions
should be given is determined by the sign of the Fichera function. Specifically, if the sign of the
Fichera function is non-negative, then boundary conditions should not be given; otherwise, the reverse
is exactly the case. For general one-dimensional degenerate parabolic equations

k(x, t)Wxx + b(x, t)Wx + c(x, t)W −Wτ = f (x, t), (x, t) ∈ (0, l) × (0,T ],

where k(x, t) satisfies

k(0, t) = k(l, t) = 0, k(x, t) > 0, (x, t) ∈ (0, l) × (0,T ],

the Fichera function can be defined as follows:

B(x, t) =

[
∂

∂x
k(x, t) − b(x, t)

]
ni, i = 1, 2,

where ni are taken as 1 and -1 as x = 0 and x = l , respectively. For (2.9), it can be easily seen that
B(x, t)|x=− π2 ,

π
2

= 0. Therefore, the boundary conditions on x = −π2 and x = π
2 should not be given either.
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3. Optimal control problem

In general, uniqueness is vital for the inverse problems, because it indicates if the extra condition is
sufficient to identify the unknown information. Many tools, including the energy estimate, integral
equation, maximum principle and Carleman estimate, can be used to derive the uniqueness and
Lipschitz stability for inverse problems. It should be mentioned that the Carleman estimate is an
effective tool to derive the uniqueness and Lipschitz stability for inverse problems. But, unfortunately,
it fails in treating the terminal control problems such as the inverse Problem P. Before we consider
the regularization of Problem P, we discuss the forward problem and give some basic definitions,
lemmas and estimations.
Definition 3.1. Define B to be the closure of C∞0 (Q) under the following norm:

‖W‖2B =

∫ T

0

∫ π
2

− π2

a(x)
(
|W |2 + |∇W |2

)
dxdτ, W ∈ B.

Definition 3.2. A function W(x, τ) is called the weak solution of (2.9) if W ∈ C
(
[0,T ]; L2

(
−π2 ,

π
2

)⋂
B
)

and, for any ψ ∈ L∞
(
(0,T ); L2(−π2 ,

π
2 )

⋂
B
)
, ∂ψ
∂τ
∈ L2(Q), ψ(·,T ) = 0, the following integration identity

holds: ∫ T

0

∫ π
2

− π2

[
−W

∂ψ

∂τ
+ Wx(aψ)x −W(bψ)x + cWψ

]
dxdτ −

∫ π
2

− π2

ϕ(x)ψ(·, 0)dx

=

∫ T

0

∫ π
2

− π2

fψdxdτ. (3.1)

Theorem 3.1. For any given f ∈ L∞(Q), ϕ ∈ L∞(−π2 ,
π
2 ) , there exists a unique weak solution to (2.9)

that satisfies the following estimate:

max
0≤τ≤T

∫ π
2

− π2

W2dx +

∫ τ

0

∫ π
2

− π2

a
∣∣∣∣∣∂W
∂x

∣∣∣∣∣2 dxdτ ≤ C
∫ π

2

− π2

ϕ2dx +

∫ τ

0

∫ π
2

− π2

f 2dxdτ
 .

Proof. First, we prove the existence. For any given 0 < ε < 1, we consider the following regularized
problem 

∂Wε

∂τ
− aε(x)∂

2Wε

∂x2 + b(x)∂Wε

∂x + cWε = f (x, τ), (x, τ) ∈ Q,
Wε(−π2 , τ) = Wε(π2 , τ) = 0,
Wε(x, 0) = ϕ(x),

(3.2)

where
aε(x) = a(x) + ε, x ∈ [−

π

2
,
π

2
].

From the well-known theory for degenerate parabolic equations, there exists a unique weak solution
Wε(x, τ) to (2.9).

Then, we will give some a priori estimates for Wε(x, τ). Without loss of generality, we assume that
Wε(x, τ) is the classical solution of (3.2). Otherwise, one can smooth the coefficients of (3.2) and then
consider the solution of the approximation problem.
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Multiplying both sides of (3.2) by Wε and integrating on Qτ = [−π2 ,
π
2 ] × (0, τ), we have∫ τ

0

∫ π
2

− π2

∂Wε

∂τ
Wεdxdτ −

∫ τ

0

∫ π
2

− π2

aε(x)
∂2Wε

∂x2 Wεdxdτ +

∫ τ

0

∫ π
2

− π2

b(x)
∂Wε

∂x
Wεdxdτ

+

∫ τ

0

∫ π
2

− π2

cW2
εdxdτ =

∫ τ

0

∫ π
2

− π2

f Wεdxdτ.

Applying integration by parts, we get

1
2

∫ π
2

− π2

W2
εdx −

1
2

∫ π
2

− π2

ϕ2dx +

∫ τ

0

∫ π
2

− π2

a′ε
∂Wε

∂x
Wεdxdτ +

∫ τ

0

∫ π
2

− π2

aε

(
∂Wε

∂x

)2

dxdτ

+

∫ τ

0

∫ π
2

− π2

b
∂Wε

∂x
Wεdxdτ +

∫ τ

0

∫ π
2

− π2

cW2
εdxdτ =

∫ τ

0

∫ π
2

− π2

f Wεdxdτ. (3.3)

Notice that ∫ τ

0

∫ π
2

− π2

cW2
εdxdτ ≥ 0;

hence,

1
2

∫ π
2

− π2

W2
εdx +

∫ τ

0

∫ π
2

− π2

(a′ε + b)
∂Wε

∂x
Wεdxdτ +

∫ τ

0

∫ π
2

− π2

aε

(
∂Wε

∂x

)2

dxdτ

≤
1
2

∫ τ

0

∫ π
2

− π2

f 2dxdτ +
1
2

∫ τ

0

∫ π
2

− π2

|Wε|
2 dxdτ +

1
2

∫ π
2

− π2

ϕ2dx. (3.4)

Integrating the second term from the left side of the inequality by parts, we get∫ τ

