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Abstract: Gutman proposed the concept of Sombor index. It is defined via the
term

√
dF(vi)2 + dF(v j)2, where dF(vi) is the degree of the vertex vi in graph F. Also, the reduced

Sombor index and the Average Sombor index have been introduced recently, and these topological
indices have good predictive potential in mathematical chemistry. In this paper, we determine the
extreme molecular graphs with the maximum value of Sombor index and the extremal connected
graphs with the maximum (reduced) Sombor index. Some inequalities relations among the chemistry
indices are presented, these topology indices including the first Banhatti-Sombor index, the first
Gourava index, the Second Gourava index, the Sum Connectivity Gourava index, Product Connectivity
Gourava index, and Eccentric Connectivity index. In addition, we characterize the graph where
equality occurs.
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1. Introduction

For a graph F with vertex set V(F) and edge set E(F), we let e(F), δ(F), ∆(F) and F denote the
number of edges, minimum degree, maximum degree, and complement of F, respectively.

Throught this paper, F = (V(F), E(F)) denotes a finite simple graph, it has no loops and parallel
edges in graph F, for a nonempty subset S of F, the subgraph F[S ] of F induced by S , more generally,
the graph F − S is the induced subgraph F[V − S ] of F, the complement F of a graph F is that graph
with vertex set V(F) such that no vertices are adjacent in F if and only if these vertices are not adjacent
in F. We refer the readers to the book [1] for undefined notations and terminologies.
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Recently, a new index, introduced by Gutman [16], is defined as

SO = SO(F) =
∑

viv j∈E(F)

√
dF(vi)2 + dF(v j)2, (1.1)

where degF(vi) is the degree of the vertex vi in F. This new parameter is called Sombor index.
Gutman [16] also proposed another concept

SOred = SOred(F) =
∑

viv j∈E(F)

√
(dF(vi) − 1)2 + (dF(v j) − 1)2 (1.2)

and this new parameter is called reduced Sombor index.
Some bounds for SO(F) of trees and general graphs are presented in [16] and some properties

are established. Deng et al. [13] gave an upper bound for all chemical trees with fixed order, and
characterized extremal trees. Redžepović [21] examined the potentials of (reduced, average) Sombor
index. Cruz et al. [2] characterized the extremal graphs on the Sombor index for chemical graphs,
chemical trees, and hexagonal systems. In [6, 8, 12], Das et al. gave some bounds for Sombor index in
terms of different graph parameters. In [7,22], the authors characterized the maximal graph of Sombor
index among all connected ν-cyclic graphs of order n, where 0 ≤ ν ≤ n − 2.

For an integer n ≥ 2, Pn is a path of order n with n − 1 edges. A chemical tree (or molecular tree) is
a tree with degree at most 4. A graph is called molecular graph if its maximum degree is at most four.

Deng et al. [13] proposed the following problems.

Problem 1. [13] Which molecular trees with perfect matching reach the maximum value of SO and
SOred?

Problem 2. [13] Which molecular graphs reach the maximum value of SO and SOred?

Problem 3. [13] Which connected graphs of order n and size m reach the extremal (minimum and
maximum) of the (reduced) Sombor index?

Cruz and Rada [3] partly solved Problem 2. But the others remain open. Gutman [16] derived the
following bounds for Sombor index.

Theorem 1.1. [16] Let F be a graph of order n. Then

0 ≤ SO(F) ≤
n(n − 1)2

√
2

with equality if and only if F � Kn or F � Kn. Recall that SO(Kn) = 0 and SO(Kn) =
n(n−1)2
√

2
.

Theorem 1.2. [16] Let T be a tree of order n. Then

2
√

5 + 2(n − 3)
√

2 ≤ SO(T ) ≤ (n − 1)
√

n2 − 2n + 2

with equality if and only if T � Pn or T � S n, where S n is a star with n vertices. Recall that SO(S n) =

(n − 1)
√

n2 − 2n + 2 and SO(Pn) = 2
√

5 + 2(n − 3)
√

2.

This paper is scheduled as follows. In Section 2, we determine the extreme graphs with the
maximum value of Sombor index and the extremal connected graphs with the (reduced) Sombor index.
In Section 3, some relations among the chemistry indexes are presented. In Section 4, we conclude this
paper.
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2. Extreme molecular graphs for SO and SOred

Here are some properties of (reduced) Sombor index.

Theorem 2.1. [13] Let F be a graph with n vertices. Then

0 ≤ SOred(F) ≤

√
2

2
n(n − 1)(n − 2)

with equality if and only if F � tK2∪ (n− 2)K1 or F � Kn. Recall that SOred(tK2∪ (n− 2t)K1) = 0, 0 ≤
t ≤ bn

2c and SO(Kn) =
√

2
2 n(n − 1)(n − 2).

Let CGn be the set of molecular graphs with n vertices.

Theorem 2.2. [2] Let F ∈ CGn, n ≥ 5. Then

2
√

5 + 2(n − 3)
√

2 ≤ SO(F) ≤ 8n
√

2

with equality if and only if F � Pn or F is a 4-regular graph of order n.

Lemma 2.1. For any graph F, we have∑
viv j∈E(F)

(dF(vi) + dF(v j)) =
∑

vi∈V(F)

dF(vi)2. (2.1)

Proof. Suppose that F is connected. Consider the edge weight sum by double counting method for
every edge viv j ∈ E(F). The weight sum that the vertex vi contributes to its adjacent edges is dF(vi)2.
On the other hand, let us calculate the edge weight sum by counting each edge, this implies that we
have completed the proof of Eq (2.1).

