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Abstract: In the present article, a mesh-free technique has been presented to study the behavior
of nonlinear singularly perturbed Fisher’s problem, which exhibits the traveling wave propagation
phenomenon. Some narrow regions adjacent to the left and right lateral boundary may possess rapid
variations when the singular perturbation parameter ε → 0, which are not captured nicely by the
traditional numerical schemes. In the current work, a robust numerical strategy is proposed, which
comprises the implicit Crank-Nicolson scheme to discretize the time derivative term and the element-
free Galerkin (EFG) scheme to discretize the spatial derivative terms with nodes densely distributed
in the boundary layer regions. The stability of the semi-discrete scheme has been analyzed, and the
rate of convergence is shown to be O(τ2). The nonlinear nature of the considered problem has been
tackled by employing the quasilinearization process, and its convergence rate has been discussed. Some
numerical experiments have been performed to verify the computational uniformity and robustness of
the suggested method, rate of convergence as well L∞ errors have been presented, which depicts the
effectiveness of the proposed method.
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1. Introduction

In 1937, Fisher [10] examined the contrast of linear diffusion and nonlinear reaction terms and
proposed the Fisher equation as a model for the propagation of genes in a habitat with an advantageous
selection intensity. The present study deals with one such kind of Eq (1.1) known as time-dependent
singularly perturbed Fisher problem given by

∂y(x, t)
∂t

= ε∇2y(x, t) + βy(x, t)(1 − y(x, t)), (x, t) ∈ Ω ≡ Ωx ×Ωt ≡ (0, 1) × (0,T ], (1.1)
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with initial condition

y(x, 0) = y0(x), x ∈ Ω̄x, (1.2)

and boundary conditions as

y(0, t) = f (t), y(1, t) = g(t), t ∈ Ω̄t, (1.3)

where y(x, t) symbolizes the occurrence of traveling wave, the parameter β is non-negative and ∂Ω =

Ω̄\Ω is the boundary of the domain. In Eq (1.1), ε is known as singular perturbation parameter
satisfying 0 < ε � 1. The problem (1.1) becomes singularly perturbed in the case ε → 0.
The considered Fisher’s problem is widely encountered in chemical kinetics [11] and population
dynamics [12] which include problems such as nonlinear evolution of a population in habitat, flame
propagation in nuclear reactor theory, the branching Brownian motion process [6] etc. Due to the
extensive range of applications, researchers have been interested in Fisher’s problem’s analytical and
numerical solutions. Different analytical and numerical approaches have been developed to solve
Fisher’s equation.

Wazwaz and Gorguis [25] developed an analytical solution of generalized Fisher’s equation by
using the Adomian decomposition methodology. Rosa et al. [20] presented an application of Lie point
symmetries for generalized Fisher equation modeling the tumor progression in biological interests.
Analytical solutions have been obtained for the growth of tumors at their interfaces which represent
motility through white and gray matter in the brain. A numerical analysis of the reaction-diffusion
problem has been carried out by Al-Khaled [2] by employing the sinc collection approach. Ablowitz
and Zeppetella [1] derived an explicit solution of the traveling wave equation and determined the exact
solution for a particular value of wave speed c = 5/

√
6. Thenceforth, Wang [24] obtained exact and

explicit solitary wave solutions of generalized Fisher’s equation by introducing a mathematical method
based on the nonlinear transformation. Analytical representations of various traveling wave solutions
for the Fisher’s equation have been derived by Brazhnik and Tyson [22] in two spatial dimensions.
Feng and Li [9] obtained complex traveling wave solutions by reducing Fisher’s equation to a first-
order integrable ordinary differential equation using the first integral method. Mittal and Jiwari [17]
adopted the differential quadrature method to study the numerical solutions of Fisher’s equation.
A pseudospectral technique was presented by Olmos and Shizgal [18], later by Balyan et al. [4].
Carey and Shen [7] developed a least-squares finite-element formulation for solving Fisher’s equation.
Petrov-Galerkin finite element method has been presented by Tang and Weber [21] to deal with Fisher’s
problem. Khader and Saad [13] developed a numerical technique for solving the fractional Fisher
equation, which represents the problem of biological invasion. The spectral collocation technique
based upon Chebyshev approximations was employed to reduce the considered problem into a system
of ordinary differential equations, which were further solved by the finite difference method. Radial
basis functions based meshfree approach for solving extended Fisher-Kolmogorov model was studied
by Kumar et al. [14]. Mickens [16] formulated a finite-difference scheme according to the nonstandard
modeling rules to deal with Fisher’s equation. Atangana [3] applied fractional derivatives, introduced
by Caputo and Fabrizio, to the nonlinear Fisher’s equation and derived a unique solution using the
Sumudu decomposition iterative method.

Even though Fisher’s problem has vast applications in diverse areas of science and engineering, only
a few researchers have paid attention to the solution strategies for Fisher’s problem. More precisely,
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in the singularly perturbed case of the problem, i.e., for ε � 1, hardly any researcher has proposed
any numerical scheme so far. Dag and Ersoy [8] suggested a collocation scheme for solving Fisher’s
equation with a small value of the diffusion coefficient ε. Full discretization of the problem is achieved
by employing the Crank-Nicolson method in time and the exponential B-spline process in a spatial
variable. Uzunca et al. [23] developed a discontinuous Galerkin approach with a moving mesh strategy
for solving nonlinear Fisher’s equation with traveling wave solutions. Numerical results demonstrate
different natures of traveling waves for ε → 0.