0

∫ π
2

− π2

(a′ε + b)
∂Wε

∂x
Wεdxdτ

=

∫ τ

0

[
(a′ε + b)W2

ε

]
|
π
2
− π2

dτ −
∫ τ

0

∫ π
2

− π2

[
(a′ε + b)Wε

]
x Wεdxdτ

= −

∫ τ

0

∫ π
2

− π2

(a′ε + b)
∂Wε

∂x
Wεdxdτ −

∫ τ

0

∫ π
2

− π2

[
(a′ε + b)

]
x W2

εdxdτ

= −
1
2

∫ τ

0

∫ π
2

− π2

[
(a′ε + b)

]
W2

εdxdτ

≤ − M
∫ τ

0

∫ π
2

− π2

W2
εdxdτ,

where we take M as the supremum of −1
2 (a′ε + b)x. From the Gronwall inequality, letting ε → 0, one

can immediately obtain

max
0≤τ≤T

∫ π
2

− π2

W2dx +

∫ τ

0

∫ π
2

− π2

a
∣∣∣∣∣∂W
∂x

∣∣∣∣∣2 dxdτ ≤ C
∫ π

2

− π2

ϕ2dx +

∫ τ

0

∫ π
2

− π2

f 2dxdτ
 ,
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which implies the existence of weak solutions.
Next, we prove the uniqueness of weak solutions. Suppose that W1 , W2 are two solutions of (2.9)

and let
U(x, τ) = W1(x, τ) −W2(x, τ), (x, τ) ∈ Q.

It can be easily seen that U ∈ C
(
[0,T ]; L2

(
−π2 ,

π
2

))⋂
B, and for any

ψ ∈ L∞
(
(0,T ); L2(−π2 ,

π
2 )

)⋂
B, ∂ψ

∂τ
∈ L2(Q), ψ(·,T ) = 0, the following integration identity holds:∫ τ

0

∫ π
2

− π2

(
−U

∂ψ

∂τ
+ axUxψ + aUxψx + bUxψ + cUψ

)
dxdτ = 0. (3.5)

For any given w ∈ C∞0 (Q), by the existence obtained above, we know that there exists a weak
solution v ∈ C

(
[0,T ]; L2(−π2 ,

π
2 )

)⋂
B, and ∂v

∂τ
∈ L2(Q) for the following equation:

−vτ − a(x)vxx + b(x)vx + c(x)v = w(x, τ), (x, τ) ∈ Q,

v(x,T ) = 0, x ∈ (−
π

2
,
π

2
).

Letting ψ = v in (3.5), we obtain ∫ τ

0

∫ π
2

− π2

Uwdxdτ = 0.

Noting the arbitrariness of w, we have

U(x, τ) = 0, a.e.(x, τ) ∈ Q,

i.e.,
W1(x, τ) = W2(x, τ), a.e.(x, τ) ∈ Q.

This completes the proof of Theorem 3.1.
Remark 3.1. The weak solution defined above is on the whole domain Q. If we only consider the
spatial case, we can modify Definition 3.1 as follows:
Definition 3.1.’ Define H1

a(−π2 ,
π
2 ) to be the closure of C∞0 (−π2 ,

π
2 ) under the following norm:

‖W‖2H1
a (− π2 ,

π
2 ) =

∫ π
2

− π2

a(x)
(
|W |2 + |∇W |2

)
dx, W ∈ H1

a(−
π

2
,
π

2
).

Definition 3.2 can also be rewritten as follows:
Definition 3.2.’ A function W ∈ H1

(
[0,T ]; L2(−π2 ,

π
2 )

)⋂
L2

(
(0,T ); H1

a(−π2 ,
π
2 )

)
is called the weak

solution of (2.9) if W satisfies

W(x, 0) = ϕ(x), x ∈ (−
π

2
,
π

2
) (3.6)

and the integration identity∫ π
2

− π2

Wτψdx +

∫ π
2

− π2

aWxψxdx +

∫ π
2

− π2

axWxψdx +

∫ π
2

− π2

bWxψdx +

∫ π
2

− π2

cWψdx
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=

∫ π
2

− π2

fψdx (3.7)

holds for a.e. τ ∈ (0,T ]. Then, by analogous arguments, one can establish the existence, uniqueness
and regularity of weak solutions, which are similar to those of Theorem 3.1.

Since the inverse Problem P is ill-posed, i.e., its solution depends unstably on the data, we turn to
consider the following optimal control Problem P3:
Problem P3. Find g(x) ∈ A such that

J(g) = min
g∈A

J(g), (3.8)

where

J(g) =
1
2

∫ π
2

− π2

|W(x,T ; g) − w(x)|2 dx +
N
2

∫ π
2

− π2

|∇g|2 dx, (3.9)

A = {g(x)|0 < α ≤ g ≤ β, ‖g‖H1
a
< ∞}, (3.10)

W(x, τ; g) is the solution of (2.9) for a given source term g(x) ∈ A, N is the regularization parameter
and α, β are two given positive constants.

For the extra condition (2.10), we shall assume that

w(x) ∈ L∞(−
π

2
,
π

2
). (3.11)

From (3.11) and Theorem 3.1, it can be easily seen that the control function (3.9) is well-defined
for any g ∈ A .