Suppose that F is a disconnected graph. Let F = H1 ∪ H2 ∪ · · · ∪ Hp, where Hk (k = 1, 2, . . . , p) is
the k-th connected component in F. From the above result, we conclude that

∑
viv j∈E(F)

(
dF(vi) + dF(v j)

)
=

p∑
k=1

∑
viv j∈E(Hk)

(
dHk(vi) + dHk(v j)

)
=

p∑
k=1

∑
vi∈V(Hk)

dHk(vi)2 =
∑

vi∈V(F)

dF(vi)2.

�

Liu et al. has solved Problem 2 in [24].

Theorem 2.3. [24] Let F ∈ CGn. Then

SOred(F) ≤ 6n
√

2.

The equality holds if and only if H is a 4-regular graph of order n.

Let CGk
n be the set of connected graphs with n vertices such that the degree of each vertex is at

most k. we calculate the maximum value of Sombor index in CGk
n. We now give an bound on CGk

n

about (reduced) Sombor index as below.
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Theorem 2.4. Let F ∈ CGk
n. Then

(n − 3)
√

2 + 2 ≤ SOred(F) ≤

√
2

2
nk(k − 1).

The left (right, respectively) equality holds if and only if F � Pn (F � Gk, respectively), where Gk stands
for a k-regular graph of order n. Recall that SOred(Gk) =

√
2

2 nk(k − 1) and SOred(Pn) = (n− 3)
√

2 + 2.

Proof. For any graph F (with no isolated vertices), let si = si(F) be the number of vertices of degree i
in F, and let ei, j = ei, j(F) be the number of edges in F connecting the vertices of degrees i and j.

It means that

k∑
i=1

si = n. (2.2)

It is well-known that the following relations hold: for two integers i, j ∈ {1, 2, · · · , k},

k∑
j=1

δi, jei, j = isi, (2.3)

where

δi, j =

2, i = j;
1, i , j.

(2.4)

Let Υ = {(i, j)|(i, j) ∈ N × N, 1 ≤ i ≤ j ≤ k} and Ω = {(i, j)|(i, j) ∈ Υ, (i, j) , (k, k)}. By (2.2) and (2.3),
we have ∑

(i, j)∈Υ

(
1
i

+
1
j

)
ei, j = n.

Note that the value of reduced Sombor index of molecular graphs with n vertex is equivalent to

SOred(F) =
∑

(i, j)∈Υ

ei, j

√
(i − 1)2 + ( j − 1)2.

Thus,

SOred(F) =
∑

(i, j)∈Υ

ei, j

√
(i − 1)2 + ( j − 1)2

=
∑

(i, j)∈Ω

ei, j

√
(i − 1)2 + ( j − 1)2 + ek,k

√
(k − 1)2 + (k − 1)2

=
∑

(i, j)∈Ω

ei, j

√
(i − 1)2 + ( j − 1)2 + (k − 1)ek,k

√
2

=
∑

(i, j)∈Ω

ei, j

√
(i − 1)2 + ( j − 1)2 + (k − 1)

√
2 ×

k
2
×

n − ∑
(i, j)∈Ω

(
1
i

+
1
j

)
ei, j


AIMS Mathematics Volume 7, Issue 10, 19126–19146.
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=
k(k − 1)n

2

√
2 +

∑
(i, j)∈Ω

ei, j

{√
(i − 1)2 + ( j − 1)2 −

k(k − 1)
2

√
2
(
1
i

+
1
j

)}
.

Let h(i, j) =
√

(i − 1)2 + ( j − 1)2 −
k(k−1)

2

√
2(1

i + 1
j ). where (i, j) ∈ Ω, it is easy to see that h(k, k) = 0

and h(i, j) < 0 for (i, j) ∈ Ω, and then

SOred(F) =
k(k − 1)n

2

√
2 +

∑
(i, j)∈Ω

ei, j

{√
( j − 1)2 + (i − 1)2 −

k(k − 1)
2

√
2
(
1
i

+
1
j

)}
,

we have
SOred(F) ≤

k(k − 1)n
2

√
2.

It implies that e(i, j) = 0 for all (i, j) ∈ Ω, in the sake of reaching the maximum value of SOred(F).
Then F is a k-regular graph. Conversely, if F is a k-regular graph, then SOred(F) =

k(k−1)n
2

√
2. Recall

that F is an extremal graph which is a k-regular graph. For lower bound, it is similarly to the proof of
Theorem 1.2, so, we give the result without proof. �

Similarly to the proof of Theorem 2.4, we have a result as below.

Corollary 2.1. Let F ∈ CGk
n. Then

2
√

5 + 2(n − 3)
√

2 ≤ SO(F) ≤

√
2

2
nk2,

with left (right, respectively) equality holds if and only if F � Pn (F � Gk, respectively), where Gk

stands for a k-regular graph of order n. Recall that SO(Gk) =
√

2
2 nk2 and SO(Pn) = 2

√
5+2(n−3)

√
2.

Let CGn,m be the class of graphs with n vertices and m edges. We now consider Problem 3. Let us
calculate the minimum value of Sombor index for F ∈ CGn,m.

Theorem 2.5. Let F ∈ CGn,m.
(i)

SO(F) ≥
2
√

2m2

n
with equality if and only if F is regular with order n.
(ii) If F is triangle-free, then

SO(F) ≤ mn

with equality if and only if F � Kn.

Proof. The following fact is immediate.

