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1. Introduction

Let ϕ(z) and Φ(z) be the density and cumulative functions of a standard normal random variable,
respectively.

ϕ(z) :=
1
√

2π
e

z2
2 , Φ(z) :=

∫ z

−∞

ϕ(t)dt.

Let X be a truncated normal random variable with truncation point θ on the left, where the mean
and variance of the underlying normal distribution are denoted by µ and σ2. The density function of X
can be written as:

f (x | µ, σ2, θ) =


ϕ[(x − µ)/σ]

σ[1 − Φ((θ − µ)/σ)]
, x > θ

0, otherwise.
(1.1)

Truncated normal distribution on the right can be similarly defined. Since the density function of the
normal distribution is symmetrical about µ, truncation on the right at θ′ is equivalent to truncation on
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the left at 2µ − θ′. Therefore, only truncation on the left is discussed in this paper.
It can be easily shown that

µθ := E(X | µ, σ2, θ) = σh(θ∗) + µ (1.2)
σ2
θ := V(X | µ, σ2, θ) = σ2[1 − h′(θ∗)] (1.3)

where θ∗ = (θ − µ)/σ, and h(x) = ϕ(x)/[1 − Φ(x)] is the hazard function of the standard normal
distribution. The reciprocal of h(x) is also known as Mills’ ratio.

Other moments of singly truncated normal distribution such as skewness and kurtosis can be found
in Horrace’s work [1]. In addition, Pender [2] has presented the corresponding results for doubly
truncated normal distribution.

A singly truncated normal sample from X with size n is denoted by x1, x2, · · · , xn. The likelihood
function for the sample is:

L =
1

[1 − Φ(θ∗)]n

1
(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(xi − µ)2

 . (1.4)

As for maximum likelihood estimation, it will be easier to work with the log-likelihood function:

ln L = −
n
2

ln(2π) −
n
2

lnσ2 −
1

2σ2

n∑
i=1

(xi − µ)2 − n ln [1 − Φ(θ∗)] . (1.5)

For the inference of truncated normal distributions, most of the available literature tends to focus
on the estimation of mean and standard deviation (or variance) of the underlying normal distribution
when the truncation point θ is known. The initial results were given by Pearson and Lee [3], who
employed the method of moments to obtain formulas for estimating the mean and standard deviation,
and the computation of these estimates relied on certain special functions that can be evaluated by
a pre-prepared table. Later, Fisher [4] gave a solution to this problem by the maximum likelihood
method, and he proved that the maximum likelihood estimation is equivalent to the moment estimation.
Stevens [5] discussed the estimation of doubly truncated normal samples, as well as censored samples
in which the frequency of observations outside the limits is recorded but the individual values of these
observations are not measured.

Based on the maximum likelihood principle proposed by Fisher, some other authors have obtained
more results on the estimation problem of truncated or censored samples. Hald [6] and Gupta [7]
studied the maximum likelihood estimation of the parameters of censored normal samples. Halperin [8]
showed that maximum likelihood estimates for single-parameter truncated samples under mild
conditions are consistent, asymptotically normally distributed, and of minimum variance for large
samples. Halperin’s results can be readily extended and applied to truncated normal samples.
Cohen [9–11] developed simplified estimators for singly truncated normal samples as follows:

µ̂ = x̄ − c(x̄ − θ)
σ̂2 = s2 + c(x̄ − θ)2

where x̄ and s2 are the sample mean and the sample variance, respectively, c = h(θ∗)/[h(θ∗) − θ∗] is an
auxiliary function. The value of c can be determined directly from s2/(x̄ − θ)2 by a table provided by
Cohen.
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On the other hand, there is very little literature on truncation point estimation. For general truncated
samples, Robson and Whitlock [12] presented point estimators of a truncation point with bias of order
n−k. For example, estimator x(1) − (x(2) − x(1)) is unbiased to order n−2, where x(1) and x(2) are the order
statistics of the truncated sample.

In this article, the truncated samples are different from those of Robson and Whitlock. Specifically,
xi (i = 1, · · · , n) in truncated samples cannot be measured directly, and yi = xi − θ can be observed
instead. In such a case, all observations in the sample are subtracted by an unknown truncation point
θ, and only observations greater than 0 are recorded. By (1.1), the density function of Y = X − θ is:

f (y) =


ϕ[(y + θ − µ)/σ]

σ[1 − Φ((θ − µ)/σ)]
, y > 0

0, otherwise
(1.6)

and the log-likelihood function for the truncated sample y1, y2, · · · , yn is:

ln L = −
n
2

ln(2π) −
n
2

lnσ2 −
1

2σ2

n∑
i=1

(yi + θ − µ)2 − n ln [1 − Φ(θ∗)] . (1.7)

Next, we will discuss the estimation of the truncation point θ for sample y1, y2, · · · , yn. As mentioned
earlier, the calculation of estimates of mean and variance for truncated normal samples requires some
special functions, which can be evaluated by a pre-prepared table. The estimation of the truncation
point also requires some auxiliary functions, and the hazard function h(x) of the standard normal
distribution plays an important role in these functions. The following lemma gives some important
properties of h(x), which we will use later.

