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Abstract: This paper is concerned with the robust stabilization problem for uncertain saturated
linear systems with multiple discrete delays. First of all, a new distributed-delay-dependent
polytopic approach is proposed, and a new type of Lyapunov-Krasovskii functional is constructed.
Then, by further incorporating some integral inequalities, both stabilization and robust stabilization
conditions are proposed in terms of linear matrix inequalities under which the closed-loop systems
are asymptotically stable for admissible initial conditions. Finally, a simulation example is given to
illustrate the feasibility and advantages of the obtained results.
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1. Introduction

Over the past decades, time-delay systems have received significant research attention due to the
ubiquity of time delays in many dynamical systems, see, e.g., [1–29] and the references therein. In
particular, in [1–19], some researchers have considered the systems with multiple time delays. The
motivation for studying multiple time-delay systems is that multiple time delays are often encountered
in many practical systems such as power systems [5–8], complex networks [11,12], neural networks [4,
13], multi-agent systems [18, 19]. For example, in [6, 7], multi-area power systems with time delays
have been modeled as linear systems with multiple time delays. The main techniques for studying
multiple time-delay systems are the characteristic roots approach [1,2], the state trajectory approach [3]
and the Lyapunov-Krasovskii (L-K) approach [30–32]. Using the L-K approach, the obtained results
can be expressed by linear matrix inequalities (LMIs), which can be easily solved by existing software.
In particular, in [31, 32], to derive some less conservative stability criteria in the framework of LMIs,
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some cross-terms related to multiple different time delays have been introduced into the constructed
L-K functionals. However, it is worth mentioning that the results proposed in [31, 32] are based on
the free-weighting matrices technique and the Jensen inequality, which are still conservative to some
extent.

On the other hand, it is well known that almost all practical feedback control systems are limited
by the amplitude or rate of physical actuators for safety reasons or the limitations of the physical
components. For example, a motor cannot generate infinite torque, and the amplifier output voltage
cannot be unlimited. When an aircraft’s vertical tail controls the horizontal steering, its steering angle
has a maximum limit, and its rotation rate cannot be too fast; otherwise, the aircraft will roll over and
cause an accident. Actuator saturation can cause instability and performance degradation of the
overall system. During the past two decades, much effort has been focused on linear systems with
actuator saturation [33–44]. One of the important research questions is related to global and
semi-global stabilization [33–36]. Global stabilization is not possible if the open-loop system is
exponentially unstable [33]. Furthermore, global stabilization cannot, in general, be achieved by
linear feedback even for open-loop systems that are not exponentially unstable [35]. The low-gain
design technique and the dynamic scheduling approach have been utilized in [36], and the parametric
Lyapunov equation-based low-gain design was proposed in [37]. The local stabilization problem has
been well discussed for open-loop systems that are unstable [33, 34, 38]. In particular, two dominant
approaches to deal with saturation nonlinearities are the polytopic models [33, 38, 45] and the
generalized sector condition [34, 46].

By utilizing the polytopic approach in [33], time-delay systems with actuator saturations have been
transformed into the convex polytope of linear systems [39, 40]. Then, by incorporating the L-K
approach, LMI-based sufficient conditions have been established in [39, 40], under which the local
stability of closed-loop systems can be guaranteed. Based on the generalized sector condition, the
asynchronous H∞ control problem has been addressed in [41] for time-delayed switched systems with
actuator saturation via the anti-windup scheme. By introducing auxiliary time-delay feedbacks, the
delay-dependent polytopic approach was developed in [42–44,47] to reduce the potential conservatism.
However, the results in [39–44, 48, 49] are mainly concerned with systems with a single time delay.
To the best of our knowledge, the local stabilization problem for multiple time-delay systems with
actuator saturation has not been considered, likely due to the mathematical complexity.

Motivated by the above discussions, in this paper, the problems of local stabilization and the
corresponding estimate of the domain of attraction are considered for multiple time-delay systems
with actuator saturation. First, a distributed-delay-dependent polytopic approach is proposed, and the
saturation nonlinearly is represented by the convex combination of state feedback and auxiliary
distributed-delay feedback. Then, based on the L-K approach, both the stabilization and robust
stabilization conditions are established in terms of LMIs. Subsequently, the optimization problems
regarding the maximization of the domain of attraction are discussed. The main contributions of this
work are summarized below.

1) The results proposed in this paper are quite general since many factors are considered, such
as norm-bounded uncertainties, multiple time delays, and actuator saturation. Therefore, the results
obtained in this paper generalize to existing results in the literature.

2) Different from the L-K functionals used in [30–32, 34], a novel L-K functional is constructed in
this paper. Specifically, the proposed functional contains augmented state vectors and some
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interconnected terms about multiple delays, which will lead to less conservative results.
3) A new polytopic model is proposed to represent the saturation nonlinearity. In particular, some

interconnected terms concerning multiple delays are utilized, which is useful in reducing the possible
conservatism.

Notation: The superscript “T” denotes matrix transposition; I denotes the identity matrix of
appropriate dimensions; λM (P) denotes the maximum eigenvalue of matrix P; Sym (E) is a shorthand
notation for matrix E + ET ; and Cn,d = C ([−d, 0] ,Rn) denotes the Banach space of continuous vector
functions mapping interval [−d, 0] into Rn using the topology of uniform convergence.
‖ϕ(t)‖c , maxt∈[−d,0]‖ϕ(t)‖2 stands for the norm of a function ϕ(t) ∈ Cn,d; Dm is the set of m × m
diagonal matrices, where the diagonal elements are either 1 or 0; em,i ∈ R

1×m denotes a row vector
whose i-th element is 1 and the others are 0; I[1,N] denotes the set {1, 2, · · · ,N}; and
co {h1, h2, · · · , hm} denotes the convex hull of the vectors.