Fact 1. For ω1, ω2 ∈ R
+, we have

ω1 + ω2 ≥

√
ω2

1 + ω2
2 ≥

√
2

2
(ω1 + ω2) . (2.5)

Moreover, the left (right) equality holds if ω1ω2 = 0 (ω1 = ω2).
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(i) By Lemma 2.1 and Cauchy-Schwarz inequality, it follows that

∑
viv j∈E(F)

(
dF(vi) + dF(vi)

)
=

∑
vi∈V(F)

dF(vi)2 ≥

(∑
vi∈V(F) dF(vi)

)2

n
.

The right equality holds if dF(v1) = dF(v2) = · · · = dF(vn). Using the above result with Handshaking
theorem, we have ∑

vi∈V(F)

dF(vi) = 2|E(F)| = 2m,

it admits that ∑
viv j∈E(F)

(dF(vi) + dF(v j)) =
∑

vi∈V(F)

dF(vi)2 ≥
4m2

n
, (2.6)

where equality holds if dF(v1) = dF(v2) = · · · = dF(vn). We take ω1 = dF(vi) and ω2 = dF(v j) in Fact 1,
and the right inequality (2.5) will become∑

viv j∈E(F)

√
dF(vi)2 + dF(v j)2 ≥

√
2

2

∑
viv j∈E(F)

(
dF(vi) + dF(v j)

)
≥

2
√

2m2

n

by (2.6). Moreover, the equality holds if F is a regular graph of order n.
(ii) For viv j ∈ E(F), since F is triangle-free, it follows that vi and v j cannot have a common neighbor,
and hence dF(vi) + dF(v j) ≤ n. Summing this inequality over all the edges, we have∑

viv j∈E(F)

(
dF(vi) + dF(v j)

)
≤ mn.

By Lemma 2.1, we have ∑
vi∈V(F)

dF(vi)2 =
∑

viv j∈E(F)

(
dF(vi) + dF(v j)

)
≤ mn. (2.7)

For ω1 = dF(vi) and ω2 = dF(v j), the left inequality (2.5) is transformed into∑
viv j∈E(F)

√
dF(vi)2 + dF(v j)2 ≤

∑
viv j∈E(F)

(
dF(vi) + dF(v j)

)
≤ mn

by (2.7). In addition, the equality holds if dF(vi) dF(v j) = 0 for viv j ∈ E(F), i.e., F � Kn. �

Theorem 2.6. Let F ∈ CGn,m.
(i)

SOred(F) ≥
2
√

2m2

n
− m
√

2

with equality if F is regular with |V(F)| = n.
(ii) If F is triangle-free, then

SOred(F) ≤ mn − 2m

with equality if F is isomorphic to S n.
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Proof. The proof is very similar to Theorem 2.5.

Fact 2. For τ1 ≥ 1 and τ2 ≥ 1, τ1, τ2 ∈ R
+ the following inequality holds:

τ1 + τ2 − 2 ≥
√

(τ1 − 1)2 + (τ2 − 1)2 ≥

√
2

2
(τ1 + τ2 − 2) . (2.8)

Moreover, the left (right) equality holds if (τ1 − 1)(τ2 − 1) = 0 (τ1 = τ2).

(i) For τ1 = dF(vi) and τ2 = dF(v j), according to the above result, it is easy to see that∑
viv j∈E(F)

√
(dF(vi) − 1)2 + (dF(v j) − 1)2 ≥

√
2

2

∑
viv j∈E(F)

(
dF(vi) + dF(v j) − 2

)

≥
2
√

2m2

n
− m
√

2

by (2.6). Moreover, the equality holds if and only if F is a regular graph of order n.
(ii) Since F is triangle-free, one can easily see that (dF(vi) − 1) + (dF(v j) − 1) ≤ n − 2 for viv j ∈ E(F).
Summing this inequality over all the edges, we obtain∑

viv j∈E(F)

[(
dF(vi) − 1

)
+

(
dF(v j) − 1

)]
≤ m(n − 2) = mn − 2m.

For τ1 = d(vi) and τ2 = d(v j), it follows from (3.1) that∑
viv j∈E(F)

√
(dF(vi) − 1)2 + (dF(v j) − 1)2 ≤

∑
viv j∈E(F)

(
dF(vi) + dF(v j) − 2

)
≤ mn − 2m.

Moreover, the equality holds if and only if dF(vi) = 1 or dF(v j) = 1 for viv j ∈ E(F), and dF(vi)+dF(v j) =

n for viv j ∈ E(F), that is, if and only if F � S n. �

Theorem 2.7. Let F ∈ CGn,m. Then

SO(F) ≤
√

2m(n − 1) and SOred(F) ≤
√

2m(n − 2)

with equality if F � Kn.

Proof. Since ∆ ≤ n − 1, it follows that√
dF(vi)2 + dF(v j)2 ≤

√
2(n − 1),

for viv j ∈ E(F). Similarly, √(
dF(vi) − 1

)2
+

(
dF(v j) − 1

)2
≤
√

2(n − 2),

for viv j ∈ E(F). Then

SO(F) =
∑

viv j∈E(F)

√
dF(vi)2 + dF(v j)2 ≤

∑
viv j∈E(F)

√
2(n − 1) =

√
2m(n − 1),

AIMS Mathematics Volume 7, Issue 10, 19126–19146.
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where equality holds if and only if dF(v) = n − 1 for any v ∈ V(F), F � Kn. Moreover,

SOred(F) =
∑

viv j∈E(F)

√(
dF(vi) − 1

)2
+

(
dF(v j) − 1

)2
≤
√

2m(n − 2)

with equality if and only if F � Kn. �

We now give an upper bound on SO(F) and SOred(F) in terms of m only.