Lemma 1.1. Let h(x) be the hazard function of the standard normal distribution, then:

(
√

8 + x2 + 3x)/4 < h(x) < (
√

4 + x2 + x)/2, x > 0 (1.8)
0 < h′(x) = h(h − x) < 1, −∞ < x < ∞ (1.9)

h′′(x) = h[(h − x)(2h − x) − 1] > 0, −∞ < x < ∞. (1.10)

The detailed proof of this lemma can be found in Sampford’s work [14]. It should be noted that the
inequality on the right in (1.8) is attributed to Birnbaum’s work [13]. Moreover, Yang and Chu [15]
provided tighter bounds for h(x) than those in (1.8).

The estimation for the truncation point θ makes no sense when the mean µ is unknown. In Section 3,
we will present an application where there is a normal sample from which good estimates of the mean
and variance can be made. In addition, there are many truncated samples derived from the same normal
population, and the truncation points of interest may be different.

2. Materials and methods

In this section, we will discuss truncation point estimation for two cases: The variance σ2 is known
or unknown. For each of the two cases, the point estimates of the truncation points are given using the
method of moment and the maximum likelihood method, respectively, and the estimated variance of
the point estimates and the confidence intervals of the truncation points are also given.
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2.1. σ2 is known

Theorem 2.1. Let y1, y2, · · · , yn be a sample from a truncated normal population with density
function (1.6), where the mean µ and the varianceσ2 are known, and the truncation point θ is unknown,
the moment estimator for θ is given as follows:

θ̂ = µ + σg−1
1

( ȳ
σ

)
(2.1)

where auxiliary function g1(x) := h(x) − x is monotonically decreasing.

Proof. Since E(X) = E(Y) + θ, replace the left side of Eq (1.2) with ȳ + θ, and we have:

ȳ + θ̂ = σh(θ̂∗) + µ

where θ̂∗ = (θ̂ − µ)/σ. It is algebraically equivalent to:

ȳ
σ

= h(θ̂∗) −
θ̂ − µ

σ

= h(θ̂∗) − θ̂∗ = g1(θ̂∗).

Note that (1.9) implies g′1(x) = h′(x) − 1 < 0, that is, g1(x) is monotonically decreasing. Applying the
inverse function of g1 to the both sides yields:

g−1
1

( ȳ
σ

)
= θ̂∗ =

θ̂ − µ

σ
.

The estimator for truncation point in (2.1) is immediately obtained from above. �

Theorem 2.2. For large samples, the variance of the truncation point estimator in (2.1) is
approximated by:

V(θ̂) ≈
σ2/n

1 − h′(θ̂∗)
. (2.2)

Proof. With first-order Taylor series expansion of (2.1) at µθ − θ, we obtain:

θ̂ ≈ θ + (g−1
1 )′

∣∣∣
y=(µθ−θ)/σ

· (ȳ − µθ + θ).

For large samples, ȳ ≈ µθ − θ, hence:

V(θ̂) ≈
[
(g−1

1 )′
]2

y=ȳ/σ
V(ȳ). (2.3)

Recall that the derivative of the inverse function is the reciprocal of the derivative of the original
function, namely, (g−1

1 )′ = (g′1)−1, it follows that:[
(g−1

1 )′
]2

y=ȳ/σ
=

1
[g′1(θ̂∗)]2

=
1

[h′(θ̂∗) − 1]2
. (2.4)

Since ȳ = x̄ − θ, we have:

V(ȳ) = V(x̄) =
σ2
θ

n
≈

1 − h′(θ̂∗)
n

σ2. (2.5)

The approximate variance (2.2) follows from (2.3)–(2.5). �
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Theorem 2.3. Let y1, y2, · · · , yn be a sample from a truncated normal population with density
function (1.6), where the mean µ and the varianceσ2 are known, and the truncation point θ is unknown,
the maximum likelihood estimator for θ is given as follows:

θ̂ = µ + σg−1
1

( ȳ
σ

)
.

That is, the maximum likelihood estimator of θ is identical to the moment estimator of θ.

Proof. Differentiating the log-likelihood function ln L in (1.7) with respect to θ:

d
dθ

ln L = −
1
σ2

n∑
i=1

(yi + θ − µ) + n
ϕ(θ∗)

1 − Φ(θ∗)
dθ∗

dθ

= −
1
σ2

n∑
i=1

yi − n(θ − µ) +
n
σ

h(θ∗)

=
n
σ

[
−

ȳ
σ
− θ∗ + h(θ∗)

]
.

(2.6)

Setting this derivative equal to zero, we obtain the same estimator as the moment estimator in (2.1). �

It can be shown that the log-likelihood function in (1.7) satisfies the mild regularity conditions
given by Halperin [8]. Thus, the maximum likelihood estimator of the truncation point θ is consistent,
asymptotically normal, and approximately minimum variance under large samples.

We will employ another approach based on large-sample theory to find the approximate variance of
the maximum likelihood estimator of the truncation point θ. By large-sample theory, we have:

√
n
(
θ̂ − θ

) d
−→N

(
0,

1
I(θ)

)
where I(θ) is the Fisher information.

For large samples,

I(θ) = E
[

d2

dθ2 ln f (Y; θ)
]
≈ −

1
n

d2

dθ2 (ln L).

Therefore, the variance of θ̂ can be approximated as follows:

V(θ̂) ≈
[
−

d2

dθ2 (ln L)
]−1

∣∣∣∣∣∣∣
θ=θ̂

. (2.7)

By (2.6), we have:
d2

dθ2 (ln L) =
d
dθ

[
d
dθ

(ln L)
]

=
n
σ2

[
h2(θ∗) − θ∗h(θ∗) − 1

]
=

n
σ2

[
h′(θ∗) − 1

]
.
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Hence, substituting into (2.7), we obtain the same approximation as (2.2):

V(θ̂) ≈
σ2/n

1 − h′(θ̂∗)
.