2. Problem formulation

Consider the following uncertain saturated linear system with multiple discrete delays:

ẋ(t) = A0(t)x(t) +

N∑
j=1

A j(t)x(t − d j) + B(t)sat(u(t)), t > 0, (1)

x(t) = ϕ(t), t ∈ [−d, 0] , d = max
1≤ j≤N

{
d j

}
, (2)

where x(t) ∈ Rn is the system state; u(t) ∈ Rm is the control input; the time delays d j, j ∈ I[1,N] are
known scalars; ϕ(t) ∈ Cn,d denotes the initial function; sat(u) = [sat(u1) sat(u2) · · · sat(um)]T is the
standard saturation function with sat(ui) = sgn(ui) min{1, |ui|}; and A0(t), A1(t), · · · , AN(t) and B(t)
are time-varying matrices that satisfy A0(t) = A0 + ∆A0(t), A j(t) = A j + ∆A j(t) ( j ∈ I[1,N]) and
B(t) = B + ∆B(t), where A j and B are known constant matrices with appropriate dimensions.
Remark 1. Different from most existing literature concerning control systems with actuator
saturation [32–41], the systems (1) and (2) considered in this paper contains multiple time delays.
Note that multiple time delays are often encountered in many practical systems such as power
systems [5–8], complex networks [11, 12], neural networks [4, 13, 29], and multi-agent
systems [18, 19]. Therefore, the results obtained in this paper can be seen as an indispensable
supplement to the existing literature.
Assumption 1. The uncertain matrices ∆A0(t), ∆A j(t) ( j ∈ I[1,N]), ∆AN(t) and ∆B(t) satisfy

[∆A0(t) ∆A1(t) · · · ∆AN(t) ∆B(t)] ∆
= MF(t)[E0 E1 · · · EN EB], (3)

where M, E0, E1, · · · , EN and EB are known real constant matrices, and F(t) is an unknown time-
varying matrix satisfying FT (t)F(t) ≤ I.

This paper employs the following state feedback controller:

u(t) = Kx(t), (4)

where K ∈ Rm×n is the gain matrix to be designed.

Lemma 1. [38] Denote ↔m ∆
= m2m−1. Let w ∈ R

↔m be such that ||w||∞ 6 1, Dk ∈ Dm, k ∈ I[1, 2m]. The
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function fm is defined as fm(0) = 0 and

fm(k) =

{
fm(k − 1) + 1, Dk + Dk′ , Im, ∀k′ ∈ I[1,k],
fm(k′), Dk + Dk′ = Im, ∃k′ ∈ I[1,k].

Letting ⊗ denote the Kronecker product, for any u ∈ Rm, the following holds:

sat(u) ∈ co{Dku +D−k w : k ∈ I[1, 2m]},

whereD−k ∈ R
m×↔m is defined asD−k = e2m−1, fm(k) ⊗ D−k with D−k = I − Dk.

Lemma 2. [50] For a given symmetric positive definite R and any differentiable function x in
[−d, 0] −→ Rn, the following inequality holds:∫ 0

−d
ẋT (θ)Rẋ(θ)dθ >

1
d

[
Θ0

Θ1

]T [
R 0
0 3R

] [
Θ0

Θ1

]
,

where

Θ0 =x(0) − x(−d),

Θ1 =x(0) + x(−d) −
2
d

∫ 0

−d
x(θ)dθ.

In addtion, to represent the saturation nonlinearity in a delay-depdent framwork, we introduce the
following lemma directly derived from Lemma 1.
Lemma 3. Let us define the following functional:

w(t) = Ux(t) +

N∑
j=1

V j

∫ t

t−d j

x(s)ds +

N−1∑
î=1

N∑
ĵ=î+1

Vî ĵ

∫ t−dî

t−d ĵ

x(s)ds, (5)

where U, V j ∈ R
↔m×n, j ∈ I[1,N], Vî ĵ ∈ R

↔m×n, î ∈ I[1,N − 1], and ĵ ∈ I[î + 1,N]. If the constraint

||w(t)||∞ 6 1 (6)

is satisfied, the saturation nonlinearity sat(u(t)) can be written as follows:

sat(u(t)) =

2m∑
k=1

λt
k

[ (
DkK +D−k U

)
x(t) +D−k

N∑
j=1

V j

∫ t

t−d j

x(s)ds +D−k

N−1∑
î=1

N∑
ĵ=î+1

Vî ĵ

∫ t−dî

t−d ĵ

x(s)ds
]
, (7)

where λt
1 ≥ 0, λt

2 ≥ 0, · · · , λt
2m ≥ 0 and

∑2m

k=1 λ
t
k = 1.

Proof. From (5) and Lemma 1, the (7) can be easily obtained. �

Using (1) and (7), one can obtain the following closed-loop system:
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ẋ(t) =

2m∑
k=1

λt
k

{ [
A0(t) + B(t)(DkK +D−k U)

]
x(t) +

N∑
j=1

A j(t)x(t − d j)

+

N∑
j=1

B(t)D−k V j

∫ t

t−d j

x(s)ds +

N−1∑
î=1

N∑
ĵ=î+1

B(t)D−k Vî ĵ

∫ t−dî

t−d ĵ

x(s)ds
}

∆
= η(t). (8)

Remark 2. Compared with the traditional polytope model [38], it can be seen that the polytope
model (7) contains the auxiliary time-delay feedback

∑N
j=1 V j

∫ t

t−d j
x(s)ds and∑N−1

î=1

∑N
ĵ=î+1 Vî ĵ

∫ t−dî

t−d ĵ
x(s)ds related to different time delays. Since the time delay information is

sufficiently used in representing the saturation nonlinearity, it is expected that less conservative
stabilization conditions can be achieved.

In this paper, we assume that the admissible initial conditions ϕ(t) belong to the following set:

Xρ
∆
=

{
ϕ(t) ∈ Cn,d : ||ϕ(t)||c 6 ρ1, ||ϕ̇(t)||c 6 ρ2

}
, (9)

where ρ1 and ρ2 are some positive scalars to be optimized.
In this paper, we are interested in designing the state feedback controller (4) such that the closed-

loop system (8) is locally stable with an estimate of the region of attraction that is as large as possible.

3. Main results

In this paper, we choose the following L-K functional:

V(t) = V1(t) + V2(t) + V3(t), (10)

where V1(t) = ξT (t)Pξ(t) and

V2(t) =

N∑
j=1

[∫ t

t−d j

xT (s)S jx(s)ds + d j

∫ 0

−d j

∫ t

t+θ
ẋT (s)R j ẋ(s)dsdθ

]
,

V3(t) =

N−1∑
î=1

N∑
ĵ=î+1

d ĵî

[ ∫ t−dî

t−d ĵ

xT (s)Qî ĵx(s)ds +

∫ −dî

−d ĵ

∫ t

t+θ
ẋT (s)Zî ĵ ẋ(s)dsdθ

]
,

with P > 0, R j > 0, S j > 0, Qî ĵ > 0, Zî ĵ > 0, d ĵî
∆
= d ĵ − dî ( j ∈ I[1,N], î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N]).