Since the conventional numerical techniques are not perfectly capable of approximating the
solutions of singularly perturbed problems (SPPs) in the boundary layer region due to the singularly
perturbed nature of the problem, we need to follow some specific approach to capture these boundary
layers when ε → 0. The primary goal of this work is to provide a robust and efficient numerical
strategy known as the element-free Galerkin (EFG) technique [15, 26] for capturing the sharpness of
solutions. So far, no mesh-free methods have been employed to solve singularly perturbed Fisher’s
equation. The non-requirement of node connectivity is a vital feature of the proposed technique, due
to which node particles can be added or deleted without any difficulty. As a result, rapid and effective
refining of domain discretization can be achieved. Non-uniformly distributed nodes that condense in
the boundary layer area have been developed in the paper to accomplish this advantage. This feature
makes the EFG technique more adaptive than the finite element method (FEM), particularly for SPPs.
On the other hand, the EFG technique has a few downsides compared to FEM. The EFG procedure
is computationally expensive than the FEM method and has a more complicated implementation
algorithm. The proposed scheme employs the moving least squares (MLS) approximation for
generating shape functions. The methodology is based on the global weak form, and the numerical
integrations are computed by employing the Gauss quadrature background cells. The implicit Crank-
Nicolson method has been used to discretization the time derivative before the spatial discretization.
The quasilinearization process proposed by Bellman and Kalaba [5] has been invoked to deal with
the nonlinearity existing in the problem. Since the MLS shape functions do not fulfill the Kronecker
delta function property, the Lagrange multipliers method is utilized to impose the essential boundary
conditions.

The work presented in the paper is organized as follows. The temporal discretizaton using Crank-
Nicolson scheme has been discussed in Section 2. Stability and convergence of the time discrete
approach have been investigated in Section 3. Section 4 deals with the quasilinearization process and
its rate of convergence. The EFG approach has been discussed in detail in Section 5. Section 6 contains
the numerical examples followed by conclusion and bibliography.

2. Time semi-discretization

2.1. Notations and preliminaries

In this subsection, we define the functional spaces along with the standard norms and inner products
which have been utilized in the next Sections.

Consider the H1-space defined by

H1(Ω) = {ϑ ∈ L2(Ω),∇ϑ ∈ L2(Ω)},
H1

0(Ω) = {ϑ ∈ H1(Ω), ϑ|∂Ω = 0},
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where ∇ϑ = ∂ϑ
∂x and L2(Ω) is the space of all square integrable functions in Ω. The inner product of

L2(Ω) and H1(Ω) are defined respectively as

< ϑ, ξ >=

∫
Ω

ϑξdΩ, < ϑ, ξ >1=< ϑ, ξ > + < ∇ϑ,∇ξ > .

The L2- and H1-norms are defined respectively as

‖ϑ‖ =< ϑ, ϑ >1/2, ‖ϑ‖1 =< ϑ, ϑ >1/2
1 , |ϑ|1 =< ∇ϑ,∇ϑ >1/2 .

2.2. Semi-discrete scheme

We define tn = nτ, n = 0, 1, ...,N, where τ = T/N is the step-size of the time variable. Next, we
discretize the time derivative with implicit Crank-Nicolson scheme for problem (1.1) as follows

y(n+1) − y(n)

τ
= ε
∇2y(n+1) + ∇2y(n)

2
+ β

y(n+1) + y(n)

2
− β

(y2)(n+1) + (y2)(n)

2
, n = 0, 1, ...,N, (2.1)

where ∇2y(n+1) =
∂2y(n+1)

∂x2 . Simplifying equation (2.1) results in

y(n+1) −
τε

2
∇2y(n+1) −

τβ

2
y(n+1) +

τβ

2
(y2)n+1 = y(n) +

τε

2
∇2y(n) +

τβ

2
y(n) −

τβ

2
(y2)(n), (2.2)

where y(n+1) is the solution of the above differential equation (2.2) at (n + 1)th time level.

3. Stability and convergence of the time-discrete scheme

Lemma 3.1. Let y ∈ C(Ω) and Ω ⊂ R2 be a bounded closed set. Then the polynomial function F(y)
satisfies the inequality

|F(y)| ≤ M.

Proof. According to the assumption, we have min{y : y ∈ C(Ω)} ≤ y ≤ max{y : y ∈ C(Ω)}, and thus ∃
a positive integer M such that

max
y∈C(Ω)

|y| ≤ M.

This proves the result. �

Theorem 3.1. Suppose y(n+1) ∈ H1(Ω). Then the time discrete scheme (2.2) is unconditionally stable.

Proof. The variational weak formulation of Eq (2.2) is given by

< y(n+1), υ > +
τε

2
< ∇y(n+1),∇υ > −

τβ

2
< y(n+1), υ > +

τβ

2
< (y2)(n+1), υ >=< y(n), υ >

−
τε

2
< ∇y(n),∇υ > +

τβ

2
< y(n), υ > −

τβ

2
< (y2)(n), υ >, ∀υ ∈ H1(Ω) (3.1)
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Setting υ = y(n+1) in above Eq (3.1) yields

< y(n+1), y(n+1) > +
τε

2
< ∇y(n+1),∇y(n+1) > −

τβ

2
< y(n+1), y(n+1) > +

τβ

2
< (y2)(n+1), y(n+1) >

=< yn, y(n+1) > −
τε

2
< ∇y(n),∇y(n+1) > +

τβ

2
< y(n), y(n+1) > −

τβ

2
< (y2)(n), y(n+1) > . (3.2)

Taking L2-norm over Ω and using the Cauchy-Schwarz inequality, we get∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
+
τε