Proposition 2.1. Let F be a graph with m edges. Then SO(F) ≤ m(m + 1) where equality holds if and
only if F � Kn. Moreover, SOred(F) ≤ m2 − m where equality holds if and only if F � S n.

Proof. For viv j ∈ E(F), since dF(vi) + dF(v j) ≤ m + 1, it follows that

SO(F) =
∑

viv j∈E(F)

√
dF(vi)2 + dF(v j)2 ≤

∑
viv j∈E(F)

(
dF(vi) + dF(v j)

)
≤ m (m + 1).

Moreover, the equality holds if F � Kn. Therefore,

SOred(F) =
∑

viv j∈E(F)

√(
dF(vi) − 1

)2
+

(
dF(v j) − 1

)2
≤

∑
viv j∈E(F)

(
dF(vi) + dF(v j) − 2

)
≤ m (m − 1).

The equality holds if and only if F � S n. �

Let CG`{n,m} be the set of graphs with n vertices and m edges such that dF(vi) + dF(v j) ≤ `.
Now consider the following question: to determine the maximum value of SO(F) among all

connected graphs of order n with m edges such that dF(vi) + dF(v j) ≤ `.
Using a proof similar to the Theorem 2.5, we obtain an upper bound.

Corollary 2.2. Let F ∈ CGl{n,m}. Then SO(F) ≤ m `.

For n, ρ1, ρ2, ρ3 ∈ Z
+ and

∑i=3
i=1 ρi = n − 3, U(n, ρ1, ρ2, ρ3) is a unicyclic graph obtained from a 3-

cycle C3 with V(C3) = {u, v,w} by adding ρ1, ρ2 and ρ3 pendent vertices to the vertices u, v and w,
respectively. B2,0(n, n − 4, 0, 0) stands for two copies of K3 by sharing an edge and connecting the
remaining hanging edges to a vertex on the sharing edge.

Cruz and Rada [3] characterized the extremal graphs restricted in unicyclic graphs and bicyclic
graphs, respectively.

Theorem 2.8. [3] If F is the unicyclic graph of order n (n ≥ 4), then

SO(F) ≤ SO(U(n, n − 3, 0, 0)).

Theorem 2.9. [3] If F is a bicyclic graph of order n (n ≥ 6), then

SO(F) ≤ SO(B2,0(n, n − 4, 0, 0)).

For convenience, for a subgraph H0 of Kn, denote by Kn − H0 the graph obtained by deleting all
edges of H0 from Kn. From the structure of Kn − H0, Kn − H0 = Kn−|V(H0)| ∪ H0. In particular, let
H1(n) = Kn − 2K2 and H2(n) = Kn − P3.

AIMS Mathematics Volume 7, Issue 10, 19126–19146.
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Proposition 2.2. Let F ∈ CGn,m with m =
(

n
2

)
− 2 (n ≥ 5). Then

SO(F) ≤ SO(Kn − P3),

where

SO(Kn−P3) = 2(n−3)
√

(n − 1)2 + (n − 2)2+(n−3)
√

(n − 1)2 + (n − 3)2+

(
n − 3

2

)
(n−1)

√
2+(n−2)

√
2.

Proof. Since F ∈ CGn,m for m =
(

n
2

)
− 2, it must satisfy F � H1(n) = Kn − 2K2 or F � H2(n) = Kn − P3.

For graph Kn − 2K2, there are four vertices, say v1, v2, v3 and v4, of degree n− 2. Suppose v1v2 and v3v4

denote 2K2, then NE`1,`2 = {uv|degF(u) = `1, degF(v) = `2} by the definition of Sombor index. It
follows that

S O(Kn − 2K2) =
∑

viv j∈NEn−2,n−1

(dF(vi)2 + dF(v j)2)

+
∑

viv j∈NEn−2,n−2

(dF(vi)2 + dF(v j)2)

+
∑

viv j∈NEn−1,n−1

(dF(vi)2 + dF(v j)2)

=4(n − 4)
√

(n − 2)2 + (n − 1)2 + 4
√

(n − 2)2 + (n − 2)2 +

(
n − 4

2

)
(n − 1)

√
2.

Similarly, we have

SO(Kn−P3) = 2(n−3)
√

(n − 1)2 + (n − 2)2+(n−3)
√

(n − 3)2 + (n − 1)2+

(
n − 3

2

)
(n−1)

√
2+(n−2)

√
2.

SO(Kn − P3) − SO(Kn − 2K2) =
(
2(n − 3)

√
(n − 2)2 + (n − 1)2 + (n − 3)

√
(n − 3)2 + (n − 1)2

+

(
n − 3

2

)
(n − 1)

√
2 + (n − 2)

√
2
)
−

(
4(n − 4)

√
(n − 2)2 + (n − 1)2

+ 4
√

(n − 2)2 + (n − 2)2 +

(
n − 4

2

)
(n − 1)

√
2
)

=
√

2n2 +
(√

2
√

n2 − 4n + 5 − 2
√

2n2 − 6n + 5 − 8
√

2
)

n

− 3
√

2
√

n2 − 4n + 5 + 10
√

2n2 − 6n + 5 + 10
√

2

≥
(
10
√

2 +
√

2n2 + 10
√

2n2 − 6n + 5 +
√

2n
√

n2 − 4n + 5
)

−
(
3
√

2
√

n2 − 4n + 5 + 8n
√

2 + 2n
√

2n2 − 6n + 5
)
≥ 0.

Thus, SO(F − P3) ≥ SO(F − 2K2) for n ≥ 5. �

Suppose that F is a connected graph with order n and size m. Clearly,
(

n
2

)
=

n(n−1)
2 ≥ m ≥ n − 1.