For convenience in subsequent presentation, we denote

ξ(t) ∆
=

[
xT (t)

∫ t

t−d1

xT (s)ds · · ·
∫ t

t−dN

xT (s)ds
∫ t−d1

t−d2

xT (s)ds · · ·
∫ t−d1

t−dN

xT (s)ds
∫ t−d2

t−d3

xT (s)ds

· · ·

∫ t−d2

t−dN

xT (s)ds
∫ t−d3

t−d4

xT (s)ds · · ·
∫ t−d3

t−dN

xT (s)ds · · ·
∫ t−dN−1

t−dN

xT (s)ds
]T

,

ζ(t) ∆
=

[
xT (t) xT (t − d1) · · · xT (t − dN)

∫ t

t−d1

xT (s)ds · · ·
∫ t

t−dN

xT (s)ds
∫ t−d1

t−d2

xT (s)ds · · ·
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t−dN

xT (s)ds · · ·
∫ t−dN−1

t−dN

xT (s)ds ẋT (t)
]T

, Â ∆
= [A1 A2 · · · AN]T ,

N1
∆
= (N2 + N + 2)n/2, N2

∆
= N(N − 1)n/2, N3

∆
= N(N + 1)n/2, N4

∆
= (N2 + 3N + 2)n/2,

d̃î ĵ
∆
= −12/(d ĵ − dî)

2, d̄î ĵ
∆
= 2/(d ĵ − dî), d̃ j

∆
= −12/d2

j , d̄ j
∆
= 1/d j,

Φ̂2
∆
=

[
IT
1 − IT

2 IT
1 − IT

3 · · · IT
1 − IT

N+1 IT
2 − IT

3 · · · IT
2 − IT

N+1 · · · IT
N − IT

N+1
]T
,

I′ j
∆
=

[
0n×( j−1)n In 0n×(N− j)n

]
, It

∆
=

[
0n×(t−1)n In 0n×(N+1−t)n

]T
,

where j ∈ I[1,N], t ∈ I[1,N + 1].
First, we consider the stabilization problem for the system (1) without uncertainties, i.e., the system

matrices in (1) satisfy F(t) = 0.
Theorem 1. Let the constants δ , 0 and d j, j ∈ I[1,N] be given. System (1) without uncertainties
can be asymptotically stabilized by controller (4) with K = YX−T if for any initial function ϕ(t) ∈ Cn,d

satisfying V(0) 6 1, there exist N1 × N1 matrix P̄ > 0, n × n matrices R̄ j > 0, S̄ j > 0, Q̄î ĵ > 0, Z̄î ĵ > 0,

n × n invertible matrix X, m × n matrix Y , and ↔m × n matrices G, H j, j ∈ I[1,N], Hî ĵ, î ∈ I[1,N − 1],
ĵ ∈ I[î + 1,N], such that the following LMIs hold:

(Ω̄k
rs)5×5 + Sym(ΦT

1 P̄Φ2) , Ω̄k < 0, ∀k ∈ I[1, 2m], (11)[
1 F̄l

∗ P̄

]
+


0 01×n 01×N3

∗ Σ̄11 ϑ̄

∗ ∗ Ξ̄

 > 0, ∀l ∈ I[1, ↔m], (12)

where F̄l is the l-th row of F̄ =
[
G H1 H2 · · · HN H12 · · · H1N H23 · · · H2N · · · H(N−1)N

]
, l ∈ I[1, ↔m]

and

Ω̄k
11 =

N∑
j=1

(S̄ j − 4R̄ j) + Sym
[
A0XT + B(DkY +D−k G)

]
,

Ω̄k
12 =

[
−2R̄1 + A1XT −2R̄2 + A2XT · · · − 2R̄N + AN XT ],

Ω̄k
13 =

[
β̄k

1 β̄
k
2 · · · β̄

k
N
]
, Ω̄k

14 =
[
γ̄k

12 γ̄
k
13 · · · γ̄

k
1N γ̄

k
23 · · · γ̄

k
2N · · · γ̄

k
(N−1)N

]
,

Ω̄k
15 = −XT + δXAT

0 + δ(DkY +D−k G)T BT ,

Ω̄k
22 =



ᾱ2 −2Z̄12 · · · −2Z̄1(N−1) −2Z̄1N

∗ ᾱ3 · · · −2Z̄2(N−1) −2Z̄2N
...

...
. . .

...
...

∗ ∗ ∗ ᾱN −2Z̄(N−1)N

∗ ∗ ∗ ∗ ᾱN+1


,

Ω̄k
23 = 6diag

{
d̄1R̄1 d̄2R̄2 · · · d̄NR̄N

}
,

Ω̄k
24 = 3

[
ξ̄12 ξ̄13 · · · ξ̄1N ξ̄23 · · · ξ̄2N · · · ξ̄(N−1)N

]
,

Ω̄k
25 = δXÂ, Ω̄k

33 = diag
{
d̃1R̄1 d̃2R̄2 · · · d̃NR̄N

}
,

Ω̄k
34 = 0Nn×N2 , Ω̄k

35 =
[
σ̄k

1 σ̄
k
2 · · · σ̄

k
N
]T
,

Ω̄k
44 = diag

{
d̃12Z̄12 · · · d̃1NZ̄1N d̃23Z̄23 · · · d̃2NZ̄2N · · · d̃(N−1)NZ̄(N−1)N

}
,
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Ω̄k
45 =

[
µ̄k

12 · · · µ̄
k
1N µ̄

k
23 · · · µ̄

k
2N · · · µ̄

k
(N−1)N

]T
,

Ω̄k
55 = −δSym(X) +

N∑
j=1

d2
j R̄ j+

N−1∑
î=1

N∑
ĵ=î+1

d2
î ĵZ̄î ĵ,

Φ1 =



I 0n×Nn 0 0 · · · 0 0n×n

0 0n×Nn I 0 · · · 0 0n×n

0 0n×Nn 0 I · · · 0 0n×n
...

