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Abstract: Hadamard fractional calculus is one of the most important fractional calculus theories.
Compared with a single Hadamard fractional order equation, Hadamard fractional differential
equations have a more complex structure and a wide range of applications. It is difficult and challenging
to study the dynamic behavior of Hadamard fractional differential equations. This manuscript mainly
deals with the boundary value problem (BVP) of a nonlinear coupled Hadamard fractional system
involving fractional derivative impulses. By applying nonlinear alternative of Leray-Schauder, we
find some new conditions for the existence of solutions to this nonlinear coupled Hadamard fractional
system. Our findings reveal that the impulsive function and its impulsive point have a great influence
on the existence of the solution. As an application, we discuss an interesting example to verify the
correctness and validity of our results.
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1. Introduction

In 1892, Hadamard [1] proposed a new fractional integral and derivative with logarithmic function
as integral kernel. This kind of fractional calculus is called Hadamard type fractional calculus, which
is as famous as Riemann-Liouville and Caputo fractional calculus. Compared with Riemann-Liouville
and Caputo fractional derivatives, Hadamard fractional derivative is significantly different in that the
kernel function is invariant to expansion and contraction. In fact, for a given order @ > 0, the
kernel function of Hadamard fractional derivative is Kg(t, s) = (log g)““, while the kernel function
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of Riemann-Liouville and Caputo fractional derivative is Kz(z, s) = (t — s)>'. For any expansion
coeflicient k > 0, it is easy to see that Ky(kt,ks) = Ky(t, s) and Kg(kt, ks) # Kg(t, s). Scholars have
made various generalizations on fractional derivatives and integrals in theory, and these generalizations
are still continuing up to now. At the same time, the application of fractional calculus has been widely
studied. The theoretical and applied research results of fractional calculus have been published in
the form of monographs (see [2-9]). The fractional boundary value problem is one of the important
contents in the study of fractional differential system. Many practical application problems such as
blood flow, chemical engineering, thermo elasticity, underground water flow, population dynamics,
and so forth ultimately come down to the study of boundary value problem of fractional differential
equation. Therefore, many kinds of fractional boundary value problem and their dynamic properties
have been focused and deeply studied. The types of fractional boundary value problem mainly include
nonlocal (multi-point) BVP [10-15], integral BVP [13, 14, 16—-19], impulse BVP [15, 18-22] and
delay BVP [10, 12, 19], etc. The published papers on fractional differential system mainly study the
existence [10-18, 22-27], stability [24,28-36] and multiplicity [19, 21, 37, 38] of system solutions.
Certainly, there have some previous works dealing with the Hadamard fractional system (see [39—47]).
However, there are relatively few papers on the coupled system with Hadamard fractional derivative
impulses. Compared with a single Hadamard fractional differential equation, Hadamard fractional
differential equations have a more complex structure and a wide range of applications. In the process
of applying fixed point theory to study the existence of solutions of Hadamard fractional differential
equations, it is more difficult to construct the existence region of solutions and prove the compactness
of operators than single equation.
In a recent paper [41], the authors considered the following impulsive integral BVP for a class of

single Hadamard fractional equation.

"Dy = X Sty "Dy @ Dy0), 1€ (tial € 0k <n,

TR =TI = LO@), 1<k <n,

PIey@) = A PN,
where J = [a,T],0 < a < T,0< B <a<1@G(=1,2,...,m)and 1 € R are some constants.
“Dj stands the left-sided Hadamard fractional derivatives of order . /J}~ is the left-sided Hadamard
fractional integrals of order 1 — . f; € C(J X R*,R), I, € C(R, R). The impulsive point sequence iy
satisfies a = 1g < t) <1, <13 < ... <t, <ty = T. "J7*y(t]) and 7 J}~y(r;) represent the right

1

and left limits at ¢ = 7, and satisfy #J"*y(r;) =" J}=%y(1,), respectively. Applying the contraction

k-1 k-1
mapping principle, they investigated the existence, uniqueness and stability of solution. This system

gives a great inspiration to the structure of the equations studied in this paper.
Motivated by the above mentioned, this manuscript mainly focuses on the following BVP of
nonlinear Hadamard fractional differential coupling system with fractional impulses.