2

∥∥∥∥∇y(n+1)
∥∥∥∥2

L2(Ω)
−
τβ

2

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
≤

∥∥∥∥y(n)
∥∥∥∥

L2(Ω)
.
∥∥∥∥y(n+1)

∥∥∥∥
L2(Ω)

+
τε

2

∥∥∥∥∇y(n)
∥∥∥∥

L2(Ω)
.
∥∥∥∥∇y(n+1)

∥∥∥∥
L2(Ω)

+
τβ

2

∥∥∥∥y(n)
∥∥∥∥

L2(Ω)
.
∥∥∥∥y(n+1)

∥∥∥∥
L2(Ω)

+
τβ

2

∥∥∥∥(y2)(n+1)
∥∥∥∥

L2(Ω)
.
∥∥∥∥y(n+1)

∥∥∥∥
L2(Ω)

+
τβ

2

∥∥∥∥(y2)(n)
∥∥∥∥

L2(Ω)
.
∥∥∥∥y(n+1)

∥∥∥∥
L2(Ω)

. (3.3)

Taking F(y)=y and utilizing the Lemma 3.1 outputs∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
+
τε

2

∥∥∥∥∇y(n+1)
∥∥∥∥2

L2(Ω)
−
τβ

2

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
≤

∥∥∥∥y(n)
∥∥∥∥

L2(Ω)

∥∥∥∥y(n+1)
∥∥∥∥

L2(Ω)
+
τε

2

∥∥∥∥∇y(n)
∥∥∥∥

L2(Ω)

∥∥∥∥∇y(n+1)
∥∥∥∥

L2(Ω)

+
τβ

2

∥∥∥∥y(n)
∥∥∥∥

L2(Ω)

∥∥∥∥y(n+1)
∥∥∥∥

L2(Ω)
+
τβ

2
M

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)

+
τβ

2
M

∥∥∥∥y(n)
∥∥∥∥

L2(Ω)

∥∥∥∥y(n+1)
∥∥∥∥

L2(Ω)
.

Simplifying the above relation, we get

1
2

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇y(n+1)
∥∥∥∥2

L2(Ω)
≤

1
2

∥∥∥∥y(n)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇y(n)
∥∥∥∥2

L2(Ω)
+ (1 + M)

τβ

4

∥∥∥∥y(n)
∥∥∥∥2

L2(Ω)

+ (1 + M)
3τβ
4

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
. (3.4)

Next, we define the following weighted Hilbert norm∥∥∥∥y(n+1)
∥∥∥∥2

Hw(Ω)
=

1
2

∥∥∥∥y(n+1)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇y(n+1)
∥∥∥∥2

L2(Ω)
.

Then Eq (3.4) can be rewritten as∥∥∥∥y(n+1)
∥∥∥∥2

Hw(Ω)
≤

∥∥∥∥y(n)
∥∥∥∥2

Hw(Ω)
+ (1 + M)

τβ

4

∥∥∥∥y(n)
∥∥∥∥2

Hw(Ω)
+ (1 + M)

3τβ
4

∥∥∥∥y(n+1)
∥∥∥∥2

Hw(Ω)
. (3.5)

Taking summation for i from 0 to n − 1,

n−1∑
i=0

∥∥∥∥y(i+1)
∥∥∥∥2

Hw(Ω)
≤

n−1∑
i=0

∥∥∥∥y(i)
∥∥∥∥2

Hw(Ω)
+ (1 + M)

τβ

4

n−1∑
i=0

∥∥∥∥y(i)
∥∥∥∥2

Hw(Ω)
+ (1 + M)

3τβ
4

n−1∑
i=0

∥∥∥∥y(i+1)
∥∥∥∥2

Hw(Ω)
,

or equivalently ∥∥∥∥y(n)
∥∥∥∥2

Hw(Ω)
≤

∥∥∥∥y(0)
∥∥∥∥2

Hw(Ω)
+ (1 + M)τβ

n−1∑
i=0

∥∥∥∥y(i+1)
∥∥∥∥2

Hw(Ω)
.
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Using Gronwall lemma, we get∥∥∥∥y(n)
∥∥∥∥2

Hw(Ω)
≤

∥∥∥∥y(0)
∥∥∥∥2

Hw(Ω)
exp

(
(1 + M)nτβ

)
≤

∥∥∥∥y(0)
∥∥∥∥2

Hw(Ω)
exp

(
(1 + M)Tβ

)
≤ C

∥∥∥∥y(0)
∥∥∥∥2

Hw(Ω)
.

Thus, the numerical scheme (2.2) is unconditionally stable. �

Theorem 3.2. The discrete scheme (2.2) is convergent with order of convergence O(τ2).

Proof. Let y(n) and Y (n) be the exact and computed solutions of the temporal discrete scheme (2.2)
respectively.

Then, we have

< y(n+1), υ > +
τε

2
< ∇y(n+1),∇υ > −

τβ

2
< y(n+1), υ > +

τβ

2
< (y2)(n+1), υ >=< y(n), υ >

−
τε

2
< ∇y(n),∇υ > +

τβ

2
< y(n), υ > −

τβ

2
< (y2)(n), υ > +τ < Rτ, υ >, (3.6)

where the residual R satisfies |Rτ| ≤ Cτ2 and C is a positive constant.
Since Y (n) is approximate solution, hence

< Y (n+1), υ > +
τε

2
< ∇Y (n+1),∇υ > −

τβ

2
< Y (n+1), υ > +

τβ

2
< (Y2)(n+1), υ >=< Y (n), υ >

−
τε

2
< ∇Y (n),∇υ > +

τβ

2
< Y (n), υ > −

τβ

2
< (Y2)(n), υ > . (3.7)