...
...

...
. . .

...
...

0 0n×Nn 0 0 · · · I 0n×n


,

Φ2 =

[
0n×N4 I
Φ̂2 0n×N3

]
, Σ̄11 = 2

N∑
j=1

d jR̄ j + 2
N−1∑
î=1

N∑
ĵ=î+1

d ĵîZ̄î ĵ,

ϑ̄ =
[
Σ̄12 Σ̄13 · · · Σ̄1(N+1) Σ̄12

1 Σ̄13
1 · · · Σ̄

(N−1)N
1

]
,

Ξ̄ = diag
{
Σ̄22 · · · Σ̄(N+1)(N+1) Σ̄12

12 Σ̄13
13 · · · Σ̄

(N−1)N
(N−1)N

}
,

with

ᾱ2 = −4R̄1 − S̄ 1 +

N∑
ĵ=2

d ĵ1Q̄1 ĵ − 4
N∑

ĵ=2

Z̄1 ĵ,

ᾱt+1 = −4R̄t − S̄ t +

N∑
ĵ=t+1

(
d ĵtQ̄t ĵ − 4Z̄t ĵ

)
−

t−1∑
î=1

(
dtîQ̄ît + 4Z̄ît

)
, t ∈ I[2,N − 1],

ᾱN+1 = −4R̄N − S̄ N −

N−1∑
î=1

dNîQ̄îN − 4
N−1∑
î=1

Z̄îN , β̄
k
j = 6d̄ jR̄ j + BD−k H j, Σ̄1( j+1) = −2R̄ j,

γ̄k
î ĵ = BD−k Hî ĵ, ξ̄î ĵ = d̄î ĵZ̄î ĵ(I

′
î + I′ ĵ), σ̄

k
j = δBD−k H j, µ̄

k
î ĵ = δBD−k Hî ĵ, Σ̄

î ĵ
1 = −2Z̄î ĵ,

Σ̄
î ĵ
î ĵ

= Q̄î ĵ + d̄î ĵZ̄î ĵ, Σ̄( j+1)( j+1) = d̄ j
(
2R̄ j + S̄ j

)
, j ∈ I[1,N], î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N].

Proof. Differentiating V(t) in (10) along the closed-loop system (8) yields

V̇(t) =2ξT (t)Pξ̇(t) +

N∑
j=1

[
xT (t)S jx(t) + d2

j ẋ
T (t)R j ẋ(t) − xT (t − d j)S jx(t − d j)

− d j

∫ t

t−d j

ẋT (s)R j ẋ(s)ds
]

+

N−1∑
î=1

N∑
ĵ=î+1

d ĵî

{[
xT (t − dî)Qî ĵx(t − dî)

− xT (t − d ĵ)Qî ĵx(t − d ĵ)
]

+ d ĵî ẋ
T (t)Zî ĵ ẋ(t) −

∫ t−dî

t−d ĵ

ẋT (s)Zî ĵ ẋ(s)ds
}
. (13)

Using the Wirtinger-based inequality (Lemma 2) for
∫ t

t−d j
ẋT (s)R j ẋ(s)ds and

∫ t−dî

t−d ĵ
ẋT (s)Zî ĵ ẋ(s)ds, we

have
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−d j

∫ t

t−d j

ẋT (s)R j ẋ(s)ds 6 −[x(t) − x(t − d j)]T R j[x(t) − x(t − d j)] − 3ΨT
j R jΨ j, (14)

−d ĵî

∫ t−dî

t−d ĵ

ẋT (s)Zî ĵ ẋ(s)ds 6 −[x(t − dî) − x(t − d ĵ)]
T Zî ĵ[x(t − dî) − x(t − d ĵ)] − 3ΓT

î ĵZî ĵΓî ĵ, (15)

where

Ψ j = x(t) + x(t − d j) − 2d̄ j

∫ t

t−d j

x(s)ds,

Γî ĵ = x(t − dî) + x(t − d ĵ) − d̄î ĵ

∫ t−dî

t−d ĵ

x(s)ds.

For any matrices T1, T2 ∈ R
n×n, it follows from the closed-loop system (8) that

2[xT (t)T1 + ẋT (t)T2][η(t) − ẋ(t)] = 0. (16)

Adding the left side of (16) to V̇(t) in (13) and substituting (14) and (15) into (13), one can obtain
the following inequality:

V̇(t) 6
2m∑
k=1

λt
kζ

T (t)Ωkζ(t), (17)

where

Ωk ∆
= (Ωk

rs)5×5 + Sym(ΦT
1 PΦ2),

with

Ωk
11 =

N∑
j=1

(S j − 4R j) + T1
[
A0 + B(DkK +D−k U)

]
+

[
A0 + B(DkK +D−k U)

]T T T
1 ,

Ωk
12 =

[
−2R1 + T1A1 −2R2 + T1A2 · · · − 2RN + T1AN

]
, Ωk

13 =
[
βk

1 β
k
2 · · · β

k
N
]
,

Ωk
14 =

[
γk

12 γ
k
13 · · · γ

k
1N γ

k
23 · · · γ

k
2N · · · γ

k
(N−1)N

]
, Ωk

15 = −T1 +
[
A0 + B(DkK +D−k U)

]T T T
2 ,

Ωk
22 =



α2 −2Z12 · · · −2Z1(N−1) −2Z1N

∗ α3 · · · −2Z2(N−1) −2Z2N
...

...
. . .

...
...