We are now going to show the existence of minimizers for the problem (3.8). First, we assert that
the functional J(g) is of some continuous property inA in the following sense.
Lemma 3.1. For any sequence {gn} inA which converges to some {g} ∈ A in L1(−π2 ,

π
2 ) as n→ ∞, we

have

lim
n→∞

∫ π
2

− π2

|W(gn)(x,T ) − w(x)|2 dx =

∫ π
2

− π2

|W(g)(x,T ) − w(x)|2 dx. (3.12)

Proof. Step 1: By taking g = gn and choosing the test function as W(gn)(·, τ) in (3.7) and then
integrating with respect to τ , we derive that

‖W(gn; τ)‖2L2(− π2 ,
π
2 ) +

∫ τ

0

∫ π
2

− π2

a |∇W(gn; τ)|2 dxdτ

≤ C
‖ϕ‖2L2(− π2 ,

π
2 ) +

∫ τ

0

∫ π
2

− π2

α(x, τ)2g2dxdτ
 (3.13)

for any τ ∈ (0,T ].
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From (3.13), we know that the sequence {W(gn)} is uniformly bounded in the space
L2

(
(0,T ); H1

a(−π2 ,
π
2 )

)
. So, we may extract a subsequence, still denoted by {W(gn)}, such that

W(gn)(x, τ) ⇀ W∗(x, τ) ∈ L2
(
(0,T ); H1

a(−
π

2
,
π

2
)
)
. (3.14)

Step 2: W∗(x, τ) = W(g)(x, τ).
By taking g = gn in (3.7) and multiplying both sides by a function η(τ) ∈ C1[0,T ], with η(T ) = 0,

we have ∫ π
2

− π2

W(gn)τψη(τ)dx +

∫ π
2

− π2

aW(gn)xψxη(τ)dx +

∫ π
2

− π2

axW(gn)xψη(τ)dx

+

∫ π
2

− π2

bW(gn)xψη(τ)dx +

∫ π
2

− π2

cW(gn)ψη(τ)dx =

∫ π
2

− π2

α(x, τ)gψη(τ)dx. (3.15)

Then, integrating with respect to τ, letting n→ ∞ in (3.15) and using (3.14), we get

−

∫ π
2

− π2

ϕψη(0)dx −
∫ T

0

∫ π
2

− π2

W∗ψη(τ)τdxdτ +

∫ T

0

∫ π
2

− π2

(ax + b)W∗
xψη(τ)dxdτ

+

∫ T

0

∫ π
2

− π2

aW∗
xψxη(τ)dxdτ +

∫ T

0

∫ π
2

− π2

cW∗ψη(τ)dxdτ

=

∫ T

0

∫ π
2

− π2

ψα(x, τ)gη(τ)dxdτ. (3.16)

By noticing that (3.16) is valid for any η(τ) ∈ C1[0,T ] with η(T ) = 0, we have∫ π
2

− π2

W∗
τψdx +

∫ π
2

− π2

aW∗
xψxdx +

∫ π
2

− π2

axW∗
xψdx +

∫ π
2

− π2

bW∗
xψdx +

∫ π
2

− π2

cW∗ψdx

=

∫ π
2

− π2

α(x, τ)gψdx, ∀ψ ∈ H1
a(−

π

2
,
π

2
), (3.17)

and W∗(x, 0) = ϕ(x).
Therefore, W∗ = W(g) by the definition of W(g).

Step 3: Prove ‖W(gn)(·,T ) − w‖L2(− π2 ,
π
2 ) → ‖W(g)(·,T ) − w‖L2(− π2 ,

π
2 ) as n→ ∞.

We rewrite (3.8) for g = gn in the following form∫ π
2

− π2

(W(gn) − w)τψdx +

∫ π
2

− π2

a(W(gn) − w)xψxdx +

∫ π
2

− π2

ax(W(gn) − w)xψdx

+

∫ π
2

− π2

b(W(gn) − w)xψdx +

∫ π
2

− π2

c(W(gn) − w)ψdx

=

∫ π
2

− π2

α(x, τ)gnψdx. (3.18)
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Taking ψ = W(gn) − w in (3.18), we have

1
2

d
dτ
‖W(gn) − w‖2L2(− π2 ,

π
2 ) +

∫ π
2

− π2

a |W(gn) − w|2 dx

+

∫ π
2

− π2

(ax + b) (W(gn) − w)x (W(gn) − w) dx +

∫ π
2

− π2

c |W(gn) − w|2 dx

=

∫ π
2

− π2

α(x, τ)gn (W(gn) − w) dx. (3.19)

Similar relations hold for W(g), namely,

1
2

d
dτ
‖W(g) − w‖2L2(− π2 ,

π
2 ) +

∫ π
2

− π2

a |(W(g) − w)x|
2 dx

+

∫ π
2

− π2

(ax + b) (W(g) − w)x (W(g) − w) dx +

∫ π
2

− π2

c |W(g) − w|2 dx

=

∫ π
2

− π2

α(x, τ)g (W(g) − w) dx. (3.20)

Subtracting (3.20) from (3.19), we obtain

1
2

d
dτ
‖W(gn) −W(g)‖2L2(− π2 ,

π
2 ) +

∫ π
2

− π2

a
[∣∣∣(W(gn) − w)x

∣∣∣2 − ∣∣∣(W(g) − w)x

∣∣∣2] dx

+

∫ π
2

− π2

(ax + b)
[
(W(gn) − w)x (W(gn) − w) − (W(g) − w)x (W(g) − w)

]
dx

+

∫ π
2

− π2

c
[
|W(gn) − w|2 − |W(g) − w|2

]
dx

=

∫ π
2

− π2

[
α(x, τ)gn (W(gn) − w) − α(x, τ)g (W(g) − w)

]
dx

−

∫ π
2

− π2

d
dτ

[
(W(gn) − w) (W(gn) − w(g))

]
dx. (3.21)

Taking ψ = W(gn) −W(g), in (3.7), we have∫ π
2

− π2

W(g)τ (W(gn) −W(g)) dx

=

∫ π
2

− π2

α(x, τ)g (W(gn) −W(g)) dx −
∫ π

2

− π2

aW(g)x (W(gn) −W(g))x dx

−

∫ π
2

− π2

(ax + b) W(g)x (W(gn) − w(g)) dx −
∫ π

2

− π2

cW(g) (W(gn) −W(g)) dx. (3.22)

Similarly, for (W(gn) −W(g))τ (W(g) − w), we have∫ π
2

− π2

(W(gn) −W(g))τ (W(g) − w) dx
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=

∫ π
2

− π2

α(x, τ)g (W(g) − w) dx −
∫ π

2

− π2

a (W(gn) −W(g))x (W(g) − w)x dx

−

∫ π
2

− π2

(ax + b) (W(gn) −W(g))x (W(g) − w) dx

−

∫ π
2

− π2

c (W(gn) −W(g)) (W(g) − w) dx. (3.23)