Subtracting Eq (3.7) from Eq (3.6) results in

< L(n+1), υ > +
τε

2
< ∇L(n+1),∇υ > −

τβ

2
< L(n+1), υ > +

τβ

2
< (y2)(n+1) − (Y2)(n+1), υ >

=< L(n), υ > −
τε

2
< ∇L(n),∇υ > +

τβ

2
< L(n), υ > −

τβ

2
< (y2)(n) − (Y2)(n), υ >

+ τ < Rτ, υ >,

where, L(n) = y(n) − Y (n), n ≥ 1, L(0) = 0.
Setting υ = L(n+1), we have

< L(n+1),L(n+1) > +
τε

2
< ∇L(n+1),∇L(n+1) > −

τβ

2
< L(n+1),L(n+1) >=< L(n),L(n+1) > −

τε

2
< ∇L(n),∇L(n+1) >

+
τβ

2
< L(n),L(n+1) > −

τβ

2
< (y2)(n+1) − (Y2)(n+1),L(n+1) >

−
τβ

2
< (y2)(n) − (Y2)(n),L(n+1) > +τ < Rτ,L

(n+1) > .

Now employing Lipschitz condition Cauchy-Schwarz inequality, we obtain∥∥∥∥L(n+1)
∥∥∥∥2

L2(Ω)
+
τε

2

∥∥∥∥∇L(n+1)
∥∥∥∥2

L2(Ω)
−
τβ

2

∥∥∥∥L(n+1)
∥∥∥∥2

L2(Ω)
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≤

∥∥∥∥L(n)
∥∥∥∥

L2(Ω)

∥∥∥∥L(n+1)
∥∥∥∥

L2(Ω)
+
τε

2

∥∥∥∥∇L(n)
∥∥∥∥

L2(Ω)

∥∥∥∥∇L(n+1)
∥∥∥∥

L2(Ω)

+
τβ

2

∥∥∥∥L(n)
∥∥∥∥

L2(Ω)

∥∥∥∥L(n+1)
∥∥∥∥

L2(Ω)
+
τβ

2
C∗

∥∥∥∥y(n+1) − Y (n+1)
∥∥∥∥

L2(Ω)

∥∥∥∥L(n+1)
∥∥∥∥

L2(Ω)

+
τβ

2
C∗

∥∥∥∥y(n) − Y (n)
∥∥∥∥

L2(Ω)

∥∥∥∥L(n+1)
∥∥∥∥

L2(Ω)
+ τ

∥∥∥∥Rτ

∥∥∥∥
L2(Ω)

∥∥∥∥L(n+1)
∥∥∥∥

L2(Ω)
.

Simplifying further, we get

1
2

∥∥∥∥L(n+1)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇L(n+1)
∥∥∥∥2

L2(Ω)
≤

1
2

∥∥∥∥L(n)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇L(n)
∥∥∥∥2

L2(Ω)
+ ((1 + C∗)

3β
4

+
1
2

)τ
∥∥∥∥L(n+1)

∥∥∥∥2

L2(Ω)

+ (1 + C∗)
τβ

4

∥∥∥∥L(n)
∥∥∥∥2

L2(Ω)
+
τ

2

∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)
. (3.8)

By defining the following weighted Hilbert norm∥∥∥∥L(n+1)
∥∥∥∥2

Hw(Ω)
=

1
2

∥∥∥∥L(n+1)
∥∥∥∥2

L2(Ω)
+
τε

4

∥∥∥∥∇L(n+1)
∥∥∥∥2

L2(Ω)
.

Equation (3.8) can be rewritten as∥∥∥∥L(n+1)
∥∥∥∥2

Hw(Ω)
≤

∥∥∥∥L(n)
∥∥∥∥2

Hw(Ω)
+ ((1 + C∗)

3β
4

+
1
2

)τ
∥∥∥∥L(n+1)

∥∥∥∥2

Hw(Ω)
+ (1 + C∗)

τβ

4

∥∥∥∥L(n)
∥∥∥∥2

Hw(Ω)
+
τ

2

∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)
.

Taking summation for i from 0 to n − 1,

n−1∑
i=0

∥∥∥∥L(i+1)
∥∥∥∥2

Hw(Ω)
≤

n−1∑
i=0

∥∥∥∥L(i)
∥∥∥∥2

Hw(Ω)
+

(
(1 + C∗)β +

1
2

)
τ

n∑
i=0

∥∥∥∥L(i+1)
∥∥∥∥2

Hw(Ω)
+

nτ
2

∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)
.

Using Gronwall lemma, we get∥∥∥∥L(n)
∥∥∥∥2

Hw(Ω)
≤

[∥∥∥∥L(0)
∥∥∥∥2

Hw(Ω)
+

nτ
2

∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)

]
exp

(
((1 + C∗)β +

1
2

)nτ
)

(3.9)

≤

[T
2

∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)

]
exp

(
C∗∗T

)
(3.10)

≤ C(T)
∥∥∥∥Rτ

∥∥∥∥2

L2(Ω)
(3.11)

≤ C(T)τ4. (3.12)

Thus we have ∥∥∥∥L(n)
∥∥∥∥

Hw(Ω)
≤ C(T)τ2,

which completes the proof. �

4. Quasilinearization technique

As the problem under consideration is nonlinear in nature, and quasilinearization is a standard
technique broadly used for approximating the nonlinear problems by their linearized version
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for obtaining the approximate solutions, in this Section, we will linearize Eq (2.2) using the
quasilinearization process and will discuss its convergence.