∗ ∗ ∗ αN −2Z(N−1)N

∗ ∗ ∗ ∗ αN+1


,

Ωk
23 = 6diag

{
d̄1R1 d̄2R2 · · · d̄NRN

}
,

Ωk
24 = 3

[
ξ12 ξ13 · · · ξ1N ξ23 · · · ξ2N · · · ξ(N−1)N

]
,

Ωk
25 = ÂT T

2 , Ωk
33 = diag

{
d̃1R1 d̃2R2 · · · d̃NRN

}
,

Ωk
34 = 0Nn×N2 , Ωk

35 =
[
σk

1 σ
k
2 · · · σ

k
N
]T
,
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Ωk
44 = diag

{
d̃12Z12 · · · d̃1NZ1N d̃23Z23 · · · d̃2NZ2N · · · d̃(N−1)NZ(N−1)N

}
,

Ωk
45 =

[
µk

12 · · · µ
k
1N µ

k
23 · · · µ

k
2N · · · µ

k
(N−1)N

]T
,

Ωk
55 = −Sym(T2) +

N∑
j=1

d2
j R j+

N−1∑
î=1

N∑
ĵ=î+1

d2
î ĵZî ĵ,

Φ1 =



I 0n×Nn 0 0 · · · 0 0n×n

0 0n×Nn I 0 · · · 0 0n×n

0 0n×Nn 0 I · · · 0 0n×n
...

...
...

...
. . .

...
...

0 0n×Nn 0 0 · · · I 0n×n


, Φ2 =

[
0n×N4 I
Φ̂2 0n×N3

]
,

αt+1 = −4Rt − S t +

N∑
ĵ=t+1

(
d ĵtQt ĵ − 4Zt ĵ

)
−

t−1∑
î=1

(
dtîQît + 4Zît

)
, t ∈ I[2,N − 1],

αN+1 = −4RN − S N −

N−1∑
î=1

dNîQîN − 4
N−1∑
î=1

ZîN , α2 = −4R1 − S 1 +

N∑
ĵ=2

d ĵ1Q1 ĵ − 4
N∑

ĵ=2

Z1 ĵ,

γk
î ĵ = T1BD−k Vî ĵ, ξî ĵ = dî ĵZî ĵ(I

′
î + I′ ĵ), µ

k
î ĵ = T2BD−k Vî ĵ, β

k
j = 6d̄ jR j + T1BD−k V j,

σk
j = T2BD−k V j, î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N], j ∈ I[1,N].

Suppose that the following matrix inequality holds:

Ωk < 0.

Then, it is seen from (17) that V̇(t) < 0 can be ensured. Furthermore, V̇(t) < 0 means that

V(t) 6 V(0), t > 0. (18)

Next, we will show that the condition described by (6) can be ensured. For the functional V(t)
defined in (10), using Jensen inequalities for the terms d ĵî

∫ t−dî

t−d ĵ
xT (s)Qî ĵx(s)ds and

d ĵî

∫ −dî

−d ĵ

∫ t

t+θ
ẋT (s)Zî ĵ ẋ(s)dsdθ, î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N] and d j

∫ 0

−d j

∫ t

t+θ
ẋT (s)R j ẋ(s)dsdθ,

j ∈ I[1,N], it follows that

V(t) >
N∑

j=1

{
2xT (t)R j

[
d jx(t) − 2

∫ t

t−d j

x(s)ds
]

+ d̄ j

∫ t

t−d j

xT (s)ds
(
2R j + S j

) ∫ t

t−d j

x(s)ds
}

+

N−1∑
î=1

N∑
ĵ=î+1

{
2d ĵîx

T (t)Zî ĵx(t) −
[
4xT (t) + d̄î ĵ

∫ t−dî

t−d ĵ

xT (s)ds
]
Zî ĵ

∫ t−dî

t−d ĵ

x(s)ds
}

+

N−1∑
î=1

N∑
ĵ=î+1

∫ t−dî

t−d ĵ

xT (s)dsQî ĵ

∫ t−dî

t−d ĵ

x(s)ds + ξT (t)Pξ(t) = ξT (t)
([ Σ11 ϑ

∗ Ξ

]
+ P

)
ξ(t), (19)

where

Σ11 = 2
N∑

j=1

d jR j + 2
N−1∑
î=1

N∑
ĵ=î+1

d ĵîZî ĵ,
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ϑ =
[
Σ12 Σ13 · · · Σ1(N+1) Σ12

1 Σ13
1 · · · Σ

(N−1)N
1

]
,

Ξ = diag
{
Σ22 · · · Σ(N+1)(N+1) Σ12

12 Σ13
13 · · · Σ

(N−1)N
(N−1)N

}
,

with

Σ1( j+1) = −2R j, Σ
î ĵ
1 = −2Zî ĵ, Σ( j+1)( j+1) = d̄ j

(
2R j + S j

)
,

Σ
î ĵ
î ĵ

= Qî ĵ + d̄î ĵZî ĵ, j ∈ I[1,N], î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N].

Assume that the following matrix inequalities hold:

FT
l Fl 6

[
Σ11 ϑ

∗ Ξ

]
+ P, l ∈ I[1,

↔
m], (20)

where F =
[
U V1 · · · VN V12 · · · V1N V23 · · · V2N · · · V(N−1)N

]
, and Fl is the l - th row of matrix F,

l ∈ I[1, ↔m]. From (18)-(20), it can be seen that

|wl(t)|2 6 V(t) 6 V(0), l ∈ I[1, ↔m], (21)

where V(î ĵ)l is the l-th row of matrix Vî ĵ. For any ϕ(t) ∈ Cn,d satisfying V(0) 6 1, it can be seen

from (5) and (21) that |wl(t)| 6 1 holds for l ∈ I[1, ↔m], which implies that the assumption (6) can be
guaranteed. Then, it can be concluded that the closed-loop system (8) without uncertainties is locally
asymptotically stable for any initial function ϕ(t) ∈ Cn,d satisfying V(0) 6 1.

To obtain LMI-based conditions, we set T2 , δT1, δ , 0 in (16) and introduce the following new
matrix variables:T−1

1 , X, KXT , Y, UXT , G, V jXT , H j, X̃PX̃T , P̄, XR jXT , R̄ j, XS jXT , S̄ j,

XQî ĵX
T , Q̄î ĵ, XZî ĵX

T , Z̄î ĵ, Vî ĵX
T , Hî ĵ, X̃ = diag

{
X, X, · · · , X

}
.