According to the asymptotic normality for large samples, the approximate 95% confidence interval
for the truncation point θ is:

µ + σg−1
1

( ȳ
σ

)
± 1.96 ×

σ/
√

n√
1 − h′(θ̂∗)

. (2.8)

2.2. σ2 is unknown

Theorem 2.4. Let y1, y2, · · · , yn be a sample from a truncated normal population with density
function (1.6), where the mean µ is known, the variance σ2 and the truncation point θ are unknown,
the moment estimator for θ is given as follows:

θ̂∗ = g−1
2

(
s2

y/ȳ
2
)

(2.9)

σ̂ = ȳ/g1(θ̂∗) (2.10)
θ̂ = µ + σ̂θ̂∗ (2.11)

where s2
y is the sample variance of the truncated sample, and auxiliary function

g2(x) :=
1 − h′(x)

[h(x) − x]2 , x > 0 (2.12)

is monotonically increasing.

First, we prove the following lemma:

Lemma 2.5. Let g2(x) be the auxiliary function defined in (2.12), then for any x > 0, we have 0 <

g2(x) < 1 and g′2(x) > 0, i.e., g2(x) is non-negative and monotonically increasing.

Proof. From (1.9), g2(x) > 0, and we have

g2(x) =
1 − h′(x)

[h(x) − x]2

=
1 − h(x)[h(x) − x] − [h(x) − x]2

[h(x) − x]2 + 1

=
1 − [h(x) − x][2h(x) − x]

[h(x) − x]2 + 1.

By (1.10), we know that 1 − [h(x) − x][2h(x) − x] < 0, hence g2(x) < 1. Decompose g2(x) as follows

g2(x) =
1

[h(x) − x]2 −
h(x)

h(x) − x
.

Differentiating g2(x), we obtain:

g′2(x) =
2[1 − h′(x)] − [h(x) − xh′(x)][h(x) − x]

[h(x) − x]3 .

AIMS Mathematics Volume 7, Issue 10, 19083–19104.
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Let ξ denote the numerator of the above fraction, namely

ξ(x) = 2[1 − h′(x)] − [h(x) − xh′(x)][h(x) − x].

Therefore, for x > 0, in order to prove g′2(x) > 0, it is sufficient to prove ξ(x) > 0.
Notice that the value of ξ(x) at x = 0 is greater than 0:

ξ(0) = 2[1 − h2(0)] − h2(0) = 2 −
6
π
> 0.

As x→ ∞, it follows from (1.8) that

1 > h′(x) =h(x)[h(x) − x]

>

√
8 + x2 + 3x

4
·

√
8 + x2 − x

4

=

√
8 + x2 + 3x

2(
√

8 + x2 + x)
→ 1.

Thus, we have 1 − h′(x)→ 0. Similarly, inequalities

0 <
2

√
8 + x2 + x

< h(x) − x <
2

√
4 + x2 + x

→ 0

imply that h(x) − x→ 0, and x[h(x) − x]→ 1. Hence, we have:

[h(x) − xh′(x)][h(x) − x] = [h(x) − x]2 − [1 − h′(x)] · x[h(x) − x]→ 0.

Therefore, we obtain that ξ → 0.
We employ proof by contradiction to show ξ(x) > 0. If there exists some x1 > 0 such that ξ(x1) ≤ 0,

then there exists x2 > 0 such that ξ(x2) ≤ 0
ξ′(x2) = 0.

In addition, we have

ξ′(x) = −2h′′ + xh′′(h − x) − (h − xh′)(h′ − 1)
= −2h[(h − x)2 + h(h − x) − 1] + xh′′(h − x) − h(h − x)(h − xh′) + h − xh′

= h[2 − 2h(h − x) − (h − xh′)(h − x)] − 2h(h − x)2 + xh′′(h − x) + h − xh′

= hξ + xh′′(h − x) − 2h(h − x)2 + h − xh(h − x)
= hξ + xh′′(h − x) − h′′

= hξ + h′′[x(h − x) − 1].

Since h′′(x) > 0 and x[h(x) − x] < 1, it follows that

ξ′(x) < h(x)ξ(x).

Hence, we obtain
ξ′(x2) < h(x2)ξ(x2) ≤ 0.

This contradicts ξ′(x2) = 0. We complete the proof the lemma. �
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Proof of Theorem 2.4. Substituting ȳ for µθ into (1.2) and rearranging the equation, we have

ȳ = σ
[
h(θ̂∗) − θ̂∗

]
= σg1(θ̂∗). (2.13)

Similarly, substituting s2
y for σ2

θ into (1.3), we obtain

s2
y = σ2[1 − h′(θ̂∗)]. (2.14)

We eliminate σ between (2.13) and (2.14), hence we obtain:

s2
y

ȳ2 =
1 − h′(θ̂∗)

[h(θ̂∗) − θ̂∗]2
= g2(θ̂∗).