1D x(1) = f(t, x(0), DY x(@), "D y(0), 1€, 1 # 1,

DR y(0) = g(t, (@), "DYx(0), "D y(0), 1€, 1 # 1,

HpY x(th) — *DVix(t;) = I(x(t), k=1,...,n, (1.1)
1DV = "D = Iny(@)), k=1,...,n,

x(1) = x(e), y(1) = y(e),
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where J = [l,e], 1 < a,B8 < 2,0 < a1,B1,v1,72 < 1, HD“I‘+ is the Hadamard fractional derivative of
order *, f,g € C(J X R*,R), I, I, € C(R,R), and the pulse sequence {;} satisfies | =1, < t; < ... <
ty <ty =e DZ;‘x(t,j), H Dty;y(t,j) and 7 Dty;‘ 1x(t,:), H DZ; 1 y(t;) denote the right and left limits at ¢ = 7,
such that "D} x(t;) = "D x(1), "D’} y(t;) = "D y(t), k=1,2,...,n.

In this m;ﬁhscript, our contributions mainly include two aspects. On the one hand, our system
structure is relatively complex. For example, system (1.1) is a coupled system and involves six
Hadamard fractional derivatives. However, most of the previous work is single equation and involves
fewer fractional derivatives. On the other hand, we try to study the existence of solutions of Hadamard
fractional equations by using fixed point theory. In fact, we prove the existence of solution of
system (1.1) by applying nonlinear alternative of Leray-Schauder. The most important steps in the
proof are the construction of the existence region of the solution of system (1.1) and the compactness
verification of the defined nonlinear operator.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and lemmas of
the Hadamard fractional calculus. In Section 3, we obtain the solvability of system (1.1). In Section 4,
an example is given to demonstrate the application of our main results. Finally, Section 5 is a brief
summary.

2. Preliminaries

Let C(J,R) be a Banach space of continuous functions from J to R with the norm ||w|lc =
sup,.; lw(?)]. A function set PC(J, R) is defined by

PC(J,R) = {w(t) € C(J,R) : "D w(t), "D w(t) € C(J,R), "DV (), "D w(ty),
"D w(ty) and "DV w(t;) all exist, and satisfy "Dl w(ry) = "Dl w(ty),
"D w) = "Dl w(t),0 < a1, Bi,y1,72 < 1,1 <k < nl.
Obviously, PC(J, R) is a real Banach space equipped with the norm
lwllpe = max {lwlle. [I"Dfiwlle. II"Dfwllc}.

Let X = PC(J,R) x PC(J,R). It is easy to verify that X is a Banach space with the norm ||(u, v)|| =
max{|lullpc, [Vllpc}, for all (u,v) € X.

Definition 2.1. /5] For a > 0, the left-sided Hadamard fractional integral of order a > 0 for a function
h: [a,0) — R is defined by

H oo 1 ! 1\ h(s)
Ja+]’l(t) = @L (lOg ;) —dS,

provided the integral exists, where I'(a) = fooo 1 te'dt and log(-) = log,(-).
Definition 2.2. [5] Fora > 0, if h € C"[a, o) and a > 0, the left-sided Hadamard fractional derivative

of order « is defined by
1 d\" " Vol h(s)
)= (1 [ g M
ah(® F(n—a/)(dt) g Ogs s g

wheren — 1 < a < n, n = [a] + 1, and [«a] denotes the integer part of the real number a.
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Lemma 2.1. [5] Fora > 0, assume that h € C"(a, T)NL'(a, T) with the left-sided Hadamard fractional
derivative of order a > 0, then

t a—1 t a-2 f\aen
"2 (D2 1(t)) = (1) + ¢, (log —) e (log —) fote (log —) :
a a a

wherec, € R,i=1,...n—1,nandn = [a] + 1.

Lemma 2.2. [5] Assume that a, 8 > 0, then the following properties are true:

Hpe, (log é)ﬂ_l (x) = r'® (log f)ﬁ_a_l ,

CT(B-a) a
i (log é)ﬁ_l ) = F(,g(f)a) (10 g)ﬁm_l’

1\
”D;;(log—) =0, j=1,2,.. . [e]+1,
a

Hpe (M y(0) = HI°y), HIP.(HIy) = 1I% ).

Lemma 2.3. (Nonlinear alternative of Leray-Schauder [48]) Let X be a Banach space, C be a
nonempty convex subset of X, Q be an open subset of C with 0 € Q. Suppose that T : Q — C is
a completely continuous mapping. Then, either

(i) the mapping T has a fixed point in Q, or
(1) there exists au € 0Q and A € (0, 1) withu = AT u.