Using the quasilinearization process by Bellman and Kalaba [5], Eq (2.2) can be linearized as
follows:

−ε
τ

2
∇2y(n+1),(k+1) +

[
1 − β

τ

2
+ βτy(n+1),(k)]y(n+1),(k+1) (4.1)

=
(
1 + β

τ

2
)
y(n) + ε

τ

2
∇2y(n) − β

τ

2
(y2)(n) + β

τ

2
(y2)(n+1),(k),

with initial condition y(0),(k+1) = y0(x), and boundary conditions

y(n+1),(k+1)(0, t) = f (t(n+1)) and y(n+1),(k+1)(1, t) = g(t(n+1)), (4.2)

where y(n+1),(k+1) denotes the approximate solution at time level (n + 1)th and (k + 1)th iteration.

Theorem 4.1. (Convergence of quasilinearization technique) Let
{
y(n+1),(k)}∞

k=0 be the sequence
produced by quasilinearization technique at (n + 1)th time level and (k)th iteration. Then there exist
a constant Q > 0, independent of n, such that

‖y(n+1),(k+1) − y(n+1),(k)‖Ω̄x
≤ Q‖y(n+1),(k) − y(n+1),(k−1)‖2

Ω̄x
, (4.3)

i.e., the quasilinearization process converges quadratically.

Proof. In order to prove the convergence of the quasilinearization process, we consider

ε∇2y(n+1) = F(yn+1), x ∈ Ωx, n ≥ 0,
y(n+1)(0, t) = f (tn+1), y(n+1)(1, t) = g(tn+1), n ≥ 0.

We assume y(n+1),(k=0) be the initial guess which also incorporates the boundary conditions.
By applying quasilinearization process, we obtain a sequence

{
y(n+1),(k)}∞

k=0 of linear differential
equations determined by the following recurrence relation:

ε∇2y(n+1),(k+1) ≈ F(y(n+1),(k)) + (y(n+1),(k+1) − y(n+1),(k))
∂F(y(n+1),(k))

∂y
, x ∈ Ωx, n ≥ 0, (4.4)

y(n+1),(k+1)(0, t) = f (tn+1), y(n+1),(k+1)(1, t) = g(tn+1), x ∈ Ωx, n ≥ 0.

Rewriting the above relation at the previous iteration step, we get

ε∇2y(n+1),(k) = F(y(n+1),(k−1)) + (y(n+1),(k) − y(n+1),(k−1))
∂F(y(n+1),(k−1))

∂y
, x ∈ Ωx, n ≥ 0. (4.5)

Subtracting Eq (4.5) from (4.4), we have

ε(∇2y(n+1),(k+1) − ∇2y(n+1),(k)) = F(y(n+1),(k)) − F(y(n+1),(k−1)) + (y(n+1),(k+1) − y(n+1),(k))
∂F(y(n+1),(k))

∂y

− (y(n+1),(k) − y(n+1),(k−1))
∂F(y(n+1),(k−1))

∂y
, x ∈ Ωx, n ≥ 0. (4.6)
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The above differential equation is of second order in terms of (y(n+1),(k+1) − y(n+1),(k)). With the help of
Green’s function, Eq (4.6) can be converted into an integral equation as

ε(y(n+1),(k+1) − y(n+1),(k))

=

∫ 1

0
G(x, s)

[
F(y(n+1),(k)) − F(y(n+1),(k−1)) + (y(n+1),(k+1) − y(n+1),(k))

∂F(y(n+1),(k))
∂y

− (y(n+1),(k) − y(n+1),(k−1))
∂F(y(n+1),(k−1))

∂y

]
ds, x ∈ Ωx, n ≥ 0, (4.7)

where the Green’s function G(x, s) is defined by

G(x, s) =

x(s − 1), 0 ≤ x ≤ s ≤ 1,
(x − 1)s, 0 ≤ s ≤ x ≤ 1,

and

max
x,s

G(x, s) =
1
4
. (4.8)

Using mean-value theorem, we have

F(y(n+1),(k)) − F(y(n+1),(k−1)) = (y(n+1),(k) − y(n+1),(k−1))
∂F(y(n+1),(k−1))

∂y

+
(y(n+1),(k) − y(n+1),(k−1))2

2
∂2F(θ)
∂y2 , (4.9)

where y(n+1),(k−1) ≤ θ ≤ y(n+1),(k). Now substituting the value of F(y(n+1),(k)) − F(y(n+1),(k−1)), in Eq (4.7),
we get the following expression

ε(y(n+1),(k+1) − y(n+1),(k)) = (4.10)∫ 1

0
G(x, s)

[ (y(n+1),(k) − y(n+1),(k−1))2

2
∂2F(θ)
∂y2 + (y(n+1),(k+1) − y(n+1),(k))

∂F(y(n+1),(k))
∂y

]
ds, x ∈ Ωx, n ≥ 0.

Assume that

max
|θ|≤1

∣∣∣∣∂2F(θ)
∂y2

∣∣∣∣ = L, max
|y(n+1),(k) |≤1

∣∣∣∣∂F(y(n+1),(k))
∂y

∣∣∣∣ = R. (4.11)

Now using Eqs (4.8) and (4.11) in Eq (4.10) and taking maximum norm, we get

ε
∥∥∥y(n+1),(k+1) − y(n+1),(k)

∥∥∥
Ωx
≤

1
4

∫ 1

0

[L
2

(y(n+1),(k) − y(n+1),(k−1))2 + R
∥∥∥y(n+1),(k+1) − y(n+1),(k)

∥∥∥
Ωx

]
ds.