(22)

Performing some congruence transformations as in [42] and noting (22), one can ascertain that
Ωk < 0 is equivalent to linear matrix inequality (11), and nonlinear matrix inequality (20) is equivalent
to linear matrix inequality (12). This completes the proof. �

Remark 3. In this paper, we are mainly concerned with the systems with multiple delays. In the L-K
functional (10), N is required to be greater than 1. For the case that N = 1, the system (1) becomes the
case with a single delay, which has been investigated in some existing literature.
Remark 4: For the case that d1 < d2 < d3 < · · · < dN , we can choose the following L-K functional:

V(t) = $T (t)P$(t) +

N∑
j=1

[ ∫ t−d j−1

t−d j

xT (s)S jx(s)ds + (d j − d j−1)
∫ −d j−1

−d j

∫ t

t+θ
ẋT (s)R j ẋ(s)dsdθ

]
, (23)

where

$(t) ∆
=

[
xT (t)

∫ t

t−d1

xT (s)ds
∫ t−d1

t−d2

xT (s)ds
∫ t−d2

t−d3

xT (s)ds · · ·
∫ t−dN−1

t−dN

xT (s)ds
]T

,
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and P > 0, S j > 0, R j > 0, d0 = 0 ( j ∈ I[1,N]).
Correspondingly, under the constraint

||Ux(t) +

N∑
j=1

V j

∫ t−d j−1

t−d j

x(s)ds||∞ 6 1, (24)

we have the following closed-loop system:

ẋ(t) =

2m∑
k=1

λt
k

{ [
A0(t) + B(t)(DkK +D−k U)

]
x(t) +

N∑
j=1

A j(t)x(t − d j) +

N∑
j=1

B(t)D−k V j

∫ t−d j−1

t−d j

x(s)ds
}
,

(25)

where λt
1 ≥ 0, λt

2 ≥ 0, · · · , λt
2m ≥ 0 and

∑2m

k=1 λ
t
k = 1. Follow the derivation steps in Theorem 1, the

corresponding results can be readily obtained.
Remark 5. First, different from the L-K functionals in [10, 15], some integral terms are introduced
in V1(t). Second, by considering the relationships between multiple delays d j ( j ∈ I[1,N]), this paper
introduces the term V3(t) in the L-K functional (10). In addition, the Theorem 1 is slacker since the
variables H j ( j ∈ I[1,N]) and Hî ĵ (î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N]) are additionally introduced in the
conditions (11) and (12). The matrices H j and Hî ĵ can be seen as slack variables in this paper. These
new techniques can result in less conservative stabilization criteria.
Remark 6. In proving Theorem 1, the stability criterion of the open-loop system can be represented
as Ω̃k < 0, where Ω̃k is obtained by setting U = 0, K = 0, V j = 0, and Vî ĵ = 0 in Ωk as defined below
in (15). For convenience of comparison, the stability criterion is referred to as Corollary 1.

Now, we consider system (1) with F(t) , 0.
Theorem 2. Let the constants δ , 0 and d j, j ∈ I[1,N] be given. The system (1) can be robustly
stabilized by the controller (4) with K = YX−T if for any initial function ϕ(t) ∈ Cn,d satisfying V(0) 6 1,
there exist N1 × N1 matrix P̄ > 0, n × n matrices R̄ j > 0, S̄ j > 0, Q̄î ĵ > 0, Z̄î ĵ > 0, X, m × n matrix Y ,
↔m × n matrices G, H j, j ∈ I[1,N], Hî ĵ, î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N], and a scalar ε > 0 such that for

∀k ∈ I[1, 2m] and ∀l ∈ I[1, ↔m], the LMI (12) and the following LMI hold:
Ω̄k εM̄ (Ēk)T

∗ −εI 0
∗ ∗ −εI

 < 0, (26)

where Ω̄k are defined in Theorem 1 and

M̄ =
[
MT 0

n×
N(N+3)

2 n
δMT ]T

,

Ēk =
[
ν̄k

0 E1XT · · · EN XT ν̄k
1 · · · ν̄

k
N ν̄12k · · · ν̄1Nk ν̄23k · · · ν̄2Nk · · · ν̄k

(N−1)N 0
]
,

with

ν̄k
0 = E0XT + EN+1(DkY +D−k G), ν̄k

j = EN+1D
−
k H j, j ∈ I[1,N],

ν̄k
î ĵ = EN+1D

−
k Hî ĵ, î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N].
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Proof. Denote

∆Ωk ,


∆Ωk

11 ∆Ωk
12 ∆Ωk

13 ∆Ωk
14 ∆Ωk

15
∗ 0 0 0 ∆Ωk

25
∗ ∗ 0 0 ∆Ωk

35
∗ ∗ ∗ 0 ∆Ωk

45
∗ ∗ ∗ ∗ 0


, (27)

where

∆Ωk
11 = Sym

[
T1∆A0 + T1∆B(DkK +D−k U)

]
,

∆Ωk
12 = [T1∆A1 T2∆A2 · · · T2∆AN] , ∆Ωk

13 =
[
∆βk

1 ∆βk
2 · · · ∆βk

N

]
,

∆Ωk
14 =

[
∆γk

12 ∆γk
13 · · · ∆γk

1N ∆γk
23 · · · ∆γk

2N · · · ∆γk
(N−1)N

]
,

∆Ωk
15 = ∆AT

0 T T
2 +

[
∆B(DkK +D−k U)

]T T T
2 ,

∆Ωk
25 =

[
∆A1T T

2 ∆A2T T
2 · · · ∆ANT T

2
]T
, ∆Ωk

35 =
[
∆σk

1 ∆σk
2 · · · ∆σk

N

]T
,

∆Ωk
45 =

[
∆µk

12 ∆µk
13 · · · ∆µk

1N ∆µk
23 · · · ∆µk

2N · · · ∆µk
(N−1)N

]T
,

with

∆βk
j =T1∆BD−k V j, ∆σk

j = T2∆BD−k V j,∆γ
k
î ĵ = T1∆BD−k Vî ĵ,

∆µk
î ĵ =T2∆BD−k Vî ĵ, j ∈ I[1,N], î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N].

Here, we choose the same L-K functional (10); then, the LMI (12) and the following LMI hold:

Ωk + ∆Ωk < 0. (28)

Using the assumptions (3) and T2 , δT1, δ , 0, it is easy to obtain that

∆Ωk = T1M̄F(t)Ek + (Ek)T FT (t)M̄T T T
1 , (29)

where

Ek =
[
νk

0 E1 · · · EN ν
k
1 · · · ν

k
N ν

k
12 · · · ν

k
1N ν

k
23 · · · ν

k
2N · · · ν

k
(N−1)N 0

]
,

with
νk

0 = E0 + EB(DkK +D−k U), νk
j = EBD

−
k V j, ν

k
î ĵ

= EN+1D
−
k Vî ĵ, j ∈ I[1,N], î ∈ I[1,N−1], ĵ ∈ I[î+1,N].