From Lemma 2.5, g2(x) is invertible when x > 0, so we have:

θ̂∗ = g−1
2

 s2
y

ȳ2

 = g−1
2 (CV2

y )

where CVy := sy/ȳ is the coefficient of variation of the truncated sample.
The estimator of the standard deviation σ can be obtained directly from (2.13):

σ̂ =
ȳ

g1(θ̂∗)
.

Since θ = µ + σθ∗, the estimator for truncation point is:

θ̂ = µ + σ̂θ̂∗.

�

Theorem 2.6. Let y1, y2, · · · , yn be a sample from a truncated normal population with density
function (1.6), where the mean µ is known, the variance σ2 and the truncation point θ are unknown,
the maximum likelihood estimators for θ and σ̂ are given as follows:

θ̂ = µ + σ̂θ̂∗ (2.15)

σ̂ =
ȳ

g1(θ̂∗)
(2.16)

where

θ̂∗ = g−1
2

(∑n
i=1(yi − ȳ)2

nȳ2

)
. (2.17)

Proof. Taking partial derivative of ln L in (1.7) with respect to θ, we obtain:

∂ ln L
∂θ

=
n
σ

[
−

ȳ
σ
− θ∗ + h(θ∗)

]
.

Equating the partial derivative to zero, hence:

ȳ
σ̂

= h(θ̂∗) − θ̂∗ = g1(θ̂∗). (2.18)
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The partial derivative of ln L with respect to σ is:

∂ ln L
∂σ

= −
n
σ

+
1
σ3

n∑
i=1

(yi + θ − µ)2 + n
ϕ(θ∗)

1 − Φ(θ∗)
∂θ∗

∂σ

= −
n
σ

+
1
σ3

n∑
i=1

[(yi − ȳ) + σ(
θ − µ

σ
+

ȳ
σ

)]2 − n
ϕ(θ∗)

1 − Φ(θ∗)
θ − µ

σ

1
σ

= −
n
σ

+
1
σ3

n∑
i=1

[(yi − ȳ) + σ(θ∗ +
ȳ
σ

)]2 −
n
σ
θ∗h(θ∗).

From (2.18), we know that θ̂∗ + ȳ/σ̂ = h(θ̂∗), it therefore follows:

∂ ln L
∂σ

∣∣∣∣∣
(θ̂,σ̂)

= −
n
σ̂

+
1
σ̂3

n∑
i=1

[(yi − ȳ) + σ̂h(θ̂∗)]2 −
n
σ̂
θ̂∗h(θ̂∗)

= −
n
σ̂

1 − 1
nσ̂2

n∑
i=1

(yi − ȳ)2 − h(θ̂∗)[h(θ̂∗) − θ̂∗]


= −

n
σ̂

1 − 1
nσ̂2

n∑
i=1

(yi − ȳ)2 − h′(θ̂∗)

 .
Setting the partial derivative with respect to σ2 equal to zero, we obtain:

1
n

n∑
i=1

(yi − ȳ)2 = σ̂2[1 − h′(θ̂∗)]. (2.19)

By eliminating σ̂ between (2.18) and (2.19), we have:∑n
i=1(yi − ȳ)2

nȳ2
=

1 − h′(θ̂∗)
h(θ̂∗) − θ̂∗

= g2(θ̂∗).

Since g2 is monotonically increasing at x > 0 from Lemma 2.5, hence:

θ̂∗ = g−1
2

(∑n
i=1(yi − ȳ)2

nȳ2

)
.

Now, the estimator of σ can be obtained by (2.18):

σ̂ =
ȳ

h(θ̂∗) − θ̂∗
=

ȳ
g1(θ̂∗)

.

Since θ∗ = (θ − µ)/σ, it follows that θ̂ = µ + σ̂θ̂∗. �

According to large-sample theory, the maximum likelihood estimators (θ̂, σ̂2) is asymptotically
normal and the estimated approximate variance-covariance matrix is V = (−H)−1|(θ̂, σ̂), where H is the
Hessian matrix of the log-likelihood function ln L in (1.7). Then

V(θ̂) ≈ v11, V(σ̂) ≈ v22, Cov(θ̂, σ̂) ≈ v12

AIMS Mathematics Volume 7, Issue 10, 19083–19104.
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where v11, v12, and v22 are the elements of V.
Similar to the results given by Cohen [9, 11], the Hessian matrix H is obtained by:

h11 :=
n
σ̂2 [h′(θ̂∗) − 1] (2.20)

h12 :=
n
σ̂2 h(θ̂∗)[1 − θ̂∗(h(θ̂∗) − θ̂∗)] (2.21)

h22 := −
2n
σ̂2 − θ̂

∗h12 (2.22)

and the elements of the approximate variance-covariance matrix V are functions of h11, h12, and h22 as
follows:

v11 =
h22

h2
12 − h11h22

, v22 =
h11

h2
12 − h11h22

, v12 =
−h12

h2
12 − h11h22

. (2.23)

By asymptotic normality, An approximate 95 percent confidence interval of the trunction point θ is:

θ̂ ± 1.96 ×
√

v11. (2.24)

3. Application: Estimation of gap length in DNA assembly

The fundamental principle of DNA sequencing is that the target DNA is randomly sheared into
small fragments and sequenced separately; then, utilizing overlapping information between adjacent
fragments identified (called reads), assembly packages pieced them together to restore the original
sequence. Due to low coverage, sequencing errors, or repetitive sequences, some regions of the target
DNA were not completed, and we call them gaps.