Substituting (3.22) and (3.23) into (3.21), and after some manipulations, we derive

1
2

d
dτ
‖W(gn) −W(g)‖2L2(− π2 ,

π
2 ) +

∫ π
2

− π2

a
[∣∣∣(W(gn) − w)x

∣∣∣2 − ∣∣∣(W(g) − w)x

∣∣∣2] dx

+

∫ π
2

− π2

(ax + b)
[
(W(gn) − w)x (W(gn) − w) − (W(g) − w)x (W(g) − w)

]
dx

+

∫ π
2

− π2

c
[
|W(gn) − w|2 − |W(g) − w|2

]
dx

+

∫ π
2

− π2

[
α(x, τ)g (W(g) − w) + α(x, τ)(g + gn) (W(gn) − w)

]
dx

=

∫ π
2

− π2

aW(g)x (W(gn) −W(g))x dx +

∫ π
2

− π2

(ax + b) W(g)x (W(gn) −W(g)) dx

+

∫ π
2

− π2

cW(g) (W(gn) −W(g)) dx +

∫ π
2

− π2

a (W(gn) −W(g))x (W(g) − w)x dx

+

∫ π
2

− π2

(ax + b) (W(gn) −W(g))x (W(g) − w) dx +

∫ π
2

− π2

c (W(gn) −W(g)) (W(g) − w) dx

= An + Bn, (3.24)

where

An : =

{∫ π
2

− π2

aW(g)x (W(gn) −W(g))x dx +

∫ π
2

− π2

(ax + b) W(g)x (W(gn) −W(g)) dx

+

∫ π
2

− π2

cW(g) (W(gn) −W(g)) dx
}
.

Bn : =

{∫ π
2

− π2

a (W(gn) −W(g))x (W(g) − w)x dx

+

∫ π
2

− π2

(ax + b) (W(gn) −W(g))x (W(g) − w) dx

+

∫ π
2

− π2

c (W(gn) −W(g)) (W(g) − w) dx
}
.
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Integrating over the interval (0, τ) for any τ ≤ T , we get

1
2
‖W(gn) −W(g)‖2L2(− π2 ,

π
2 ) ≤

∫ T

0
|An + Bn| dτ. (3.25)

By the convergence of {gn} and weak convergence of {W(gn)}, one can easily get∫ T

0
|An + Bn| dτ→ 0, as n→ ∞. (3.26)

Combining (3.25) and (3.26), we have

max
τ∈[0,T ]

‖W(gn; τ) −W(g; τ)‖2L2(− π2 ,
π
2 ) → 0, as n→ ∞. (3.27)

On the other hand, we have the following from the Hölder inequality:∣∣∣∣∣∣
∫ π

2

− π2

|W(gn)(·,T ) − w|2 dx −
∫ π

2

− π2

|W(g)(·,T ) − w|2 dx

∣∣∣∣∣∣
≤

∫ π
2

− π2

|W(gn)(·,T ) −W(g)(·,T )| · |W(gn)(·,T ) + W(g)(·,T ) − 2w| dx

≤ ‖W(gn)(·,T ) −W(g)(·,T )‖L2(− π2 ,
π
2 ) · ‖W(gn)(·,T ) + W(g)(·,T ) − 2w‖L2(− π2 ,

π
2 ) . (3.28)

From (3.11), (3.13), (3.27) and (3.28), we obtain

lim
n→∞

∫ π
2

− π2

|W(gn)(x,T ) − w(x)|2 dx =

∫ π
2

− π2

|W(g)(x,T ) − w(x)|2 dx.

This completes the proof of Lemma 3.1.
Theorem 3.2. There exists a minimizer g ∈ A of J(g), i.e.,

J(g) = min
g∈A

J(g).

Proof. It is obvious that J(g) is non-negative and thus J(g) has the greatest lower bound infg∈A J(g).
Let {gn} be a minimizing sequence, i.e.,

inf
g∈A

J(g) ≤ J(gn) ≤ inf
g∈A

J(g) +
1
n
, n = 1, 2, · · · .

By noticing that J(gn) ≤ C, we deduce

‖∇gn‖L2(− π2 ,
π
2 ) ≤ C, (3.29)

where C is independent of n. Noticing the boundedness of {gn} and (3.29), we also have

‖gn‖H1(− π2 ,
π
2 ) ≤ C. (3.30)

So, we can extract a subsequence, still denoted by {gn}, such that

gn(x) ⇀ g(x) ∈ H1(−
π

2
,
π

2
) as n→ ∞. (3.31)
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By the Sobolev imbedding theorem (see [2]), we obtain

‖gn(x) − g(x)‖L1(− π2 ,
π
2 ) → 0 as n→ ∞. (3.32)

It can be easily seen that {gn(x)} ∈ A . So, we get, as n→ ∞, that

gn(x)→ g(x) ∈ A (3.33)

in L1(−π2 ,
π
2 ) .

Moreover, from (3.31) we have∫ π
2

− π2

|∇g|2 dx = lim
n→∞

∫ π
2

− π2

∇gn · ∇gdx

≤ lim
n→∞

√∫ π
2

− π2

|∇gn|
2 dx ·

∫ π
2

− π2

|∇g|2 dx. (3.34)

From Lemma 3.1 and the convergence of {gn}, we know that there exists a subsequence of {gn}, still
denoted by {gn}, such that

lim
n→∞

∫ π
2

− π2

|W(gn)(x,T ) − w(x)|2 dx =

∫ π
2

− π2

|W(g)(x,T ) − w(x)|2 dx. (3.35)

From (3.33)–(3.35), we get

J(g) = lim
n→∞

∫ π
2

− π2

|W(gn)(x,T ) − w(x)|2 dx +

∫ π
2

− π2

|∇g|2 dx

≤ lim
n→∞

J(gn) = inf
g∈A

J(g). (3.36)

Hence,
J(g) = min

g∈A
J(g).