From (28) and (29), one can obtain that

Ωk + T1M̄F(t)Ek + (Ek)T FT (t)M̄T T T
1 < 0. (30)

Performing congruence transformation, one can ascertain that the nonlinear matrix inequality (30)
is equivalent to the following matrix inequality:

Ω̄k + M̄F(t)Ēk + (Ēk)T FT (t)M̄T < 0. (31)

Using the well-known Schur complement, it is clear that (31) is equivalent to the LMI (26). The
proof is completed. �
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Remark 7. Note that the Wirtinger integral inequality is a special case of the Bessel-Legendre
inequality [51]. Therefore, the obtained conditions in this paper remain conservative to a certain
extent. By modifying the sector condition and using the Bessel-Legendre inequality, some more
effective conditions are expected to be obtained.

To obtain a larger estimate of the domain of attraction Xρ when designing a controller, we discuss
the estimate and maximization of the domain of attraction. Noting the L-K functional (10) and (22)
and using the Jensen integral inequality to estimate the first term ξT (0)Pξ(0) of V(0), it can be seen that
the domain of attraction Xρ can be bounded by the following inequality:

V(0) 6Ψ1ρ
2
1 + Ψ2ρ

2
2, (32)

where

Ψ1
∆
= λM(Λ̃0) +

N∑
j=1

d j

[
λM(d jΛ̃ j + X−1S̄ jX−T )

]
+

N−1∑
î=1

N∑
ĵ=î+1

d2
ĵî

[
λM(Λ̃î ĵ) + λM(X−1Q̄î ĵX

−T )
]
,

Ψ2
∆
= (1/2)

[ N∑
j=1

d3
jλM(X−1R̄ jX−T ) +

N−1∑
î=1

N∑
ĵ=î+1

d2
ĵî(d ĵ + dî)λM(X−1Z̄î ĵX

−T )
]
,

with Λ̃ j̃ = X−1Λ j̃X−T , j̃ ∈ I[0,N], Λ̃î ĵ = X−1Λî ĵX−T , î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N], and the LMI
constraint P̄ 6 diag{Λ0 Λ1 · · · ΛN Λ12 · · · Λ1N Λ23 · · ·Λ2N · · · Λ(N−1)N} , Λ.

As in [42], we introduce the matrix inequality X−1X−T 6 rI, which can be guaranteed by the LMI(
rI I
I X + XT − I

)
> 0. (33)

Meanwhile, we define the following LMIs:Λ j̃ 6 p j̃I, j̃ ∈ I[0,N], P̄ 6 Λ, R̄ j 6 r jI, S̄ j 6 s jI, j ∈ I[1,N],
Λî ĵ 6 pî ĵI, Q̄î ĵ 6 qî ĵI, Z̄î ĵ 6 zî ĵI, î ∈ I[1,N − 1], ĵ ∈ I[î + 1,N].

(34)

Then, it can be seen from (32) that the maximization of the estimate of the domain of attraction Xρ

for system (1) without uncertainties in Theorem 1 can be formulated as the following optimization
problem:
Prob. 1.

min
P̄, R̄ j, S̄ j, Q̄î ĵ, Z̄î ĵ, Λ j̃, Λî ĵ, X, Y, G, H j, Hî ĵ, r, p j̃, pî ĵ, r j, s j, qî ĵ, zî ĵ

λ, s.t. LMIs (11), (12), (33) and (34) hold.

Additionally, the maximization of the estimate of the domain of attraction Xρ for system (1) in
Theorem 2 can be formulated as the following optimization problem:
Prob. 2.

min
P̄, R̄ j, S̄ j, Q̄î ĵ, Z̄î ĵ, Λ j̃, Λî ĵ, X, Y, G, H j, Hî ĵ, ε, r, p j̃, pî ĵ, r j, s j, qî ĵ, zî ĵ

λ, s.t. LMIs (12), (26), (33) and (34) hold,

where λ = e ∗ r + p0 +
∑N

j=1 d j
(
s j + d j p j + 0.5d2

j r j
)
+

∑N−1
î=1

∑N
ĵ=î+1 d2

î ĵ

[
pî ĵ + qî ĵ + 0.5

(
d ĵ + dî

)
zî ĵ

]
and e is

a weighting parameter.
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By solving the optimization problems Prob. 1 and Prob. 2, the values of Ψ1 and Ψ2 can be easily
obtained. Then, we can determine the admissible bounds ρ1 and ρ2 of the set Xρ by the equation
Ψ1ρ

2
1 +Ψ2ρ

2
2 = 1. In particular, when ρ1 = ρ2 , ρ, the maximum admissible scalar ρ can be obtained by

ρmax , 1/
√
Ψ1 + Ψ2. For any initial conditions ϕ(t) in the set Xρ satisfying the equationΨ1ρ

2
1+Ψ2ρ

2
2 = 1,

it can be seen that the constraint V(0) 6 1 can be guaranteed.
Remark 8. In this section, by using the novel L-K functional (12) and the Wirtinger-based integral
inequality, two sufficient conditions are established by LMIs under which the closed-loop system (6) is
asymptotically stable for the case without uncertainties and robustly asymptotically stable for the case
with uncertainties. In addition, the corresponding optimization problems are proposed to maximize the
estimate of the domain of attraction.