Let F(m, n) be a graph giving the maximum value of the Sombor index. Then SO(F) ≤ SO(F(m, n)) =

f (m, n). If m = n − 1, then F is a tree. By Theorem 1.2, SO(F) ≤ (n − 1)
√

n2 − 2n + 2 where equality
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holds if and only if F � S n, where S n is the star of order n. Naturally, f (n−1, n) = (n−1)
√

n2 − 2n + 2
and F(n − 1, n) = S n.

If m =
(

n
2

)
=

n(n−1)
2 , then F is a complete graph. By Theorem 1.1, SO(F) ≤ n(n−1)2

√
2

, where the equality

holds if and only if F � Kn. Then f (
(

n
2

)
, n) =

n(n−1)2
√

2
and F(

(
n
2

)
, n) = Kn.

If m =
(

n
2

)
− 1 = n2−n−2

2 , then F is Kn − K2, and hence

SO(Kn − K2) = 2(n − 2)
√

(n − 1)2 + (n − 2)2 +

(
n − 1

2

)
(n − 1)

√
2.

So,

f (
(
n
2

)
− 1, n) = 2(n − 2)

√
(n − 1)2 + (n − 2)2 +

(
n − 1

2

)
(n − 1)

√
2

and

G(
(
n
2

)
, n) = Kn − K2.

By Theorem 2.2,

f (
(
n
2

)
−2, n) = 2(n−3)

√
(n − 2)2 + (n − 1)2 +(n−3)

√
(n − 3)2 + (n − 1)2 +

(
n − 3

2

)
(n−1)

√
2+(n−2)

√
2

and

F(
(
n
2

)
− 2, n) = Kn − P3.

We now consider the general situation, for any integer n,m, n − 1 ≤ m ≤
(

n
2

)
.

Algorithm A1, which gives a graph F(m, n):
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Algorithm A1 Extremal Graphs algorithm
1: procedure Extremal Graph(m, n) . m = |E(F)| and n = |V(F)|
2: V(F)← {v1, v2, . . . , vn}

3: E0 ← ∅ . E(F)0 := E0

4: f1 ← n
5: r ← 1
6: t ← 2
7: ` ← 0
8: while r ≤ f1 do . edge condition
9: while t ≤ f1 and ` ≤ m do

10: E(F)r ← E(F)r−1 ∪ {vrvt} . adding edge
11: t ← t + 1
12: ` ← ` + 1
13: end while
14: r ← r + 1
15: t ← r + 1
16: if ` ≥ m then break.
17: end if
18: end while
19: return E(F) . F = (V(F), E(F))
20: end procedure

Let 1 ≤ p ≤ n − 1, sp =
∑p

i=1 (n − i), k = min{p | sp ≤ m < sp+1}, t = m − sk. Then

f (m, n) =

(
k
2

)
(n − 1)

√
2 + (n − k − t − 1)k

√
(n − 1)2 + k2 + kt

√
(n − 1)2 + (k + 1)2

+ t
√

(k + 1)2 + (k + t)2 + k
√

(n − 1)2 + (k + t)2.

Based on the theorem above, we propose the following problem.

Problem 4. Let F ∈ CGn,m be a connected graph. Then

SO(F) ≤ f (m, n)

with equality if and only if F � F(m, n), where F(m, n) is given by Algorithm A1, that is, SO(F(m, n)) =

f (m, n).

3. Relation between SO and the others indices

The average Sombor index is defined as follows:

ASO(F) =
∑

uv∈E(F)

√(
du −

2m
n

)2
+

(
dv −

2m
n

)2
.

The average Sombor index is introduced by Gutman [16] in 2021, it is a variant of Sombor index,
which is a better measure of the chemical properties of molecular compounds.
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Theorem 3.1. Let K`1,`2 be a complete bipartite graph of order n. Then we have

ASO(F) ≤ max
{
f (t1), f (t2)

}
,

where

f (x) = x(n − x)

√(
x −

2x(n − x)
n

)2

+

(
n − x −

2x(n − x)
n

)2

, for x = t1or t2,

t1 =

1
4

2n −

√
1
2

(√
17 − 1

)
n


 and t2 =

1
4

2n −

√
1
2

(√
17 − 1

)
n


 .

Proof. For K`1,`2 (n = `1 + `2, `1 ≤ `2), we have m = `1 `2 = `1 (n − `1) and

ASO(K`1,`2) = `1`2

√(
`1 −

2m
n

)2
+

(
`2 −

2m
n

)2

= `1(n − `1)

√(
`1 −

2`1(n − `1)
n

)2

+

(
n − `1 −

2`1(n − `1)
n

)2

, 1 ≤ `1 ≤
⌊n
2

⌋
.

Consider the following function

f (x) = x(n − x)

√(
x −

2x(n − x)
n

)2

+

(
n − x −

2x(n − x)
n

)2

for 1 ≤ x ≤
⌊n
2

⌋
.

Then find the derivative of function f (x),

f ′(x) =

2
[
x(n − x)

( x − 2n
x

+
2x
n

)(n2 + 2x2 − 3xn
n

)
+

( x − n
n

+
2x
n

)(2x2 − nx
n

)]
√(

n2 + 2x2 − 3xn
n

)2

+

(
2x2 − nx

n

)2

+ (n − x)

√(
n2 + 2x2 − 3xn

n

)2

+

(
2x2 − nx

n

)2

− x

√(
n2 + 2x2 − 3xn

n

)2

+

(
2x2 − nx

n

)2

.

Set f ′(x) = 0, the set of real roots of this equation is as showing below:n
4

2 −
√

1
2

(√
17 − 1

) , n
4

2 +

√
1
2

(√
17 − 1

)
 .