Lemma 24. Let ]l <a <2, 0<vy, <1, iy € CR,R) (k =1,2,...,n)and z € C(J,R). Then a
function x € PC(J, R) is a solution of the boundary value problem

"DY.x(0) =2(t), teJ, t # 1,
TDVx(t)) - DY x(5) = I(x(1)), 1<k <n, 2.1)
x(1) = x(e),

iff x € PC(J,R) is a solution of the following integral equation:

10 2(1) + [B, = Ay — I x(e)](log ', 1€ [1,14],
x(t) = . " ., 5 (2.2)
JLz(0) + [B, — (A, — A) — "Il x(e)]log )™ — Br(log 1)*™*, t € (&, fiy1],
wherek =1,2,...,n,
Ta-7) v Loy (@ -7) o
= ——= ) (logt)) ™ML (x(t))), Br = —=—"—(log )" " “Lix(x(ty)).
B = a1y ;< og 1) 11y, B =~ (og 1) i (x(1)
Proof. 1f x € PC(J, R) is a solution of (2.1), then, when 7 € [1, #;], from Lemma 2.1, we have
x(t) = 7T 2(0) + cro(log ) + c11(log £)* 2. 2.3)
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By the right continuity of x(¢) at # = 1, we get ¢;; = 0. It follows from (2.3) and Lemma 2.2 that

I
9D = MDA + cnllog ™ = MU0 + e (o, (24)
(@ —vy1)
and
H H H ja—1 F(a') a—yi-1
Dyix(t)) = "Dyix(ty) = "I dn) + clom————(og 1) (2.5)
Ta—)

When ¢ € (1, 1,], we similarly have

x(t) = P2 2(0) + cap(log ) + cp1(log 1)* 2, (2.6)
_ I I
"DV x(t) = "I 2(0) + Czoﬁ(log H* 021L(10g 1, (2.7)
['(a —y1) [(@—-y1—1)
and
I'(a) o I'a-1) i
HDY x(t)) = "I 2(t) + coom———(log )" "' + c3y =—————(log 1) " 2. 2.8
x(@) () C2OF(a—y1)(Og 1) CZIF(a/—yl—l)(Og 1) (2.8)
By (2.5), (2.8) and "D}, x(r]) — ¥ D]ix(t]) = L;1(x(t1)), we obtain
I'la - a—vy—1
e = e = 2D (o0 1)L (x(01)) — e S L og 1), 2.9)
I'(a) 1
From the continuity of x(¢) at t = 71, (2.3) and (2.6), we get
ca1 = —(c20 — c10) log ;. (2.10)

Equations (2.9) and (2.10) lead to

{ o=C0= yrl(ra(?,‘f>(10g )" (x(n)), @.11)
ca1 = =M (log 1> (x(1)). '
When ¢ € (t, 111, K = 2,3, ..., n, repeating the above calculation, we get
x(t) = "I 2(0) + crero(og 7 + crer 1 (log )72, (2.12)
and
{ Ckr1.0 ~ Cro = yrl(ra(zll)) (log 1) I (x(1)), o)
Certl = =2 (log 1)V~ Iy (x(1). '
It follows from (2.11) and (2.13) that
T(a—y1) a l+yi1-a
Ck+1.0 = €10 + S FaTh gﬁ(log 1) (x(E ), 2.14)

I'(a— _
Cirt1 = =3 (log 1) = Ii(x(1).
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Thus,

x(e) ="Jf.z(e) + carro(loge)™ ™! + cuir 1 (log )™

( I'(a —vy1)

2+y1—a
r( _ 1)(10g tn) 4 Iln(x(tn))

="J¢z(e) + c1o +

) e
" Z(logr I () -
=x(1)=0
which implies that

(a

BRACESD) _%) Zaogt VL (). (2.15)

T(a-— 1)(log tn)2+71 _alln(x(ln)) _ HJ?+Z(€) _

Substituting (2.15) and (2.14) into (2.3) and (2.12), one can easily obtain (2.2), that is, x € PC(J,R) is
also a solution of (2.2). Since the above derivation is completely reversible, so vice versa. The proof
is completed. O

Similarly, we have the following assertion.