To address the difficulties caused by the repetitive sequences, a technique known as paired-end
sequencing was developed. By paired-end sequencing, reads in pairs are produced from both ends
of each DNA fragment and they are called mates each other. Mates are in opposite directions, at
approximately known distances. Randomness in mates’ distance results from random fragmentation of
target DNA. However, the size of these fragments can be controlled within a certain range by biological
technology. That is, the length of the DNA fragments in sequencing follows a certain probability
distribution, which is usually assumed to be a normal distribution known.

The distance between mate pair provides information for the estimation of gap length. If a DNA
fragment spans the entire gap and its indentation lengths L and R at the left and right ends (denoted by
L and R, respectively) are known (as shown in Figure 1). Let the fragment’s length be X ∼ N(µ, σ2),
where µ and σ2 are known, thus the gap length θ = X − (L + R). Let Y = L + R, then Y = X − θ follows
a truncated normal distribution, where θ is the truncation point.

Unlike the truncated normal distribution discussed earlier, the truncation variable Y is not only
related to the truncation point but also affected by the start or end position of the fragment on the target
DNA. Specifically, whether a fragment spans the gap depends on its length, as well as its starting
position on the target DNA. In order to obtain more practical truncated distributions, we employ
the Lander-Waterman model, a mathematical model for shotgun sequencing, and all estimates of gap
length are based on this model.
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X

L Rθ

gapcompleted area on the left completed area on the right

… …

Figure 1. The information about the gap provided by the mate pair: the length of the gap θ
is unknown, the DNA fragment where the mate pair is located spans the gap, its length X is
unknown but the distribution is known, and the indent lengths L and R of mate pair at the left
and right ends are able to be observed.

3.1. Lander-Waterman model

Lander and Waterman [16] developed a mathematical model for shotgun sequencing. Some key
statistics of sequencing projects, such as coverage, the average number of gaps, etc., can be estimated
by this model. Therefore, the Lander-Waterman model was often used to guide the plan of sequencing
projects.

Let G be the length of the target DNA sequence and P = { f1, f2, · · · , fN} be a sequencing project
for the target DNA, where fi = (S i, Xi) are i.i.d. random vectors. S i ∼ U(0, L) is the start position of
the ith fragment located on the target DNA, Xi ∼ N(µ, σ2) is the length of fi, S i and Xi are mutually
independent.

Roach et al. [17] introduced paired-end sequencing information into the Lander-Waterman model.
A pair of reads named mate-pair is obtained by sequencing from both ends of each fragment in paired-
end sequencing projects. If one read in mate-pair overlaps with a finished region (called a contig), and
the other one overlaps with another contig, the mate-pair provides the information about the order of
the contigs, as well as the information about the gap between the two adjacent contigs.

For a given gap in a sequencing project, it is assumed to be located in the region of the target
sequence starting from a and of length θ. Therefore, the event that a fragment f = (S , X) spans the
entire gap can be expressed as {S < a; S + X > a + θ}. All we can observe is that the mate-pair has
an indent L = a − S on the left neighboring contig and an indent R = (S + X) − (a + θ) on the right
neighboring contig, respectively. Indeed, Y = L + R = X − θ is a truncated variable. However, the
conditional event for Y is {S < a; S + X > a + θ} instead of {X > θ}.

Let G = { f = (S , X) ∈ P | S < a; S + X > a + θ} be the set of all the fragments that can span the
entire gap. Let Li and Ri (i = 1, · · · , n) be the left indent and the right indent of the mate-pair of the ith
fragment in G. We define truncated sample as follows:

Y := {yi = Li + Ri, i = 1, 2, · · · , n} (3.1)

Our inference about gap length θ is based on the truncated sampleY. The conditional event is important
for inference. Let A denote the conditional event {S < a; S + X > a + θ}, The following lemma gives
an approximation to the probability P(A):

Lemma 3.1.
P(A) ≈

σ

G
[h(θ∗) − θ∗][1 − Φ(θ∗)] (3.2)
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where θ∗ = (θ − µ)/σ is defined as before.

Proof. From the definition for event A, we know that:

P(A) = P(0 < S < a, a + θ < S + X < G)
= P(0 < S < a; a + θ − S < X < G − S )
= P(θ < X < G; a + θ − X < S < (G − X) ∧ a).

Let fX(x) be the density function of X, hence we have:

GP(A) = G
∫ G

θ

fX(x)dx
∫ (G−x)∧a

a+θ−x

1
G

ds

=

∫ G−a

θ

fX(x)dx
∫ a

a+θ−x
ds +

∫ G

G−a
fX(x)dx

∫ G−x

a+θ−x
ds

=

∫ G−a

θ

(x − θ) fX(x)dx + (G − a − θ)
∫ G

G−a
fX(x)dx.

The integral in the second term is:

(G − a − θ)
∫ G

G−a
fX(x)dx = P(G − a < X < G)

= (G − a − θ)
[
Φ

(G − µ
σ

)
− Φ

(G − a − µ
σ

)]
≤ (G − a − θ)

[
1 − Φ

(G − a − µ
σ

)]
≤ σ

G − a − θ
G − a − µ

ϕ
(G − a − µ

σ

)
.

The last equality above is from 1 − Φ(x) < x−1ϕ(x) for x > 0. Except for the gaps at the edge of the
genome, G−a � max(µ, σ, θ). For example, the genome size of E. coli is 4.4M, and the mean of insert
size is generally less than 1K. Since ϕ(x)→ 0 as x→ +∞, The second term is approximated as 0.