One can easily check that for 1 ≤ x ≤ n
4

(
2 −

√
1
2

(√
17 − 1

))
, it follows that f ′(x) ≥ 0 and

for n
4

(
2 −

√
1
2

(√
17 − 1

))
≤ x ≤ bn

2c, it follows that f ′(x) ≤ 0. So, we know f (x) is an increasing

function on 1 ≤ x ≤ n
4

(
2 −

√
1
2

(√
17 − 1

))
and a decreasing function on n

4

(
2 −

√
1
2

(√
17 − 1

))
≤

x ≤ bn
2c.
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Hence,

ASO(K`1,`2) = f (`1) ≤ max{ f (t1), f (t2)},

where t1 =

⌊
n
4

(
2 −

√
1
2

(√
17 − 1

))⌋
and t2 =

⌈
n
4

(
2 −

√
1
2

(√
17 − 1

))⌉
. �

To illustrate the above Theorem 3.1, we give some extremal graphs for 1 ≤ n ≤ 1000. For
n ∈ {2, 3, 4, 5, 6, 7}, the extremal graph is K1,n−1 � S 1,n−1 and S 1,k is a star graph. For n ≥ 8 and
integers r, t with 0 ≤ r ≤ 15, if n − 8 = 16t + r, then the extremal graph K`,n−` satisfies

` =


3t + 2, if 0 ≤ r ≤ 5,
3t + 3, if 6 ≤ r ≤ 10,
3t + 4, if 11 ≤ r ≤ 15.

Kulli [18] proposed the first Banhatti-Sombor index of a connected graph F which is defined as

BSO(F) =
∑

uv∈E(F)

√
1

d2
F(u)

+
1

d2
F(v)

,

which is also inspired by Sombor indices.

Theorem 3.2. Let F be a connected graph. Then

1
∆2 S O(F) ≤ BS O(F) ≤

1
δ2 S O(F)

with equality if and only if F is a regular graph.

Proof. Since δ2 ≤ dF(u)dF(v) ≤ ∆2, we have

∑
uv∈E(F)

√
1

d2
F(u)

+
1

d2
F(v)

≤ max
{

1
dF(u)dF(v)

|uv ∈ E(F)
} ∑

uv∈E(F)

√
d2

F(u) + d2
F(v)

≤
1
δ2

∑
uv∈E(F)

√
d2

F(u) + d2
F(v)

and

∑
uv∈E(F)

√
1

d2
F(u)

+
1

d2
F(v)

≥ min
{

1
dF(u)dF(v)

|uv ∈ E(F)
} ∑

uv∈E(F)

√
d2

F(u) + d2
F(v)

≥
1
∆2

∑
uv∈E(F)

√
d2

F(u) + d2
F(v).

Then
δ2 BS O(F) ≤ S O(F) ≤ ∆2 BS O(F).

Moreover, both equalities hold if and only if F is a regular graph. �
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Inspired by the definations of the Zagreb indices with applications, Kulli [20] introduced the first
Gourava index defined as

GO1(F) =
∑

uv∈E(F)

[dF(u) + dF(v) + dF(u)dF(v)],

for the molecular graph F, and the Second Gourava index [19]

GO2(F) =
∑

uv∈E(F)

[dF(u) + dF(v)] dF(u)dF(v),

for the molecular graph F. The forgotten topological index is defined as [17]

F1(F) =
∑

uv∈E(F)

(
dF(u)2 + dF(v)2

)
=

∑
u∈V(F)

dF(u)3.

We now give an upper bound on GO1(F) and characterize the extremal graphs.

Theorem 3.3. Let F be a connected graph. Then GO1(F) ≤ F1(F) with equality if and only if F � Pn

or F � Cn.

Proof. Let uv ∈ E(F). Without loss of generality, we can assume that dF(u) ≥ dF(v). Also let

A = dF(u)2 + dF(v)2 −
[
dF(u) + dF(v) + dF(u)dF(v)

]
=

(
dF(u) − dF(v)

)2
+

(
dF(u) − 1

) (
dF(v) − 1

)
− 1. (3.1)

If
(
dF(u), dF(v)

)
∈ {(2, 1), (2, 2)}, then from (3.1), A = 0. Otherwise,

(
dF(u), dF(v)

)
< {(2, 1), (2, 2)}.

Since F is connected, dF(u) ≥ 3. We consider the following two cases:
Case 1. dF(u) > dF(v).

If dF(u) ≥ dF(v) + 2, then we have(
dF(u) − dF(v)

)2
+

(
dF(u) − 1

) (
dF(v) − 1

)
≥ 4 and hence A > 0.

Otherwise, dF(u) = dF(v) + 1. Therefore dF(u) ≥ 3 and dF(v) ≥ 2. Thus we obtain(
dF(u) − dF(v)

)2
+

(
dF(u) − 1

) (
dF(v) − 1

)
≥ 3 and hence A > 0.

Case 2. dF(u) = dF(v) ≥ 3.
Then

(
dF(u) − 1

) (
dF(v) − 1

)
≥ 4 and hence A > 0.

Thus we conclude that A ≥ 0 with equality if and only if
(
dF(u), dF(v)

)
∈ {(2, 1), (2, 2)}. Hence

GO1(F) =
∑

uv∈E(F)

[dF(u) + dF(v) + dF(u)dF(v)] ≤
∑

uv∈E(F)

(
dF(u)2 + dF(v)2

)
=

∑
u∈V(F)

dF(u)3 = F1(F).