Lemma 2.5. Let 1 < <2, 0<vy, <1, I € CR,R) (k=1,2,....,n)and w € C(J,R). Then a
function y € PC(J,R) is a solution of the boundary value problem

Iply@) =w), teld, t #1,
HDYVy(ed) = "DLy(t) = Le(y(t), 1 <k <n, (2.16)
y(1) = y(e),

iff y € PC(J,R) is a solution of the following integral equation:

HILw(t) + [Dy — Cp — HJﬁy(e)](log !, te(l,nl,
y(@) = (2.17)

TIw(@) + [Di = (Co — C) = "I y(e)](log 1y~ — Dylog 12, 1 € (1, 1],

wherek =1,2,...,n,

LB —v>)
YI'(B-1)

r
=22 Z(logm“ﬂ—ﬁlzxy(t ) Di=

y-['(B — ———(log 1" P Ly (y(ty)).

3. Main results

In this section, we shall investigate the solvability of BVP (1.1) by employing the nonlinear
alternative of Leray-Schauder.

Theorem 3.1. If the following conditions (H,)—(H,4) hold, then the boundary value problem (1.1) has
at least a pair of solution.

(H,) The functions f,g € C(J X R*,R), and I, I, € C(R,R), k=1,2,...,n;
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(H,) For all u,v,w € R, t € J, there exist a;,b;,d;, p; € C(J,R,) with a = supa;(t), b; = sup b;(1),
teJ teJ
d: = supd;(t) and p: = sup pi(t) (i = 1,2), such that

teJ teJ

Lf @, u, v, W)l < ai(®) + bi(lul + di (DI + pr(D)Iwl,
lg(2, u, v, W)l < ax (1) + bo(Dlul + do(DV] + pa(D)|wl;

(H3) For any u € R, there exist some constants My, N, > 0, k = 1,2,...,n, such that
1] < Milul, |Ii(w)] < Nilul;
(Hy) 0 < 41,4, < 1, where

birditpitl Ta-n, < 1 "
= + M,+ > M;(logt)™ *+ (ogt)* 2> M
Ta+1)  yl- 1)[ ; j(log1) (log 1) ;

birdiapirl TE-y)

2= YT —1)

[N +ZN(10gt)1+” b+ (log 1,)P2 ZN]

j=1

)

Proof. Let @ = {(x,y) € X : [[(x, Il < r}, where r > max { ;. 7=t} - Then Q = {(x.y) €
X: Mx, VI < 1}, 0Q ={(x,y) € X : ||[(x,y)|| = r}. According to Lemmas 2.4 and 2.5, define an operator
T : Q — X as follows:

T(x’y)(t) = (T] (-x7y)(t)’ Tz(xa)’)(t))T’ A (-x’y) € X’ re J’ (31)
where

LI f(t,x(0), "DYix(@), DR y(0) + (B, — A, = T x(@)](og e, e [1,n],
Li(xu @) =4 2y £, x(0), "D x(t), "DE y (1) + [B, — (A, — Ay)

Ay, x(e)](log ! Bk(log N2, t € (tx, trs1 1,
(3.2)
and
H18 g(t,y(®), "D x(2), "D y(0)) + [D, - C, = F.y(e)1(log 1!, 1€ [1,11],
L)1) = HJE g2, y(1), "D x (@), "DEy(1)) + [D, — (Co — Ci)
Hjﬁ y(e)](log P! @k(log P2, t € (ty, tes1]s
(3.3)

where Ay, By, Cr and D, are defined as Lemmas 2.4 and 2.5. Thus, the existence of solution of
system (1.1) is equivalent to the existence of fixed point of an operator 7" defined by (3.1)—(3.3). Now
we shall apply Lemma 2.3 to prove that T exists a fixed point (x*(¢), y*(¢)) € Q. Firstly, we need to
verify that T : Q> Xis completely continuous. In fact, for all (x,y) € ﬁ, t € J =[1,e], when
t € [1, 4], we derive from conditions (H;)—(H,) that
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IT1(x, y)(®)]
<H I x(0), " DSx(@), TDE )] + (1Bl + | A+ T Ix(e)l]log 1)

<H 1t (@ + b)) + &y O DSLx(d)] + 1O " D]y ()]
[ T(a@—71)

YT@-1D 1)(l 0g 1,)>7' 7 My x(t,)| + MZ(logt VM) + H T x(e)l |(log 1)