On simplifying this inequality, we get∥∥∥(y(n+1),(k+1) − y(n+1),(k))
∥∥∥

Ω̄x
≤

L
8ε − 2R

∥∥∥(y(n+1),(k) − y(n+1),(k−1))
∥∥∥2

Ω̄x
,

= Q‖(y(n+1),(k) − y(n+1),(k−1))‖2
Ω̄x
,

where Q = L/(8ε − 2R).
Hence, with the appropriate choice of initial iterative approximation y(n+1),(k=0), the

quasilinearization technique converges quadratically. �
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In Liu of the above theorem, in order to find the solution of the nonlinear problem (1.1), it is
sufficient to find the solution of its approximate linearized problem (4.1). Following that, we will
examine the proposed numerical scheme to approximate the solution to the linearized problem (4.1).

5. Element-free Galerkin formulation

Next, we will explain the element-free Galerkin formulation in detail.

5.1. Moving least squares approximation

Let Ωh = {xi}
n
i=1 be distribution of nodes in the spatial domain Ωx = [0, 1]. Then the domain of

influence of any typical node x with radius ds is expressed as

d(x) =
{
x
∗ ∈ Ωh : |x − x∗| < ds(x)

}
.

So, the domain of influence for xi is given by

di =
{
x
∗ ∈ Ωh : |xi − x∗| < dsi

}
.

We define the Gaussian exponential spline weight functions corresponding to node xi based on a
normalized distance s = |x−xi |

dsi
as

wi(s) =

 e−(s/α)2−e−(1/α)2

1−e−(1/α)2
, s < 1

0, s ≥ 1,

for i = 1, 2, ..., n. The employed weight functions wi(s) in MLS approximation must be monotonic
decreasing, continuous and positive in the corresponding domain di. We define

p(x) =
[
p(x1), p(x2), ..., p(xm)

]T
, x ∈ Ωx,

as a set of polynomial basis functions. In the present work, we have used quadratic basis functions
defined as

p(x) = [1, x, x2].

Let the field function y(x) be approximated by yh(x) using MLS approximation in the domain Ω where
yh is defined as

yh(x) =

m∑
i=1

pi(x)ai(x) = pT (x)a(x), (5.1)

and a is an unknown vector of coefficients determined by minimizing the weighted residual functional

J(x) =

n∑
i=1

w(x − xi)
[
y(xi) −

m∑
i=1

pi(x)ai(x)
]T

.
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The minimization of J with respect to a(x) leads to ∂J
∂a

= 0. This gives

a(x) = P−1(x)S(x)y, (5.2)

where

P(x) =

n∑
i=1

w(x − xi)p(xi)pT (xi),

S(x) =
[
w(x − x1)p(x1),w(x − x2)p(x2), ...,w(x − xn)p(xn)

]
.

Furthermore, on solving Eq (5.2), the approximate solution is given by

y(x) ≈ yh(x) =

n∑
i=1

Φi(x)y, (5.3)

in which the MLS shape functions are obtained as

Φi(x) =


∑m

j=1 p j(x)
(
P−1(x)S(x)

)
ji
, x ∈ di,

0, x < di.
(5.4)

5.2. Node generation

Roos et al. [19] suggested that in the case of singularly perturbed problems, solutions possess rapid
variations in some narrow regions adjacent to both the left and right lateral boundary when the singular
perturbation parameter ε tends to 0. To capture these variations, we need to adopt some special adaptive
techniques. In the present paper, we have utilized Shishkin’s approach to generate more nodes in the
boundary layer region and to capture these layers nicely. In Shishkin’s approach, the distribution of
nodes is carried out by dividing the spatial domain Ω̄ = [0, 1] into two subdomains [0, δ] and [δ, 1],
where the transition parameter δ is chosen as

δ = min{
1
2
,Mε ln N},

where M is a constant chosen appropriately and (N + 1) denotes the total number of nodes in the
spatial domain. Here, we have considered that the boundary layers appear at x = 0 as ε → 0. Similar
procedure can be carried out for boundary layers appearing at x = 1. Now, in each of these subdomains,
the nodes are generated as follows:

xi =

i ∗ hi, i = 0, 1, ..., N
2

δ + (i − N/2) ∗ hi, i = N
2 + 1, ...,N,

where the mesh spacings h′i s are given by

hi =

 2δ
N , i = 0, 1, ..., N

2
2(1−δ)

N , i = N
2 + 1, ...,N.

Remark. It is important to note that Shishkin’s approach is only employed to generate nodes in this
case, not the mesh, as the present method does not need elements or element connectivity.
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5.3. Weak formulation

As discussed earlier in Section 4, in order to obtain the solution of the Fisher’s problem, we consider
its linear approximation (4.1), obtained by quasilinearization process.

The EFG weak formulation of linearized Eq (4.1) is mentioned as follows:

ετ

2

∫
Ωx

∇y(n+1),(k+1)∇φidx +
[
1 −

βτ

2
+ βτy(n+1),(k)] ∫

Ωx

y(n+1),(k+1)φidx − δλ(y − f (t))
∣∣∣∣∣
x=0
− δyλ

∣∣∣∣∣
x=0

− δρ(y − g(t))
∣∣∣∣∣
x=1
− δyρ

∣∣∣∣∣
x=1

=
(
1 +

βτ

2
) ∫

Ωx

y(n)φidx −
ετ

2

∫
Ωx

∇y(n)∇φidx

−
βτ

2

∫
Ωx

(y2)(n)φidx +
βτ

2

∫
Ωx

(y2)(n+1),(k)φidx,

where φ′is are the test functions formulated by MLS approach as specified in Section 5.1. The last terms
on the left-hand side of the above equation are introduced due to the method of Lagrange multipliers
to enforce the essential boundary conditions (1.3). By solving the above nodal weak formulations and
assembling them, the resulted algebraic linear equations can be written in the matrix form as