This completes the proof of Theorem 3.2.

4. Necessary condition

Theorem 4.1. Let g be the solution of the optimal control problem (3.8). Then, there exists a triplicate
of functions (W, ξ; g) satisfying the following system:{

Wτ − aWxx + bWx + cW = α(x, τ)g, (x, τ) ∈ Q = (−π2 ,
π
2 ) × (0,T ],

W |τ=0 = ϕ(x), x ∈ (−π2 ,
π
2 ),

(4.1)

{
ξτ − aξxx + bξx + cξ = α(x, τ)(h − g), (x, τ) ∈ Q = (−π2 ,

π
2 ) × (0,T ],

ξ|τ=0 = 0, x ∈ (−π2 ,
π
2 ),

(4.2)

and ∫ π
2

− π2

[
W(x,T ; g) − w(x)

]
ξ(x,T )dx + N

∫ π
2

− π2

∇g · ∇(h − g)dx ≥ 0 (4.3)
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for any h ∈ A.
Proof. For any h ∈ A, 0 ≤ δ ≤ 1, we have

gδ ≡ (1 − δ)g + hδ ∈ A.

Then,

Jδ ≡ J(gδ) =
1
2

∫ π
2

− π2

|W(x,T ; gδ) − w(x)|2 dx +
N
2

∫ π
2

− π2

|∇gδ|2 dx. (4.4)

Let Wδ be the solution of (2.9) given g = gδ . Since g is an optimal solution, we have

dJδ
dδ
|δ=0 =

∫ π
2

− π2

[
W(x,T ; g) − w(x)

] ∂Wδ

∂δ
|δ=0dx + N

∫ π
2

− π2

∇g · ∇(h − g)dx ≥ 0. (4.5)

Let W̃δ ≡
∂Wδ

∂δ
; direct calculations lead to the following equation:{

(W̃δ)τ − a(W̃δ)xx + b(W̃δ)x + c(W̃δ) = α(x, τ)(h − g),
W̃δ|τ=0 = 0.

(4.6)

Let ξ = W̃δ|δ=0; then, ξ satisfies{
ξτ − aξxx + bξx + cξ = α(x, τ)(h − g),
ξ|τ=0 = 0.

(4.7)

From (4.5), we have∫ π
2

− π2

[
W(x,T ; g) − w(x)

]
ξ(x,T )dx + N

∫ π
2

− π2

∇g · ∇(h − g)dx ≥ 0.

This completes the proof of Theorem 4.1.

5. Uniqueness and stability

The optimal control Problem P3 is non-convex. That means, in general, one may not expect a
unique solution. In fact, it is well known that the optimization technique is a classic tool for obtaining
general solution, not unique solution for inverse problems. However, we find that, if the terminal time
T is relatively small, the minimizer of the cost functional can be proved to be locally unique and stable.

Throughout this paper, if there is no specific illustration, C will denote the different constants.
Theorem 5.1. Let g1(x), g2(x) be the minimizers of the optimal control problem P3 corresponding to
w1(x),w2(x), respectively. If there exists a point x0 ∈ (−π2 ,

π
2 ) such that

g1(x0) = g2(x0);

then, for a relatively small T , we have

max
x∈(− π2 ,

π
2 )
|g1 − g2| ≤ C ‖w1 − w2‖L2(− π2 ,

π
2 ) ,
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where the constant C is dependent of π and N.
Proof. By taking h = g2 when g = g1 and taking h = g1 when g = g2 in (4.3), we have∫ π

2

− π2

[W1(·,T ) − w1]ξ1(·,T )dx + N
∫ π

2

− π2

∇g1 · ∇(g2 − g1)dx ≥ 0, (5.1)

∫ π
2

− π2

[W2(·,T ) − w2]ξ2(·,T )dx + N
∫ π

2

− π2

∇g2 · ∇(g1 − g2)dx ≥ 0, (5.2)

where {Wi, ξi}(i = 1, 2) are solutions of the system (4.1)/(4.2) with g = gi(i = 1, 2), respectively.
Assuming that

Ξ = W1 −W2, Υ = ξ1 + ξ2,

Ξ and Υ satisfy the following equations:{
Ξτ − aΞxx + bΞx + cΞ = α(x, τ)g1 − α(x, τ)g2,

Ξ|τ=0 = 0.
(5.3)

{
Υτ − aΥxx + bΥx + cΥ = 0,
Υ|τ=0 = 0.

(5.4)

According to the weak maximum principle, it is known that (5.4) has only zero solutions. So,

ξ1(x, τ) = −ξ2(x, τ) (5.5)

and ξ1 satisfies the following equations:{
ξ1τ − aξ1xx + bξ1x + cξ1 = α(x, τ)g2 − α(x, τ)g1,

ξ1|τ=0 = 0.
(5.6)

Noticing (5.3) and (5.6), we have
Ξ(x, τ) = −ξ1(x, τ). (5.7)

From (5.1), (5.2), (5.5) and (5.7), we obtain

N
∫ π

2

− π2

|∇(g1 − g2)|2 dx ≤

∫ π
2

− π2

[W1(·,T ) − w1] ξ1(·,T )dx +

∫ π
2

− π2

[W2(·,T ) − w2] ξ2(·,T )dx

=

∫ π
2

− π2

[W1(·,T ) − w1] ξ1(·,T )dx +

∫ π
2

− π2

[w2 −W2(·,T )] ξ1(·,T )dx

=

∫ π
2

− π2

Ξ(·,T )ξ1(·,T )dx +

∫ π
2

− π2

[w2 − w1]ξ1(·,T )dx

≤ −
1
2

∫ π
2

− π2

|ξ1(·,T )|2 dx +
1
2

∫ π
2

− π2

|w1 − w2|
2 dx. (5.8)

For −π2 < x < π
2 , from the assumption of Theorem 5.1 and the Hölder inequality, we have

|(g1 − g2)(x)| =

∣∣∣∣∣∣
∫ x

x0

(g1 − g2)′dx + [g1(x0) − g2(x0)]