The first term is:∫ G−a

θ

(x − θ) fX(x)dx = σ

∫ G−a

θ

( x − µ
σ
−
θ − µ

σ

)
fX(x)dx

= σ

∫ (G−a−µ)/σ

(θ−µ)/σ

(
t −

θ − µ

σ

)
ϕ(t)dt

= σ
[
−ϕ(t) −

θ − µ

σ
Φ(t)

](G−a−µ)/σ

(θ−µ)/σ

≈ σ
[
−ϕ(t) −

θ − µ

σ
Φ(t)

]+∞

(θ−µ)/σ

= σ
[
ϕ
(
θ − µ

σ

)
+
θ − µ

σ
Φ

(
θ − µ

σ

)
−
θ − µ

σ

]
= σ[ϕ(θ∗) + θ∗Φ(θ∗) − θ∗].

AIMS Mathematics Volume 7, Issue 10, 19083–19104.



19095

Combining the two terms, we finally obtain:

P(A) ≈
σ

G
[
ϕ(θ∗) − θ∗(1 − Φ(θ∗))

]
=
σ[h(θ∗) − θ∗][1 − Φ(θ∗)]

G
.

�

3.2. Moment estimators

Conditioning on that event A occurs, Y = X − θ, we then have:

E(Y) = E(X − θ|A) = E(X|A) − θ. (3.3)

In a similar way to the proof of Lemma 3.1, we obtain the conditional expectation E(X|A), denoted by
µθ. We substitute ȳ for E(Y) into (3.3), and we obtain a equation for the unknown parameter θ:

ȳ = µθ − θ. (3.4)

The solution of Eq (3.4) is the moment estimate of the truncation point θ.

Theorem 3.2. Let y1, y2, · · · , yn be a truncated sample as (3.1), the moment estimator for the truncation
point θ is given as follows:

θ̂ = µ + σg−1
3

( ȳ
σ

)
(3.5)

where auxiliary function

g3(x) :=
1

h(x) − x
− x (3.6)

is monotonically decreasing.

First, we prove by a lemma that the auxiliary function g3 is monotonically increasing.

Lemma 3.3. The auxiliary function g3(x) defined in (3.6) is monotonically increasing.

Proof. The derivative of g3(x) is:

g′3(x) = −
h′(x) − 1

[h(x) − x]2 − 1

=
1 − h(x)[h(x) − x] − [h(x) − x]2

[h(x) − x]2

=
1 − [h(x) − x][2h(x) − x]

[h(x) − x]2 .

By (1.10), we know that [h(x) − x][2h(x) − x] − 1 > 0, it follows that g′3(x) < 0. Therefore, g3(x) is
monotonically increasing. �
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Proof of Theorem 3.2. First, we calculate E[(X − µ)1A] in a similar way in Lemma 3.1:

G · E[(X − µ)1A] =

∫ G−a

θ

(x − µ)(x − θ) fX(x)dx + (G − a − θ)
∫ G

G−a
(x − µ) fX(x)dx

≈ σ2
∫ G−a

θ

( x − µ
σ

) ( x − µ
σ
−
θ − µ

σ

)
fX(x)dx

≈ σ2
∫ +∞

θ∗

(
t2 − θ∗t

)
ϕ(t)dt

= σ2 [
Φ(t) − tϕ(t) + θ∗ϕ(t)

]+∞
θ∗

= σ2 [1 − Φ(θ∗)] .

Next, we calculate E(X|A) as follows:

µθ = E(X|A) =
1

P(A)
E(X1A)

=
G · E[(X − µ)1A]

G · P(A)
+ µ

≈
σ[1 − Φ(θ∗)]

ϕ(θ∗) − θ∗[1 − Φ(θ∗)]
+ µ

=
σ

ϕ(θ∗)
1 − Φ(θ∗)

− θ∗
+ µ.

Hence, we obtain:

µθ =
σ

h(θ∗) − θ∗
+ µ. (3.7)

Substituting σ/(h(θ∗) − θ∗) + µ for µθ in (3.4) and rearrange it, we obtain:

g3(θ∗) =
1

h(θ∗) − θ∗
− θ∗ =

ȳ
σ
. (3.8)

We know that g3 is monotonically decreasing from Lemma 3.3, hence:

θ̂∗ = g−1
3

( ȳ
σ

)
. (3.9)

Since θ∗ = (θ − µ)/σ, we thus have:

θ̂ = µ + σg−1
3

( ȳ
σ

)
.

�

Lemma 3.4.

V(Y) = V(X|A) ≈
σ2h′′(θ∗)

h(θ∗)[h(θ∗) − θ∗]2 . (3.10)
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Proof. In the same way as for Theorem 3.2, we obtain:

G · E[(X − µ)21A] =

∫ ∞

θ

(x − µ)2(x − θ) fX(x)dx

≈ σ3
∫ +∞

θ∗

(
t3 − θ∗t2

)
ϕ(t)dt

= σ3
[
−(t2 + 2)ϕ(t) + θ∗tϕ(t) + θ∗(1 − Φ(t))

]+∞

θ∗

= σ3 [
2ϕ(θ∗) − θ∗(1 − Φ(θ∗))

]
.