@[ g . . ['(a —vy1)
SH-71+[611 + bilIxllpc + dillxllpc + P1||y||PC] + 7—1Mn||x||Pc

T(a-1)
I'a —v1) & Liys— "
+ — logt;)) ™M, + 7Je
e j§:l (log 1)1~ Mxilec + " e

(0 * * * % r(al - ')’1) -
<"Ji.la; + billallee + dillxllee + pilyllre] + ——=5 3 Mildlec
Yil (@

F((l —'}/]) n Y .
-1 Zﬂog "M lIxllpe + I Ixlpe
a lds Tla—y)
+b] +d; + .
st bl s e bl gy f s P yT@-1 Z allec
[@-y) 1 f 2 s
+———= > (log 1)) " M,lIxllpc +
yvil'(a—1) Z( 0gt)) illxllpe + l1xllpc - F( ) -
i I | 1 ! o, Tla=v1)
=[a} + billxllpc + dilixllpc + pilyllec] - m(log 0" + mMnHXIIpC
[@-y) \ . |
t l t; s aM' —+ - _ 1 t a
i@~ 1>;( o) e + xlec - o= log )

a by +di +pj+1 F(a—%)[ - . _]}
+ + M, + E M;(log t))" = HI(x,
T+ D) { T+ ylhe-DIm" " 4 ilog)) [E3]

a
<F(a y + 4], )l < 7. (3.4)

Whent € (t;, 1], k= 1,2,...,n, we have

T (x, ) <P IS f(2, x(0), T DY x(0), HDB L)
+ (1B, + | A, — Al + HT%x(e)1(log 1) + |Bil(log 1)* >

<"J [ar(®) + b)) + di ()| D x(t)] + pr()] T DEL y()]

[ I'(a—7y1)

+ m(log tn)2+YI_aMn|x(tn)| + (—3/11)) Z (lOgl )1+71 QM |x([ )l

Jj=k+1

« a— (Q B ) - a—
+ 5 |X(€)|](10g tir)™ o (log 1)*™" ™ Mylx(t)|(log 1)
vil'(a—1)
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(@ —v71)
yil(@-1)
(e =)

1@ —-1)
F(a - 71)
yil(@-1)

[«

) o
e Z Mjl|llpc(log 1)

<"Jt.la; + billxllpc + dilIxllpc + pillyllec] + M, |Ixllpe + P IIxllpe
I'(a —y1)

m My|x(tp)l(log 1)

Zaogr M e +

H % H
<"JL[a) + bilixllpe + dilixllpc + piliyllec] + M, |Ixllpc + I Xl pe

' —1vy1) - Ly —
- 7 log ¢: e +
e §. (log1;) Axllne

alds

<[a; + billxllpc + dilixllpc + PilYllec] - F( ) f S

(e - 1) (e - y1)
A A YA ||pc+—7‘ (logr,)“” MlIxdlpe

I@-1) M —1) <

(1 1 ds l"(a ‘J'l) n >
+ _ — M 1 t a
llxl|pc - T(a )f p T 1 g ]”-x”PC( 0g 1)

+

(logn)®

=[a; + bilixllec + dillxllec + pillyllec] -

Ia-y) I(a yl) 1
—Mn _~ 7 1 t Y1 .
a1 et S R Z< 0g )" MjlIxlnc

1 e, Tla=v) a-
e - oo log 0 + —”ZM IIllpc(log 1)
a; +{b’{+d’{+pj‘+l+r(a—y1)
T+ T(a+ 1) yiT(a-1)

r( +1)

[Mn + Z Mj(logt;) =@
j=1

+Qogn)™ " M| Hicx, vl = + Ayl <7 (3.5)
=1

a
I'a+1)
Similar to (3.4) and (3.5), we also have

a; by+d;+p,+1 T(B-
4 +{2 2 TP 4 B —7v2)

T2, )(1)] < [Z N (log 172 + Nn]}u(x, Wl

B+ T+ 7lB-hlL
r(ﬂ : + Ll <, te[l,n], (3.6)
and
I T2(x, y)(@)|
a2 b;"'d;"'p;"'l F(,B—Vz) l+y,-B
S EaTR v 1)[2N(log” 7 N+ log ]Z;N]}”(x o
F(ﬁ + Dl Il < r, t € (&, it ] (3.7

AIMS Mathematics Volume 7, Issue 10, 19221-19236.