∣∣∣∣∣∣
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≤ |[g1(x0) − g2(x0)]| +

∣∣∣∣∣∣
∫ x

x0

(g1 − g2)′dx

∣∣∣∣∣∣
≤

∫ π
2

− π2

12dx
 1

2

·

∫ π
2

− π2

|∇(g1 − g2)|2 dx
 1

2

≤
√
π ·

∫ π
2

− π2

|∇(g1 − g2)|2 dx
 1

2

. (5.9)

Thus we derive

max
x∈(− π2 ,

π
2 )
|g1 − g2| ≤

√
π ‖∇(g1 − g2)‖L2(− π2 ,

π
2 ) . (5.10)

Combining (5.8) and (5.10), we have

max
x∈(− π2 ,

π
2 )
|g1 − g2| ≤

√
π

2N
‖w1 − w2‖L2(− π2 ,

π
2 )

≤ C ‖w1 − w2‖L2(− π2 ,
π
2 ) .

This completes the proof of the Theorem 5.1.
Remark 5.1. It should be mentioned that the regularization parameter plays a major role in the
numerical simulation of ill-posed problems. From Theorem 5.1, we can obtain that, if there exists a
constant δ such that

‖w1 − w2‖L2(− π2 ,
π
2 ) < δ,

δ2

N
→ 0,

‖g1 − g2‖C1(− π2 ,
π
2 ) → 0,

then the reconstructed optimal solution is unique and stable, which is consistent with the existing
result. Since the parameter N is often taken to be very small, particularly in numerical computations,
Theorem 5.1 is indeed the local well-posedness of the optimal solution. Generally speaking, for ill-
posed problems, the regularization parameter appropriately depends on when the data error approaches
zero, and the convergence result can be obtained. In addition, under some additional assumptions, the
convergence rate can also be derived.

6. Landweber iterations

Based on the optimal control method, we have obtained the result of Problem P from the
perspective of theoretical analysis. However, it is difficult for us to use this method to obtain the
corresponding numerical results. In fact, the optimal control method used in this article is actually the
Tikhonov regularization method based on the L2 gradient norm. We consider the following linear
system:

T x = y, x ∈ X, y ∈ Y,

where X and Y are Hilbert spaces and T : X → Y is a bounded linear operator. Then, the Tikhonov
functional can be written as follows:

J(x) := ‖T x − y‖2 + α‖x‖2, x ∈ X.
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Obviously, the minimal element of the functional described above is equivalent to the solution of the
following equation:

αx + T ∗T x = T ∗y,

which is
x = (αI + T ∗T )−1T ∗y.

However, this method is not suitable for solving the problem of this article. There are two main
difficulties. First, we do not know the specific form of (αI + T ∗T )−1 . In fact, we can write the specific
form of (αI + T ∗T )−1 only for individual operators, for example, T is a matrix. Second, the control
functional (3.9) established in the previous chapter has a penalty term of an H1 norm. Correspondingly,
a second derivative term of the unknown function appears in the form of Euler’s equation, which makes
the numerical simulation process very complicated.

Therefore, we use the iterative method to solve the inverse problem P3. In this article, we
particularly use the Landweber iteration method to get the numerical results.

Define the linear operator as shown below:

K : L2(−
π

2
,
π

2
)→ H1

a(−
π

2
,
π

2
), (6.1)

Kg = W(·,T ) = w(x), (6.2)

where W is the solution of (2.9) under the following initial value condition:

ϕ(x) ≡ 0, x ∈ (−
π

2
,
π

2
). (6.3)

Notice that (6.2) can also be written in the following form:

g = (I − αK∗K)g + αK∗w (6.4)

for α > 0; K∗ is the adjoint operator of K, so the following iterative format can be used to solve (6.4):{
g = 0,
gm = (I − αK∗K)gm−1 + αK∗w, m = 1, 2, 3, · · · .

(6.5)

It is easy to verify that (6.5) is the fastest descent method to solve the following equation, where α is
the step size.

φ(g) =
1
2
‖Kg − w‖. (6.6)

Besides, there is the following lemma for the conjugate adjoint K∗.
Lemma 6.1. For any given h(x) ∈ H1

a(−π2 ,
π
2 ), let ω(x, 0) = K∗h, which is

K∗ : H1
a(−

π

2
,
π

2
)→ L2(−

π

2
,
π

2
),

K∗h = ω(x, 0);

then, ω satisfies the following parabolic equation:{
−ωτ − (aω)xx − (bω)x + cω = α(x, τ)h(x), (x, τ) ∈ Q,
ω(x,T ) = 0.
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The proof of Lemma 6.1 is similar to the references (see [5]).
Remark 6.1 In our case, ϕ(x) = 0, x ∈ (−π2 ,

π
2 ) . For the non-general situation, that is, ϕ(x) , 0, we

can define p as the following mapping:

p : L2(−
π

2
,
π

2
)→ H1

a(−
π

2
,
π

2
), (6.7)

pg = Kg + Hϕ = W1(x,T ) + W2(x,T ), (6.8)

where W1 satisfies the following equation: Wτ −
1
2σ

2
0 cos4 xWxx +

[
σ2

0 sin x cos3 x +
(

1
2σ

2
0 + µ

)
cos2 x

]
Wx + (r − µ)W = α(x, τ)g(x),

W(x, 0) = 0.

And, W2 satisfies the following equation: Wτ −
1
2σ

2
0 cos4 xWxx +

[
σ2

0 sin x cos3 x +
(

1
2σ

2
0 + µ

)
cos2 x

]
Wx + (r − µ)W = 0,

W(x, 0) = 0.

We have already known that K is a linear mapping, so problem (2.9)–(2.10) can be transformed into
the first type of operator equation:

Kg = w − Hϕ. (6.9)

Notice that (6.9) can be rewritten in the following form:

g = (I − αK∗K)g + αK∗(w − Hϕ). (6.10)

So, the following iterative format can be used to solve (6.10):{
g = 0,
gm = (I − αK∗K)gm−1 + αK∗(w − Hϕ), m = 1, 2, 3, · · · .