Therefore,

E(X2|A) =
1

P(A)
E(X21A)

=
1

P(A)

{
E[(X − µ)21A] + 2µE[(X − µ)1A] + µ2P(A)

}
=

G · E[(X − µ)21A]
G · P(A)

+
G · E[(X − µ)1A]

G · P(A)
2µ + µ2

≈ σ2 2h(θ∗) − θ∗

h(θ∗) − θ∗
+

2σµ
h(θ∗) − θ∗

+ µ2.

Consequently, we have:
V(X|A) = E(X2|A) − [E(X|A)]2

≈ σ2 2h(θ∗) − θ∗

h(θ∗) − θ∗
−

σ2

[h(θ∗) − θ∗]2

= σ2 [2h(θ∗) − θ∗][h(θ∗) − θ∗] − 1
[h(θ∗) − θ∗]2

=
σ2h′′(θ∗)

h(θ∗)[h(θ∗) − θ∗]2 .

The last equation is from (1.10) in Lemma 1.1. �

Theorem 3.5. For large samples, the variance of θ̂ in (3.5) is approximated by:

V(θ̂) ≈
h(θ∗)[h(θ∗) − θ∗]2σ2

nh′′(θ∗)
. (3.11)

Proof. In a similar way as for Theorem 2.2, we have:

V(θ̂) ≈
[
(g−1

3 )′
]2

y=ȳ/σ
· V(ȳ)

=
1

[g′3(θ̂∗)]2
·

1
n

V(Y)

=
h(θ∗)[h(θ∗) − θ∗]2

h′′(θ∗)
·
σ2

n
.

Here we use the results for g′3 in Lemma 3.3. �
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3.3. Maximum likelihood estimators

The conditional density of Y = X − θ under the condition that the event A occurs:

fY(y|θ) =
1

P(A)

∫ a

a−y
fS ,X(s, y + θ)ds

=
1

P(A)

∫ a

a−y

1
G

fX(y + θ)ds

=
1

P(A)
y
G

fX(y + θ)

=
y/σ

ϕ(θ∗) − θ∗[1 − Φ(θ∗)]
1
√

2πσ
e−

1
2σ2 (y+θ−µ)2

where fS ,X the joint probability density of S and X.
Therefore, the log-likelihood function for the truncated sample in (3.1) is:

ln L(θ) =

n∑
i=1

ln Yi −
n
2

ln(2π) − n lnσ2

− n ln (ϕ(θ∗) − θ∗[1 − Φ(θ∗)]) −
1

2σ2

n∑
i=1

(Yi + θ − µ)2.

Differentiating ln L(θ) with respect to θ, we have:

d ln L
dθ

=
n
σ
·

1 − Φ(θ∗)
ϕ(θ∗) − θ∗[1 − Φ(θ∗)]

−
1
σ2

n∑
i=1

(Yi + θ − µ)

=
n
σ
·

1
h(θ∗) − θ∗

−
n
σ2 (ȳ + θ − µ)

=
n
σ

(
1

h(θ∗) − θ∗
−

ȳ
σ
− θ∗

)
.

Setting this derivative equal to zero, we obtain the same equation as (3.8):

g3(θ∗) =
1

h(θ∗) − θ∗
− θ∗ =

ȳ
σ
.

Hence, we obtain the same estimator as (3.5).

3.4. Interval estimation for large samples

The second-order derivative of ln L(θ) is:

d2 ln L
dθ2 =

n
σ2 ·

−h′(θ∗) + 1
[h(θ∗) − θ∗]2 −

n
σ2

=
n
σ2 ·

1 − [h(θ∗) − θ∗][2h(θ∗) − θ∗]
[h(θ∗) − θ∗]2

= −
n
σ2 ·

h′′(θ∗)
h(θ∗)[h(θ∗) − θ∗]2 .
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By large sample properties of maximum likelihood estimates, we have:

√
n(θ̂ − θ)

d
→N

0, (
−

d2 ln L
ndθ2

)−1 .
The variance of the maximum likelihood estimate of the gap length θ̂ can be approximated by:

Var(θ̂) ≈
(
−

d2 ln L
dθ2

)−1
∣∣∣∣∣∣∣
θ=θ̂

=
h(θ̂∗)[h(θ̂∗) − θ̂∗]2

h′′(θ̂∗)
·
σ2

n
.

Based on the asymptotic normality for large samples, the approximate 95% confidence interval for the
truncation point θ is:

θ̂ ± 1.96 ×

√
h(θ̂∗)[h(θ̂∗) − θ̂∗]√

h′′(θ̂∗)
×

σ
√

n
. (3.12)

4. Results

Since the analytic form of the auxiliary functions g1(x), g2(x), and g3(x) cannot be given, we usually
use numerical search algorithms, such as the Newton-Raphson method, to obtain approximate solutions
to the maximum likelihood estimate of the truncation point or gap length θ. In practice, another simple
approach is to construct the inverse function table based on the monotonicity of the auxiliary function
and combine it with interpolation techniques, which can quickly obtain the inverse function values. In
the following, we perform Monte Carlo simulations for the truncated normal model and the Lander-
Waterman model, respectively, to evaluate the estimates and the corresponding confidence intervals
given earlier. Finally, our estimation methods are tested on actual DNA sequencing dataset.