Moreover, the above equality holds if and only if F � Pn or F � Cn. �

Theorem 3.4. Let F be a connected graph. Then

GO2(F) ≥
δ

m
S O(F)2 (3.2)

with equality if and only if F is a regular graph.
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Proof. By Cauchy-Schwarz inequality, we obtain ∑
uv∈E(F)

√
d2

F(u) + d2
F(v)


2

≤ m
∑

uv∈E(F)

(
dF(u)2 + dF(v)2

)
with equality if and only if d2

F(u) + d2
F(v) = d2

F(w) + d2
F(z) for any edges uv ∈ E(F) and wz ∈ E(F).

Using the above result, we obtain

GO2(F) =
∑

uv∈E(F)

(
dF(u) + dF(v)

)
dF(u)dF(v)

≥ δ
∑

uv∈E(F)

(
dF(u)2 + dF(v)2

)
(3.3)

≥
δ

m

 ∑
uv∈E(F)

√
d2

F(u) + d2
F(v)


2

=
δ

m
S O(F)2.

Moreover, the equality holds in (3.2) if and only if dF(u) = δ for all u ∈ V(F). Hence the equality
holds in (3.2) if and only if F is a regular graph. �

Theorem 3.5. Let F be a connected graph. Then

GO2(F) ≥
M1(F)2

n
(3.4)

with equality if and only if F is a bipartite semiregular graph or F is a regular graph.

Proof. Since
M1(F) =

∑
uv∈E(F)

(
dF(u) + dF(v)

)
and ∑

uv∈E(F)

dF(u) + dF(v)
dF(u) dF(v)

=
∑

uv∈E(F)

(
1

dF(u)
+

1
dF(v)

)
=

∑
u∈V(F)

dF(u)
1

dF(u)
= n

by weighted arithmetic-harmonic-mean inequality, we obtain∑
uv∈E(F)

(
dF(u) + dF(v)

)
dF(u)dF(v)∑

uv∈E(F)

(
dF(u) + dF(v)

) ≥

∑
uv∈E(F)

(
dF(u) + dF(v)

)
∑

uv∈E(F)

dF(u) + dF(v)
dF(u) dF(v)

,

that is,

GO2(F) ≥
M1(F)2

n
.

Moreover, the equality holds if and only if dF(u)dF(v) = dF(w)dF(x) for any edges uv ∈ E(F) and
wx ∈ E(F), that is, if and only if the bipartite semiregular graph or the regular graph. �
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Kulli [19] introduced the sum connectivity Gourava index and the product connectivity Gourava
index for a molecular graph F, which is defined as

S GO1(F) =
∑

uv∈E(F)

1
√

(dF(u) + dF(v)) + (dF(u)dF(v))

and

S GO2(F) =
∑

uv∈E(F)

1
√

(dF(u) + dF(v))(dF(u)dF(v))
,

respectively.

Theorem 3.6. Let F be a connected graph. Then

S O(F) ≥

√
2

2n − 2
m2

S GO2(F)

with equality if and only if F is a complete graph.

Proof. By inequality between arithmetic and harmonic means for any number
√

dF(u)dF(v) where
uv ∈ E(F), it follows that

√
2n − 2S O(F) =

√
2n − 2

∑
uv∈E(G)

√
d2

F(u) + d2
F(v)

≥
√

2(2n − 2)
∑

uv∈E(F)

√
dF(u)dG(v)

≥

√
2(2n − 2)m2∑

uv∈E(G)
1

√
dF (u)dF (v)

≥

√
2m2∑

uv∈E(G)
1

√
dF (u)dG(v)

1
√

(2n−2)

≥

√
2m2∑

uv∈E(G)
1

√
dF (u)dF (v)

1
√

dF (u)+dF (v)

≥

√
2m2∑

uv∈E(F)
1

√
dF (u)dF (v)dF (u)+dF (v)

≥

√
2m2

S GO2(F)
.

Then

S O(F) ≥

√
2

2n − 2
m2

S GO2(F)

with equality if and only if dF(u) = dF(v) and dF(u) + dF(v) = 2n − 2. �

Using the proof strategy for Theorem 3.6, we have the following similar result.
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Theorem 3.7. Let F be a connected triangle-free graph. Then

S O(F) ≥

√
2

n − 1
m2

S GO2(F)
.

The eccentricity εF(v) of a vertex v ∈ V(F) is the distance between v and a vertex farthest from v
in F. The eccentric connectivity index was introduced by Sharma, Goswami and Madan [23] as

ζe(F) =
∑

v∈V(F)

dF(v) εF(v) =
∑

uv∈E(F)

(
εF(u) + εF(v)

)
.

For its basic mathematical properties, including lower and upper bounds, see [5, 9–11, 14] and the
references cited therein. The sum of eccentricities of all vertices of F is called the total eccentricity of
F [4] and denoted by ζ(F), ζ(F) =

∑
v∈V(F) εF(v).

Lemma 3.1. [15] Let F be a nontrivial connected graph of order n. For each vertex v ∈ V(F),
dF(v) ≤ n − εF(v) with equality if and only if F � P4 or F � Kn − sK2 (0 ≤ s ≤ b n

2c), where Kn − sK2

denotes the graph obtained from the complete graph by removing s independent edges.

Theorem 3.8. Let F be a connected graph of order n with m edges and minimum degree δ. Then

S O(F) ≤ 2nm − ζe(F) − (2 −
√

2) m δ (3.5)

with equality if and only if F � P4 or F is isomorphic to an (n−2)-regular graph (n is even) or F � Kn.