(6.11)

Equation (6.11) is the fastest descent method to solve the following equation, where α is the step size.

φ(g) =
1
2
‖Kg − (w − Hϕ)‖. (6.12)

From the definition of H and (6.11), we have

gm =gm−1 − αK∗(Kgm−1 − (w − Hϕ))
=gm−1 − αK∗(Wm−1 − (·,T ) − w), (6.13)

where Wm−1 is the solution of (2.9)–(2.10) when g = gm−1. From (6.13) and the defined K∗, the
following adjoint equation is introduced:{

−ωτ − (aω)xx − (bω)x + cω = W(x,T ) − w(x), (x, τ) ∈ Q,
ω(x,T ) = 0.

(6.14)

Assume that the true solution w(x) is available, that is, there is a g(x) ∈ L2(−π2 ,
π
2 ) such that

W(x,T ; g) = w(x),
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and the noise of the observation data has an upper bound δ, that is,

‖wδ − w‖L2(− π2 ,
π
2 ) ≤ δ.

In summary, the calculation steps of the iteration format can be stated as follows:
Step one: Choose an initial iterative function g = g(x). The initial function can be selected

arbitrarily for the convenience of calculation. We generally choose g(x) = 0, x ∈ (−π2 ,
π
2 );

Step two: W0(x, τ) is obtained by solving the initial boundary value problem (2.9), where g = g(x);
Step three: Solve (6.14) to get ω0(x, τ), where W(x,T ) = W0(x,T );
Step four: Let g1(x) = g(x)−αω0(x,T ), where α ≥ 0, and let W1(x, τ) be the solution of (2.9) when

g = g1(x);
Step five: Choose an arbitrarily small normal number ε as the error limit, calculate ‖W1(x,T )−w(x)‖

and compare the size with ε; if
‖W1(x,T ) − w(x)‖ < ε,

then terminate the iteration and take g = g1(x) at this time. Otherwise, continue to execute Step two,
let g1(x) be the new initial value of the iteration and continue to execute the inductive criterion until
the iteration meets the termination condition.

Normally, if the input data are accurate, the more iterations of the Landweber iterative method, the
higher the accuracy of the output data. However, in the case of noise, there will be errors in the initial
iteration process. This calculation error will initially decrease as the number of iterations increases,
but when a certain threshold is reached, it will increase rapidly as the number of iterations increases.
Therefore, the iteration must be terminated at the appropriate time. In other words, in order to balance
accuracy and stability, a compromise solution must be found, that is, a suitable parameter must be
selected so that the iteration format is both accurate and stable.

If x ∈ (K∗K)r(X), r ∈ N, then the following error estimation formula can be obtained:∥∥∥xN(δ),δ − x
∥∥∥ ≤ CM

1
2r+1 δ

2r
2r+1 ,

where M is the boundary of (K∗K)r x. Therefore, in this case, it is different from Tikhonov’s
regularization method.

7. Numerical experiments

We would like to give some numerical examples to test the validity of the proposed methods in
Section 2. The simulated data are generated by using the standard finite difference method to solve the
direct problems (2.9) and (2.10) under some appropriate artificial boundary conditions. We use T = 1;
for numerical convenience, the x interval (−π2 ,

π
2 ) is divided into 100 equal intervals, and on x axis, we

show the number of an interval. It is same for the case of τ.
Assume that Q = [−π2 ,

π
2 ]× [0,T ] is divided into a J ×N mesh with the spatial step size h = π

J in the
x direction and the time step size t = T

N .
Grid points (x j, τn) are defined by

x j = jh, j = 0, 1, 2, · · · , J,

τn = nt, n = 0, 1, 2, · · · ,N,
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where J and N are two integers. The notation Wn
j is used for the finite-difference approximation of

W( jh, nt).
Using the finite-volume method (see [14]), one can derive the following implicit difference scheme

of (2.9):

Wn+1
j −Wn

j

t
− a j

Wn+1
j+1 − 2Wn+1

j + Wn+1
j−1

h2 + b j

Wn+1
j+1 −Wn+1

j−1

2h
+ cWn+1

j = f n+1
j (7.1)

for 1 ≤ j ≤ J − 1 and 0 ≤ n ≤ N − 1, where a j = a(x j) and b j = b(x j) .
In this section, we assume that a(x) at least belongs to C2[−π2 ,

π
2 ]. Note that, on the lateral boundary

x = −π2 and x = π
2 , (2.9) degenerates into the first-order equation:

f (x, τ) = α(x, τ)g(x), f (−
π

2
, τ) = f (

π

2
, τ) = 0,

∂W
∂τ

+ b(x)
∂W
∂x

+ c(x)W = 0, x = −
π

2
,
π

2
. (7.2)

Therefore, the boundary conditions of (2.9) depend on the value of b(x). Because b
(
−π2

)
= b

(
π
2

)
= 0,

the boundary conditions can be derived from (7.2) and (2.9):{
∂W
∂τ

+ cW = 0 x = −π2 ,
π
2 ,

W(−π2 , 0) = ϕ(−π2 ),W(π2 , 0) = ϕ(π2 ).
(7.3)

W |x=− π2
= e−cτϕ(−

π

2
) = 0, W |x= π

2
= e−cτϕ(

π

2
) = 0. (7.4)

It can be easily seen that the different quotients used to approximate derivatives are one-sided; thus,
the truncations of schemes given by (7.3) and (7.4) are denoted as O(t + h2).

To check the effectiveness of the difference scheme for the forward problem, we consider the
following equation:


Wτ −

1
2σ

2
0 cos4 xWxx +

[
σ2

0 sin x cos3 x +
(

1
2σ

2
0 + µ

)
cos2 x

]
Wx + (r − µ)W = α(x, τ)g(x),

(x, τ) ∈ Q = (−π2 ,
π
2 ) × (0,T ],

W(x, 0) = 0, − π
2 < x < π

2 ,

where

α(x, τ) = 1 +
1
2
τ cos4 x − τ(sin2 x cos2 x + sin x cos x), r = µ = 0.5,

σ2
0 = 1, g(x) = cos x.