K G H
GT 0 0
HT 0 0



Y
λ

ρ

 =


F
q
qc

 ,
where

Ki j = ε
τ

2

∫
Ωx

∇φ j∇φidx +
[
1 − β

τ

2
+ βτφ j

] ∫
Ωx

φ jφidx,

GT
l j = −δλl(Nlφ j)

∣∣∣∣∣
x=0
,

HT
l j = −δρl(Rlφ j)

∣∣∣∣∣
x=1
,

Fi =
(
1 + β

τ

2
) ∫

Ωx

y(n)φidx − ε
τ

2

∫
Ωx

∇y(n)∇φidx − β
τ

2

∫
Ωx

(y2)(n)φidx

+ β
τ

2

∫
Ωx

(y2)(n+1),(k)φidx,

ql = −δλl(Nl f (t))
∣∣∣∣∣
x=0
,

qcl = −δρl(Rlg(t))
∣∣∣∣∣
x=1
.

Here, λ =
∑n

l=1 Nlλl and ρ =
∑n

l=1 Rlρl are Lagrange multipliers and Nl and Rl are shape functions
for lth node on the essential boundary.

6. Numerical results and discussions

In this section, we will validate the theoretical findings and numerically demonstrate the consistency
and accuracy of the proposed method with the help of examples. The L∞-errors have been presented

AIMS Mathematics Volume 7, Issue 10, 19105–19125.



19117

for the considered problems. These errors have been estimated by

eN,τ
ε = |̂y(xi, t j) − y(xi, t j)| and EN,τ

ε = max
i, j

eN,τ
ε ,

where N symbolize number of nodes in the spatial direction, t j = jτ. Herein, ŷ(x, t) and y(x, t) are
exact and computed solutions respectively.

The order of convergence has been calculated by employing double mesh principle defined by

pN,τ
ε =

∣∣∣∣∣∣ ln (EN,τ
ε ) − ln (E2N,τ/2

ε )
ln (2)

∣∣∣∣∣∣.
Example 6.1. Consider the singularly perturbed nonlinear Fisher equation

∂y
∂t

= ε
∂2y
∂x2 + 6y(1 − y), (6.1)

with initial condition

y(x, 0) =
1

(1 + ex/
√
ε)2
,

and boundary conditions

y(0, t) =
1

(1 + e−5t)2 , y(1, t) =
1

(1 + e1/
√
ε−5t)2

.

The exact solution of the considered problem is derived and is given by

y(x, t) =
1

(1 + ex/
√
ε−5t)2

.

Based on the literature review, to the best of the Authors’ knowledge, the problem under study has
not yet been solved for small values of ε; hence no numerical results are available in the literature. The
problem has been solved using the element-free Galerkin technique presented in the previous section
for various values of the singular perturbation parameter ε and different numbers of nodes N.

Table 1 presents maximum error norm and rate of convergence of solution of Example 6.1 using
the EFG method. The table depicts the numerical convergence of the proposed scheme. Figure 1
illustrates the mesh validation of the code for ε = 10−6 at time level t = 1. This graphical layout clearly
demonstrates that even a grid of 32 nodes is sufficient enough to capture very sharp boundary layers
occurring in the solution plot due to very small values of ε like 10−6. Here the authors have employed
Shishkin’s approach to generating more nodes in the boundary layer region. For clear transparency, an
expanded image has been presented for the boundary layer region. The effect of singular perturbation
parameter, ε, on the EFG solutions have been displayed in Figure 2 for N = 64, t = 0.5 and for
different values of ε. The boundary layers become sharper and sharper as ε → 0, and the proposed
numerical approach efficiently captures these sharp layers in the solution as spectacled in the zoomed
image for clarity.
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Table 1. Maximum absolute errors and order of convergence in Example 6.1 for different
values of ε at t = 1.0.

ε N = 32 N = 64 N = 128 N = 256
10−2 9.65 × 10−3 2.33 × 10−3 5.78 × 10−4 3.49 × 10−4

2.051 2.012 0.728
10−3 5.06 × 10−2 1.55 × 10−2 5.01 × 10−3 1.61 × 10−3

1.707 1.630 1.637
10−4 5.06 × 10−2 1.55 × 10−2 5.01 × 10−3 1.61 × 10−3

1.707 1.630 1.637
10−5 5.06 × 10−2 1.55 × 10−2 5.01 × 10−3 1.61 × 10−3

1.707 1.630 1.637
. . . . .
. . . . .
. . . . .
10−13 5.06 × 10−2 1.55 × 10−2 5.01 × 10−3 1.61 × 10−3

1.707 1.630 1.637
10−14 5.06 × 10−2 1.55 × 10−2 5.01 × 10−3 1.61 × 10−3

1.707 1.630 1.637
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Figure 1. Grid validation for ε = 10−6 at t = 1.
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Figure 2. Epsilon-effect for N = 64 at t = 0.5.

In Figure 3, the solution has been plotted for ε=10−4, N=32 at different time levels
t=0.2, 0.4, 0.6, 0.8, 1.0. The figure clearly justifies the capabilities of the proposed method in capturing
the boundary layers in the solution at various time levels.
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Figure 3. Time effect for N = 32 and ε = 10−4.

The comparison of the computed solutions with exact ones has been presented in Figure 4 for
N = 64, t = 1 and ε = 10−2, 10−5, 10−14. The solution plots depict the efficiency and robustness of
the proposed method. It can be observed that the plot of EFG solutions undoubtedly overlaps the plot
of exact solutions.
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Figure 4. Exact and EFG solution plot for N = 64, ε = 10−2, 10−5, 10−14 at t = 1.0.