Proof. First, we have to prove that for any edge uv ∈ E(F)
(
dF(u) ≥ dF(v)

)
,

dF(u) + (
√

2 − 1) dF(v) ≥
√

dF(u)2 + dF(v)2, (3.6)

that is,

dF(u)2 + (3 − 2
√

2) dF(v)2 + 2 (
√

2 − 1) dF(u) dF(v) ≥ dF(u)2 + dF(v)2,

that is, (
dF(u) − dF(v)

)
dF(v) ≥ 0,

which is always true. Moreover, the equality holds in (3.6) if and only if dF(u) = dF(v). Now,∑
uv∈E(F)

dF(v) ≥ m δ (3.7)

with equality if and only if dF(v) = δ for every edge uv ∈ E(F). Using the above results with
Lemma 3.1, we obtain

S O(F) =
∑

uv∈E(F)

√
d2

F(u) + d2
F(v) ≤

∑
uv∈E(F)

(
dF(u) + (

√
2 − 1) dF(v)

)
=

∑
uv∈E(F)

(
dF(u) + dF(v)

)
− (2 −

√
2)

∑
uv∈E(F)

dF(v)
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≤
∑

v∈V(F)

d2
F(v) − (2 −

√
2) m δ

≤
∑

v∈V(F)

dF(v)
(
n − εF(v)

)
− (2 −

√
2) m δ (3.8)

= n
∑

v∈V(F)

dF(v) −
∑

v∈v(F)

dF(v) εF(v) − (2 −
√

2) m δ

= 2nm − ζe(F) − (2 −
√

2) m δ.

Both (3.6) and (3.7) equalities hold if and only if dF(u) = dF(v) = δ for any edge uv ∈ E(F). From
the equality in (3.8), we have F � P4 or F � Kn − sK2 (0 ≤ s ≤ bn

2c) by Lemma 3.1. Hence the
equality holds in (3.5) if and only if F � P4 or F is isomorphic to an (n − 2)-regular graph (n is even)
or F � Kn. �

Theorem 3.9. Let F be a connected graph of order n with size m and maximum degree ∆. Then

S O(F) ≤
√

2m2n∆ − m∆ζe(F). (3.9)

The above equality holds if and only if F � P4 or F is isomorphic to an (n − 2)-regular graph (n is
even) or F � Kn.

Proof. By Cauchy-Schwarz inequality, we obtain

S O2(F) =

 ∑
uv∈E(F)

√
d2

F(u) + d2
F(v)


2

≤ m
∑

uv∈E(F)

(
d2

F(u) + d2
F(v)

)
(3.10)

= m
∑

v∈v(F)

d3
F(v) ≤ m

∑
v∈v(F)

d2
F(v)

(
n − εF(v)

)
(3.11)

= m
∑

v∈v(F)

dF(v)
(
dF(v)n − dF(v) εF(v)

)
≤ m∆

∑
v∈v(F)

(
dF(v)n − dF(v) εF(v)

)
(3.12)

= m∆

n ∑
v∈v(F)

dF(v) −
∑

v∈v(F)

dF(v) εF(v)


= m∆

(
2mn − ζe(F)

)
.

The first part of the proof is done. �

Suppose equality holds in (3.9). Then all the inequalities in the above argument occur as equalities.
From equality in (3.10), we obtain d2

F(u) + d2
F(v) = d2

F(w) + d2
F(x) for any two edges uv ∈ E(F) and
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wx ∈ E(F), that is, F is a semiregular graph as F is connected. From the equality in (3.11), we have
F � P4 or F � Kn − sK2 (0 ≤ s ≤ bn

2c), by Lemma 3.1. From equality in (3.12), we obtain dF(v) = ∆

for all v ∈ V(F) as dF(v)n > dF(v) εF(v) with connected graph F. From these results, we obtain F � P4

or F is isomorphic to an (n − 2)-regular graph (n is even) or F � Kn.
Conversely, let F � P4. Then m = n = 4, ∆ = 2, ζe(F) = 16 and hence

S O(F) = 8
√

2 =

√
m∆

(
2mn − ζe(F)

)
.

Let F be a graph which is isomorphic to an (n − 2)-regular graph (n is even). Then 2m = n(n − 2),
∆ = n − 2 and ζe(F) = 2n (n − 2). Thus we have

S O(F) =
n(n − 2)2

√
2

=

√
m∆

(
2mn − ζe(F)

)
.

Let F � Kn. Then 2m = n(n − 1), ∆ = n − 1 and ζe(F) = n (n − 1). Thus we have

S O(F) =
n(n − 1)2

√
2

=

√
m∆

(
2mn − ζe(F)

)
.

By the same way, we have the following result and we omit the details proof of it.

Theorem 3.10. Let F be a connected graph of order n. Then

S O(F) ≤ ∆
(
n2 − ζ(F)

)
− (2 −

√
2) m δ

with equality if and only if F � P4 or F is isomorphic to an (n−2)-regular graph (n is even) or F � Kn.

Proof. Since dF(v) ≤ ∆ for all v ∈ V(F), from (3.8), we obtain the required result. Moreover, the
equality holds if and only if F � P4 or F is isomorphic to an (n − 2)-regular graph (n is even) or
F � Kn. �

4. Conclusions

In this paper, we studied some extremal values on the (reduced) Sombor index of molecular graphs.
Furthermore, some relations among the chemistry indexes are presented, in particular, we obtained
relationship between Sombor index and the other topological indices, and characterized the extreme
graphs. Specifically, we obtained inequalities for Sombor index relating other indices, i.e., the first
Banhatti-Sombor index, the first Gourava index, the Second Gourava index, the Sum Connectivity
Gourava index, Product Connectivity Gourava index, and Eccentric Connectivity index.
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