4.1. Results for truncated normal model

Using Monte Carlo simulations, we evaluated the large-sample nature of the point estimates of the
truncation point θ in (2.1) and the interval estimates in (2.8). In our experiments, the parameters of the
population X are set as µ = 180 and σ2 = 372. The combinations of truncation point θ = 30, 90, 150
and sample size n = 50, 500 were simulated respectively, and each combination was sampled 1000
times.

It can be seen from Figure 2 that the kernel densities of the truncated point estimates in (2.1)
for different combinations are very close to the corresponding curves of theoretical normal densities.
The numbers in the figure indicate the proportion that the true parameters are covered by the
approximate 95% confidence intervals, and these numbers show that the true confidence coefficients of
the confidence intervals given by (2.8) are quite close to 95%. Therefore, the simulation results of the
truncation point estimators given in this paper are completely consistent with the theoretical analysis
results.
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Figure 2. The simulated and theoretical densities estimated by the truncation points under
different truncation points and different sample sizes. The solid lines are the densities of
the simulation results, and the dashed lines are the theoretical densities. The numbers in
the figure give the proportion that the true parameters are covered by the approximate 95%
confidence intervals in the experiment.

4.2. Results for Lander-Waterman model

In this experiment, we randomly generated a DNA sequence of 316K bp in length with 500 gaps,
and randomly generated 1.58M DNA fragments from it. The length of DNA fragment is normally
distributed: X ∼ N(180, 372). In the same sequencing project, the larger the gap length θ, the less the
number of fragments n spanning the gap, and there is roughly linear association between θ and n (see
Figure 3).

In order to evaluate the estimates in (3.5) at different gap lengths, studentized errors were computed
as follows:

t =
θ − θ̂

σ̂θ

where the standard deviation σ̂θ was estimated by the square root of V(θ̂) in (3.11).

From this experiment, we found that 6.2% of the studentized error falls outside the approximate
95% confidence limit (see Figure 4). This shows that the true confidence coefficient of the approximate
confidence interval given by (3.12) is very close to the nominal confidence coefficient of 0.95.
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Figure 3. Number of fragments
spanning gaps with different length.
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Figure 4. Studentized error in the
estimation of gap length.

4.3. Actual DNA sequencing dataset

The Illumina whole-genome paired-end sequencing dataset SRR001665 of E. coli was used in this
experiment. The total length of the target sequence was 4,639,675 bp, and a total of 20,816,448 pairs
of read sequences of length 36 were found in this sequencing project. The dataset can be accessed
online from https://www.ncbi.nlm.nih.gov/sra.

By mapping read pairs to reference sequences of the E. coli genome, we obtain the distribution of
insert size for the SRR001665 dataset, which follows a normal distribution with mean µ = 215.43 and
standard deviation σ = 10.51 almost perfectly (see Figure 5).

µ = 215.43
σ = 10.51
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Figure 5. The distribution of insert size for the SRR001665 dataset.

First, we used the velvet [18] assembly software to assemble the reads of the sequencing dataset
into contigs, and the paired-end information was not used in the assembly phase. Then, we utilized the
paired-end information to find adjacent contigs by mapping mate pairs onto contigs. That is, one of
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a read pair is on one contig and the other one is on some other contig, and so this read pair provides
evidence that the two contig are adjacent. Furthermore, under the assumption of normality for the
distribution of insert size, the length of the gap between two adjacent contigs can be estimated by (3.5)
in Theorem 3.2.

For the large sample nature, we impose a limit on the number of mate pairs spanning the gap, i.e.,
we require the size of the truncated sampleY in (3.1) to be no less than 50. In the SRR001665 dataset,
there are 542 gaps satisfying the condition n ≥ 50, and the estimation results are shown in Figure 6.
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Figure 6. The estimation results for the gaps found in the SRR001665 dataset.

The experimental results show that the estimated values are very close to the true values (see
Figure 6a). Most of the estimates have errors within 4, with one outlier that has an error close to 8
(see Figure 6b). In fact, by the estimate variance in (3.11), outliers can be used to diagnose whether
the connection of two contigs considered to be adjacent is reliable.

It should be noted that the performance of the estimator (3.5) is sensitive to the normality. Small
departures from normality do not create any serious problems in the estimates of gap length. However,
if the distribution of insert size depart far from the normality, the estimator may have notable bias.

In fact, the length distribution of inserts is mainly affected by different platforms and their
operational parameters, and in general, the insert size in a specific project approximately follow a
normal distribution, which is generally slightly right-skewed [19].

5. Conclusions

In this paper, we study the truncation point estimation for truncated normal distribution, where the
mean µ is known and the actual sample observations are the original observations after subtracting
the truncation point. The cases in which the variance σ2 is known and unknown are discussed, and
the moment method and the maximum likelihood method are employed to give the estimators of the
unknown parameters. When σ2 is known, the two methods obtain the same estimator of the truncation
point. When σ2 is unknown, the two methods yield similar results, and the key difference lies in
the estimation of the sample variance. Approximate confidence intervals for truncation point θ are
given for large samples. Based on the Lander-Waterman model, the method of estimating truncation
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points is extended to the estimation of gap length in DNA sequencing, and the point estimation and
interval estimation of gap length under the assumption of normality are given. The Monte Carlo
experimental results show that the estimators given in this paper are consistent with the results of
the simulation experiments, whether it is the truncated normal model or the Lander-Waterman model.
Experimental results from actual DNA sequencing dataset show that accurate estimates of gap length
can be obtained by the estimation method proposed in this paper when the insert size is approximately
normally distributed.
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