The space-time evolution of the EFG solution profile has been shown in Figures 5 and 6 for ε = 10−2

and ε = 10−7 respectively. One can clearly observe how the EFG solution evolves as time increases.
Also, the sharpness of the boundary layers can clearly be noticed. In the quasilinearization process, the
scheme achieves the desired accuracy within four to five iterations at each time level.
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Figure 5. Evaluation of EFGM solution w.r.t. time for ε = 10−2.
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Figure 6. Evaluation of EFGM solution w.r.t. time for ε = 10−7.

Example 6.2. For the second example, we have considered the following singularly perturbed
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nonlinear Fisher equation

∂y
∂t

= ε
∂2y
∂x2 + u(1 − u6), (6.2)

with initial condition

y(x, 0) =

[
1
2

+
1
2

tanh
(
−3x
4ε

)]1/3

,

and boundary conditions

y(0, t) =

[
1
2

+
1
2

tanh
(15t

8

)]1/3

, y(1, t) =

[
1
2

+
1
2

tanh
(
−3
4ε

+
15t
8

)]1/3

.

The boundary layers for the problem under consideration occur at both boundary points, i.e., at
x = 0 and x = 1. To the best of the Authors’ knowledge, this problem has not yet been solved in
literature for small values of the singular perturbation parameter ε. Here the problem has been solved
by using the EFG method to check the convergence and robustness of the proposed method.

Table 2 provides the maximum norm errors and rate of convergence obtained for Example 6.2. In
this table, the time level is fixed at t = 1.0, and the number of nodes changes. The outcomes clearly
depict the parameter uniform numerical convergence of the proposed method as ε → 0.

Table 2. Maximum absolute errors and rate of convergence in Example 6.2 for different
values of ε at t = 1.0.

ε N = 32 N = 64 N = 128 N = 256
2−2 1.83 × 10−2 1.51 × 10−2 1.61 × 10−3 1.29 × 10−3

0.277 3.229 0.319
2−4 2.88 × 10−2 1.18 × 10−2 4.06 × 10−3 1.51 × 10−3

1.280 2.744 1.426
2−6 3.12 × 10−2 4.07 × 10−3 4.02 × 10−4 4.56 × 10−5

2.938 3.339 3.140
2−8 3.17 × 10−2 4.07 × 10−3 3.60 × 10−4 2.86 × 10−5

2.961 3.498 3.654
2−10 3.38 × 10−2 4.03 × 10−3 3.27 × 10−4 3.34 × 10−5

3.068 3.623 3.291
2−12 3.37 × 10−2 4.01 × 10−3 3.26 × 10−4 2.90 × 10−5

3.071 3.620 3.490
2−14 3.37 × 10−2 4.04 × 10−3 3.26 × 10−4 2.91 × 10−5

3.061 3.631 3.486
2−16 3.36 × 10−2 4.04 × 10−3 3.26 × 10−4 2.91 × 10−5

3.061 3.631 3.486
2−18 3.36 × 10−2 4.04 × 10−3 3.26 × 10−4 2.91 × 10−5

3.061 3.631 3.486
2−20 3.36 × 10−2 4.04 × 10−3 3.26 × 10−4 2.91 × 10−5

3.061 3.631 3.486
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The physical behavior of the solution has been shown in Figures 7–10 for different values of the
parameters.

Figure 7 illustrates the singular purturbation parameter ε-effect on the EFG solution for various
values of ε = 2−2, 2−4, 2−8, 2−16, 2−20 at t = 0.9 and for N = 64. The evolution of sharp boundary
layers at both the endpoints of the domain has clearly been observed and highlighted through the
zoomed figure, as ε tends to zero.
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Figure 7. Epsilon-effect for N = 64 at t = 0.9.

The impact of different time levels t = 0.1, 0.3, 0.5, 0.7, 0.9 on the EFG solution for N = 64 and
ε = 2−13 has been presented in Figure 8. The proficiency of the proposed method in capturing edgy
boundary layers at various time levels is easily verified through these plots.
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Figure 8. Time effect for N = 64 and ε = 2−13.

The three-dimensional visualization of element-free Galerkin solution with respect to time-space
profile have been represented through Figures 9 and 10 for ε = 2−2 and ε = 2−20 respectively.
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Figure 9. Evaluation of EFGM solution w.r.t. time for ε = 2−2.

Figure 10. Evaluation of EFGM solution w.r.t. time for ε = 2−20.

7. Conclusions

In the present work, the element-free Galerkin method along with the Crank-Nicolson technique
has been proposed for the singularly perturbed Fisher equation. The semi-discrete scheme is
unconditionally stable in the energy norm with second-order convergence. The nonlinearity present in
the problem has been handled by utilizing the quasilinearization approach, and its rate of convergence
has also been studied. To capture the sharp boundary layers more precisely, non-uniformly distributed
grid points condensing near the boundary layers have been generated. Two numerical examples have
been considered to validate the theoretical results. The numerical results depict the robustness and
efficiency of the proposed scheme in capturing very sharp boundary layers even for a significantly
less number of nodes and hence proving the computational efficiency of the method. Overall, the
author’s found that the proposed scheme provides satisfactory results for approximating the solution
of the non-linear Fisher’s problem. Also, the problems under consideration have not yet been solved
in the literature to the best of the author’s knowledge for the small value of the singular perturbation
parameter. It will be interesting to verify the proposed method for fractional order singularly perturbed
differential equations.
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