19230

From (3.4)—(3.7), one knows that T is uniformly bounded and T(Q) c Q.
Next,_we show that the operator T is equicontinuous. Indeed, let 75,7, € J = [1, e] with 7| < 7, and
(x,y) € Q, then when 7, 7, € [1,1;], we have

|7 (x,y)(12) = T1(x, y)(71)|
<IH 2. f(12, x(12), "D} x(1), D‘iy(m) 1o fry, x(), "D x(ry), T DR y())|
+ [1B,] + A + I |x(e)l]|log T2)* " = (og 71)"|

1 T a-1
:‘@ f log ) fs, x(s), "DL(s), HD‘*‘y(s))

_1 H H 1
= f s, x(9), D0 x(s), 1D y(s) L ‘
+ 1B + | A, + HJ?+|x<e>|]|<logrz>“ — (log 71)™!|

a-1 a-1
=l — - — a1 H 1 i
“r(a)fl log s) (“’g s) ]ﬂs’x(ﬂ "Dix(s), " DY y(s))
1 T2 T, a-1 u
+ @f (log ?) f(S, .X(S), D(]YJ_X(S) Dﬁiy(s))_‘
F 1B, + 1A + I x| (og )" — (og 7))
1 Tl T2 a-l T a-1 H e u 1

S%fl (102 ) (102 ) s, xto). “Ditace, “1 y(s)>|

T a—l
+ % f (1og2 1£(s, x(s), D x(s), 1 DP! y(s>>|—
+ [1Bal + A+ 7T | x(e)ll|log 72)* " = (log 71)" 7|

1+ by N * B T\ ds
<[aj + bil|xllpc + dilIxllpc + PilVllpc] - @ [( log ?) (log ) ] :
1
¢ 1 T2 5 \% lds
+ [al + b ”x”PC +d ”)C”pc + P1||)’||Pc] l"( ) (log ?2) T

+ [1B,] + A+ I |x(e)l]|log T2)*" - (log n)“ 'l

1 * * s« * a T “ (o4
=yl + bl + dilile + plnynpc][(logm) —(logT—f) —(logﬁ)]

1 ¥ * * ) @
+ Mo+ 1)[al + bilIxllpc + dillxllpc + p1||y||PC](10g T_l)

+ [1B,] + AL+ 7T x| (log )" — (log 7)™ = 0, as 71 — 7. (3.8)
When 11,7, € (#, tis1], k = 1,2, ..., n, similar to (3.8), we get
T (x, y)(12) = T1 (x, y)(T1)|
<2, f(ra, x(12), TD% x(12), TDPLy(r)) — HJS, f(x1, x(11), TD% x(x)), T DPL (7))
+ (1B, + | A, — Al + 7T x(e)|(log o)™ = (log 7)™ | + IBl|log 72)* 7 — (log 1) |

% * % * a T ¢ a
(@ + Bl + dllxlloc + plnynpc][aog ) — (log ;2) ~ (log 1) ]

D
I'a+1) 1
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1 % % % * L) «
Tyl + billlec + dillle + P1||y||PC](10g —1)

+ (1Bl + 1A, — Al + 7% x(e)ll|log 72)" = (log 7)™

“2—(logt))* | > 0, as 1 - 1. (3.9)

Similar to (3.8) and (3.10), we obtain

T2 (x, y)(72) — Ta(x, y)(71)|

% % % * T o
[ + blxllee + dilixlne + P2||y||PC][(10g o) - (log T—z) ~(log n)ﬁ]
1

< 1
rg+1)
1 o g ; " oY H 1B
F(ﬁ 1)[02 + by llxllpc + dylIxllpc + pzllyllpc](log T—]) + (1Dl + ICul + T Iy(e)l]
|(log7'2)"3 T (IOng)ﬁ_1| -0, as 1 = 1, 71,2 €[1,11], (3.10)

and

1T2(x, y)(72) = T2 (x, y)(71)|

1 * £ * s T ﬁ
S + billle + a3l + pilbylrcl|Gog w2 — (1og =)~ log .Y |

I * * * L
o+ m[aé + bylIxllpc + d5lIxllpe + Pz“)’”PC](log —j)

+ [1D4] + 1C = Cul + " T y(e)1|(log 7o) = (log 71|

2 —(log?| > 0, as Ty > 12, T1, T2 € (fh, fiat ] (3.11)

From (3.8)—(3.11), we conclude that, for all € > 0 and (x,y) € X, there exists v = v(e) > 0 with
v < max{tyy — & ¢ k = 0,1,2,...,n} such that ||T(x,y)|| < € provided that |t — 71| < v for all
75,72 € [1,e]. That is, the operator T is equicontinuous. Hence, by the Arzela-Ascoli theorem, we
know that 7 : Q — Q is completely continuous.