4. Numerical examples

Example 1. [31, 32] Consider the time-delay system (1), where N = 2 and

A0 =

[
−2 0
0 −0.9

]
, A1 =

[
−1 0.6
−0.4 −1

]
, A2 =

[
0 −0.6
−0.6 0

]
, B =

[
10
10

]
. (35)

First, we show the effectiveness of the proposed method. For the case d1 = 5, d2 = 6, it is clear from
Figure 1 that the open-loop system (1) is not stable. By solving Prob.1 in this paper (δ = 1, e = 5×109),
one can obtain the scalar ρmax = 32.2055 associated with the set Xρ. Meanwhile, we have U =

[−0.0032 − 0.0092], V1 = [−0.0001845 − 0.0002640], V2 = [−0.000000009548 − 0.000000009128],
V12 = [0.0040 0.0067] and the controller gain matrix K = [0.0078 − 0.0228]. In Figure 2, we plot the
state responses of the closed-loop system and the signal w(t), where ϕ(t) = [24 20]T ∈ Xρ. In Figure 3,
we plot the state trajectories of the closed-loop systems. Figure 2 shows that the closed-loop system (1)
is stable and that the functional w(t) defined in (5) satisfies the constraints ‖w(t)‖∞ < 1. From Figure 3,
it can be seen that the trajectories starting on the periphery of the ball never leave this ball and converge
to the origin.

By solving Prob.1 with δ = 1, e = 5 ∗ 109, we obtained the scalars ρmax related to the set Xρ for
different d1 and d2, which are listed in Table 1. In Table 1, we also list the scalars ρmax obtained by
Case 1 and Case 2, where Case 1 is obtained by setting V j = 0, S j = 0 in LMIs (11) and (12), and
Case 2 is obtained by setting Vî ĵ = 0, Qî ĵ = 0 and Zî ĵ = 0 in LMIs (11) and (12). From Table 1,
it is clear that Prob. 1 can provide a larger estimate of the domain of attraction. Noting that Case 1
and Case 2 are based on the traditional techniques that address saturations and time delays, it can be
concluded that our proposed result is effective in reducing the possible conservatism.

In Table 2, we list the admissible ranges of the time delay d2 for different d1 obtained by Corollary 1
in this paper and the results in [31, 32]. It is clear from Table 2 that Corollary 1 can provide the
larger range of the time delay d2, which shows that our proposed stability analysis approach is less
conservative than that in [31, 32].
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Figure 1. State responses of the open-loop system (d1 = 5, d2 = 6).
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Figure 2. State responses of the closed-loop system and w(t) defined in (5).
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Figure 3. System trajectories.

Table 1. The scalars ρmax are associated with the set Xρ for the given d1 and d2.

(d1, d2) (1,0.1) (1,0.5) (1,1.5) (1,2) (1,4)
ρmax(Prob. 1) 161.9218 145.9009 116.4877 97.2339 75.8305
ρmax(Case 1) 161.8783 141.6443 100.1767 83.0704 47.7115
ρmax(Case 2) 159.4388 128.9824 99.8500 93.4002 75.7668

(d1, d2) (2,0.1) (2,0.5) (2,1.4) (2,2.1) (2,3.5)
ρmax(Prob. 1) 89.1132 87.3734 81.7620 86.3634 47.9163
ρmax(Case 1) 88.9580 86.6829 52.8286 54.5928 —
ρmax(Case 2) 87.9240 77.7870 57.6496 48.0497 35.4435

Table 2. Admissible range of the time delay d2 to ensure stability of the open-loop system
for a given d1.

d1 2.3 2.4 2.5 3.0 3.5
d2([31]) [0.08, 3.57] [0.22, 3.61] [0.35, 3.65] [1.04, 3.77] [1.88, 3.90]
d2([32]) [0.07, 3.57] [0.17, 3.61] [0.28, 3.65] [0.80, 3.77] [1.60, 3.90]

d2(Corollary 1) [0, 4.54] [0, 4.54] [0, 4.55] [0, 4.69] [0, 4.77]

Example 2. [52] Consider the uncertain system (1), where N = 2 and

A0 =

[
−1 2
0 1

]
, A1 =

[
0.6 −0.4
0 0

]
, A2 =

[
0 0
0 −0.5

]
, B =

[
1
1

]
, M = I,

E0 =

[
0.16 0

0 0.16

]
, E1 =

[
0 0
0 0.04

]
, E2 =

[
0.04 0

0 0

]
, EB =

[
0
0

]
. (36)
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This system can be seen as a linearized model of combustion in a liquid monopropellant rocket
motor chambers [53]. For this example, by solving Prob. 2 in this paper with N = 2, δ = 0.7, and
e = 10, we can obtain the scalars ρmax, which are listed in Table 3. Table 3 shows that the scalars
ρmax decrease with the larger d2. By using the proposed controller (K = [−0.9926 − 2.9132]), the state
responses of the closed-loop system are plotted in Figure 4, where ϕ(t) = [0.4 0.1]T . Figure 4 shows
that the closed-loop system (1) is stable, which also shows the effectiveness of the proposed conditions.
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Figure 4. State responses of the closed-loop system and w(t) defined in (5).

Table 3. The scalars ρmax are associated with the set Xρ for the given d1 and d2.

(d1, d2) (1,0.1) (1,0.5) (1,1.5) (1,2) (1,4)
ρmax(Prob. 2) 1.1163 1.0439 0.8584 0.7185 0.3630

(d1, d2) (2,0.1) (2,0.5) (2,1.4) (2,2.1) (2,3.5)
ρmax(Prob. 2) 0.9910 0.9285 0.7103 0.8890 0.5009

Remark 9. From Examples 1 and 2, it is clear that our proposed results can provide a larger
estimate of the initial condition set than some existing ones. However, it is worth mentioning that more
free-weighting matrices are involved in our conditions, and the computational complexity is increased
when solving the optimization problems.

5. Conclusions

In this paper, some new delay-dependent local stabilization criteria have been obtained for multiple
time-delay systems with actuator saturation. The saturation nonlinearity is represented as the convex
combination of the state feedback, auxiliary distributed-delay feedback, and some cross-terms related
to different time delays. Then, by combining the saturation with an augmented L-K functional and
some integral inequalities (the Wirtinger integral inequality and the Jensen integral inequality), the

AIMS Mathematics Volume 7, Issue 10, 19180–19201.
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stabilization and robust stabilization criteria have been proposed in terms of LMIs. Moreover, the
estimation of the domain of attraction has been discussed. A numerical example is provided to show
the values of the proposed results. Our proposed results can be readily extended to more general
systems such as switched systems and T-S fuzzy systems [54].

In addition, is should be pointed out that our proposed results in this paper are mainly concerned the
case with multiple constant delays. For the case with multiple time-varying delays, the corresponding
results can also be established, which is our further work.
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