The above equation has the analytic solution W(x, τ) = τ cos x. The numerical solution is shown in
Figure 1, while the error surface between the exact solution and numerical one is shown in Figure 2.
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Figure 1. Numerical solution W(x, τ) for the direct problem.

Figure 2. Error surface.

It can be seen from Figure 2 that the maximal error between the exact solution and numerical one
is less than 9 × 10−3, which is consistent with the accuracy of the computational scheme.
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Example 1. Take

g(x) =

cos x, x ∈ [−π2 ,
π
2 ],

0, others,

and

α(x, τ) = 1 +
1
2
τ cos4 x − τ(sin2 x cos2 x + sin x cos x), r = µ = 0.5;

the numerical results are shown in Figure 3, where the iteration number k = 1000 . It can be seen from
this figure that the main shape of unknown functions is recovered well.

0 50 100 150 200 250
x  ( - /2, /2 )

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

g
(x

)

k=1000
exact solution

Figure 3. Numerical solution of source function g(x) for Example 1, where k = 1000.

We also consider the case of noisy input data to test the stability of our algorithm. The noisy data
are generated in the following form:

w(x) = Wδ(x,T ) = W(x,T )[1 + δ × random(x)], x ∈ [−
π

2
,
π

2
],

with δ = 0.001, 0.01, 0.08.

The reconstruction result is displayed in Figure 4, where a satisfactory approximation is obtained
under the case of noisy data as well. For δ = 0.001, 0.01 and 0.08, the corresponding iteration numbers
are k = 1500, 1200 and k = 1000, respectively. Since the observation data contain errors, to obtain
stable numerical results, we shall cease the iteration at some suitable time. Generally speaking, it is not
easy to reconstruct the information of an unknown function near the boundary of parabolic equations
due to the selection of initial values and the absence of data for the model at the boundary.
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exact solution

Figure 4. Numerical solution of source function g(x) for Example 1 with noisy input data.

Example 2. In the second numerical experiment, we take

T = 1, α(x, τ) = x2 + 6τ cos4 x + 4xτ(sin x cos3 x + cos2 x), r = µ = 0.5,

g(x) =

x2, x ∈ [−π2 ,
π
2 ],

0, others;

the numerical results are shown in Figure 5, where the iteration number k = 800 .

0 50 100 150 200 250
x  ( - /2, /2 )

0

0.5

1

1.5

2

2.5

g
(x

)

k=800
exact solution

Figure 5. Numerical solution of source function g(x) for Example 2, where k = 800.

From this figure, we can see the main error which appears near the boundary is very small.
Analogously, we also consider the noisy case, where the noisy levels are the same as those in
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Example 1, i.e., δ = 0.001, 0.01, 0.08. The corresponding numerical result is displayed in Figure 6.
One can see that, for the noisy case, our algorithm is still stable and the unknown function is
reconstructed very well. For δ = 0.001, 0.01, and 0.08, the corresponding iteration numbers are
k = 980, 820 and 500, respectively.

0 50 100 150 200 250
x  ( - /2, /2 )

-0.5

0

0.5

1

1.5

2

2.5

g
(x

)

=0.001
=0.01
=0.08

exact solution

Figure 6. Numerical solution of source function g(x) for Example 2 with noisy input data.

A final point worth mentioning is that, despite the first example going through iterations 1000 times,
it is not much in practical application, because it only takes 6.28 seconds to complete the iteration. The
same truth holds for the second example, which takes only 2.57 seconds to complete the iteration.
Compared with [28,29], they only discussed the exact case without the noisy case. Consequently, the
proposed algorithm in this article is fast and effective, even under the noisy conditions. Unlike the
exact case, we cannot iterate endlessly for noisy situations. Usually, we need to stop the iteration at the
right time; otherwise, the data will overflow. This is the reason why the iteration number for the noisy
case is much less than that of the exact case.

8. Conclusions

The inverse problem of identifying the space-dependent volatility in Black-Scholes/Dupire
equations from extra market data is very important in financial mathematics and risk management.
Identification of the volatility in classic parabolic models has been discussed and developed
extensively, while documents that deal with identifying the volatility in degenerate parabolic models
are scarce.

In this paper, we solved the inverse problem P of recovering the source function g(x) in the following
degenerate parabolic equation:

Wτ −
1
2
σ2

0 cos4 xWxx +

[
σ2

0 sin x cos3 x +

(
1
2
σ2

0 + µ

)
cos2 x

]
Wx + (r − µ)W = α(x, τ)g(x),

(x, τ) ∈ Q = (−
π

2
,
π

2
) × (0,T ],
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in an optimal control framework; being different from other works (see, e.g., [9–12]), which also treat
with inverse volatility problems, the mathematical model discussed in this paper contains degeneracy at
the lateral boundaries. On the basis of the optimal control framework, existence, necessary conditions,
uniqueness and stability of the minimizer for the cost functional have been established.

This paper focuses on the theoretical analysis and numerical simulation of the 1-D inverse problem.
For the multi-dimensional case (two-asset space-dependent volatility Black-Scholes equation), i.e.,

∂V
∂t

+ σ2(S 1, S 2)(
1
2
σ2

1S 2
1
∂2V
∂S 2

1

− ρσ1σ2S 1S 2
∂2V

∂S 1∂S 2
+ σ2

2S 2
2
∂2V
∂S 2

2

) + µS 1
∂V
∂S 1

+ µS 2
∂V
∂S 2
− rV = 0,

(S 1, S 2, t) ∈ Q = Ω × (0,T ],

and Ω ⊂ R2 is an unbounded domain. We can use the same techniques to transform the problem into
the inverse source problem for degenerate parabolic equations.
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