Finally, We prove that the condition (ii) of Lemma 2.3 is not true. In fact, for all (x,y) € 0Q,
0 <A< 1landte€[1,e], analogous to (3.5)—(3.7), we have

*

(o + 1)

AT (% 5)(0)] < a( + I y)||) <ar<r (3.12)

and

>',<

'@+

AT (5 5)(0)] < 1( S+ Dl y)||) <Ar<r (3.13)

Equations (3.12) and (3.13) implies that [|AT(x,y)|| < ||[(x,Y)|| = r, that is, (X,y) # AT (X,y), for all
x,y) € 89. According to Lemma 2.5, we know that the system (1.1) has at least a pair of solution
(x*,y*) € Q. The proof is completed. O
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4. Illustrative example

Consider the following boundary value problem for nonlinear Hadamard fractional differential
coupling system with fractional order impulses.
"D x(1) = f(t, x(2), "DSLx(0), "DBLy(0), te[1,el, t # 1,
"DV y(@) = g(t, (0, " D), "DYy0), 1€ [1,el, 1 # 1,
HDY x(e)) = "Dx(t) = In(x(t)), k=1,...,n, 4.1)
HDVy)) = "DVy(t) = In(y(®), k=1,...,n,
x(1) = x(e), y(1) = y(e),

_ 3 _ 5 _ 1 _ 3 _ 1 _ 1 _ _ 5 _ —_  2+utv+w
Wherea’—z,ﬁ—19al —Eaﬁl - 1,7’1 _§9y2_ g,n—2,t1 - Zat2_2sf(t’u’v’w)_ W’

3
gt u,v) = B g ) = Lo(u) = S5, To() = Li(u) = o=, Obviously, f,g € C(J X R, R),
L1, 1o, Iy, I, € C(R, R). By a simple calculation, we obtain

1 1
H=—+— bi()=d(t) = )= ——— *:—,
) = 5071000 11O =A@ =pi0) = 1507700055 4T 5075068
t
b o=d =p = ——— ()= ———. by(t) = da(t) = po(t) = ———,
1= 4= P = 5010000 20 = Topense P20 = R0 = (0 = 15570
e dim e M=M= N =N, =
a~, = = = = —, = = —, = = —.
2= TR TP T 000660 YT M2 T 5000 YT 2T 00
Thus, we get

B by +dj + p] +1 . C(a —7y)
 T(a+ 1 yil(@ - 1)

A

[Mn + Z M;(log )" + (log 1;)* Z Mj] ~0.9155 <1,
j=1

=1

_birdiepi+l TE-y
I'e+1 yI'(G-1)

) [N,, + " Nyllog 1) + (log 1 P2 > N,-] ~0.8931 < 1,
=1

J=1

So all the conditions (H;)—(H,) are true. According to Theorem 3.1, the boundary value problem (4.1)
exists at least a pair of solution.

5. Conclusions

Hadamard fractional calculus, like Riemann Liouville and Caputo fractional calculus, is an
important generalization and extension of the classical integral order calculus theory. Based on the
need of theoretical development and wide application, Hadamard fractional differential equation has
been paid much attention and studied by many scholars. However, the previous findings are few
for Hadamard fractional coupled equations. Therefore, this paper deals with a Hadamard fractional
coupled system involving fractional derivative impulses. We obtain some new sufficient criteria for the
existence of solutions by use of the Leray-Schauder alternative theorem. The condition (H4) shows
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that the value of the impulse point #, directly affects the existence of the solution of the system (1.1).
At the same time, our methods and techniques can be used for reference to similar problems. Since
system (1.1) only involves the impulsive effect and two-point boundary value conditions, we can further
explore the dynamic behavior of Hadamard fractional coupled system under the influence of delay
effect, nonlocal boundary value condition and integral boundary value condition in the future.
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