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1. Introduction

Throughout this paper, we assume that A is a non-empty, closed and convex subset (CCS) of a
Banach space (BS) A, R* is the set of nonnegative real numbers and N is the set of natural numbers. In
addition, the symbol — refers to the weak convergence and — to the strong convergence.

The set of all fixed points (FPs) for an operator = : A — A is denoted by Y(Z), which is defined by
the point v € A such that the equation v = Ev is satisfied.

Let 2 : A — A be a self-mapping, then = is called:

(1) Contraction if there exists a constant « € [0, 1) such that d(Ev, E2w) < ad(v, @).
(1) Nonexoansive if d(Ev, E@) < d(v, w), for all v, w € A.

Clearly, the contraction mapping is nonexpansive when a = 1.
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FP techniques are applied in many solid applications due to their ease and smoothness such as
optimization theory, approximation theory, fractional derivative, dynamic theory, and game theory.
This is the reason why researchers are attracted to this technique. Also, this technique plays a
significant role not only in the above applications but also in nonlinear analysis and many other
engineering sciences. One of the important trends of FP methods is the study of the behavior and
performance of algorithms that contribute greatly to real-world applications.

One of the well-established principles of the FP theory is Banach’s contraction principle (BCP).
This principle is significant as a source of existence and uniqueness theorem in various parts of science.
BCP depends on the Picard one-step iteration, which is given by:

Vier = By, Vi 1,

where = is a contraction mapping defined on a complete metric space (MS). When the existence of
the FP theorem is guaranteed in the setting of complete MS, BCP is not well applied to nonexpansive
mapping because Picard’s iteration gives poor results for the convergence of FP. So, many authors
tended to create many iterative methods for approximating FPs in terms of improving the performance
and convergence behavior of algorithms for nonexpansive mappings. Moreover, data-dependent results
and the stability results with respect to = via these methods have been introduced. For more details,
we refer to some iterative methods such as the iteration of Mann [1], Ishikawa [2], Noor [3], Argawal
et al. [4], Abbas and Nazir [5]. In addition, SP iteration [6], S *-iteration [ 7], CR-iteration [8], Normal-S
iteration [9], Picard-S iteration [10], Thakur iteration [11], M-iteration [12], M*-iteration [13], Garodia
and Uddin iteration [14], two-step Mann iteration [15]. Also, for more applications involved in iteration
methods, see Hasanen et al. [16, 17], and many others.

Assume that {n;} and {y;} are nonnegative sequences in [0, 1]. The algorithms below are known as
S algorithm [4], Picard-S algorithm [10], Thakur algorithm [11] and K*-algorithm [18], respectively:

Vo € A,
w;={0-n)yv;+n8v;, Vix>1. (1.1)
Vier = (I = yi)vi + yiEwy,
Ve € A,
@; = (1 —n)vi + niEv; .
. Vi>1. 1.2
9i = (I —y)vi +v:Ew@;, (1.2)
Viel = E@,
Ve € A,
@; = (I —n)vi + nEv;, .
- Vi>1. 1.3
i =21 =y)vi +yi@)), (1.3)
Viel = E@i,
Vo € A,

@; = (1 —a)v; + @B,
9i = E((1 —y)w: +yEw)),
Vitl = 29,
In 2014, Gursoy and Karakaya [10] presented the iterative method (1.2) and called it the Picard-S
iteration. They proved numerically and analytically that the Picard-S iteration converges faster than

Vi>1. (1.4)
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Picard, Mann, Ishikawa, Noor, SP, CR, S, S*, Abbas and Nazir, normal-S and two-step Mann iteration
procedures for almost contraction mappings (ACMs).

In 2016, Thakur et al. [11] illustrated that the iteration (1.3) converges faster than Picard, Mann,
Ishikawa, Agarwal, Noor and Abbas iteration for Suzuki generalized nonexpansive mappings (SGNMs)
by a numerical example.

Recently, Ullah and Arshad [18] gave K*-algorithm (1.4) and proved that K*-algorithm (1.4)
converges faster than § algorithm (1.1), Picard-S algorithm (1.2) and Thakur algorithm (1.3) for
SGNMs. Moreover, they noted that the Picard-S iteration (1.2) and Thakur iteration (1.3) have the
same rate of convergence.

On the other hand, nonlinear integral equations are used to describe mathematical models arising
from mathematical physics, engineering, economics, biology, etc [19]. In particular,
Volterra-Friedholm equations arise from boundary value problems and mathematical modeling of the
spatiotemporal evolution of the epidemic. For various biological models, see [20, 21]. Recently, a
large number of researchers turned to solve nonlinear integral equations with the involvement of
iterative methods, for example, see [22-26].

Based on the works mentioned above, in this manuscript, we construct a new algorithm to get a
better affinity rate of ACMs and SGNMs as follows:

Vo € A,

@; = (1 - )y + By,

pi = E((1 - np)w; + niEw;), (L.5)
i =E(1 - y)gi +7iE@)

Vi = EJ,,

for each i > 1, where «;, n; and 7y; are sequences in [0, 1].

Our work is organized as follows: In section 2, we give some definitions, propositions, and lemmas,
which facilitates the reader’s palatability of our results. In section 3, the performance and convergence
rate of our algorithms are analyzed analytically and we found that the convergence rate is satisfactory
for ACMs in a BS. Moreover, the weak and strong convergence of the proposed algorithm is discussed
for SGNMs in the context of UCBSs in section 4. In section 5, we proved that our new iterative
algorithm is G-stable. Further, data-dependence results for ACMs under our iterative scheme (1.5)
are studied in section6. In addition, we presented two examples to show that our method is faster
than the iteration schemes (1.1)—(1.4) in section 7. Ultimately, in section 8, the proposed algorithm is
implicated to find the solution to the Volterra-Fredholm integral equation. In section 9, the conclusion
and future works are derived.

2. Preliminaries

This part is intended to give some definitions, propositions and lemmas that will comfort the reader
in understanding our manuscript and will be useful in the sequel.

Definition 2.1. A mapping Z : A — A is called SGNM if
1 - - =
> v-2v||<|lv-wl = ||IEv - Ew]| <L |lv - @], Vv, @ € A.
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Definition 2.2. A BS A is called a uniformly convex if for each € € (0, 2], there exists 6 > 0 such that

orv,w € A satisfying V|| < 1, |lw|| < 1 and ||v — @|| > €, we get ||*=Z|| < 1 - 6.
8 8 5

Definition 2.3. A BS A is called satisfy Opial’s condition if for any sequence {v;} in A so that v; = v €
A, implies
limsup ||v; — V|| < limsup ||v; — @||, for all @ € A withv # @.

{—o0 i—00

Definition 2.4. Let {v;} be a bounded sequence in a BS A. For v e A C A, we set

R(v, {vi})) = limsup |lv; — v||.

i—00

The asymptotic radius of {v;} relative to A is defined by
RA, {v;}) = inf{R(v,{v;}) : v € A}
The asymptotic center of {v;} relative to A is defined by
O, vi}) = {v € A RO, (vi}) = R(A, {viD)}.

It should be noted that, Q(\, {v;}) consists of exactly one point in a UCBS.

Definition 2.5. [27] A mapping E : A — A is called ACM, if there exists 0 € (0, 1) and some constant
¢ > 0 so that
IZv — 2w < O|lv — w|| + €|lv— V||, Yv,@ € A. 2.1)

Definition 2.6. [28] Suppose that the real sequences {n;} and {y;} converge to n and vy, respectively.

Suppose also there is
ll7: — 7l

oo ly =l

Then, we say that

(1) the sequence {n;} converges faster to n than {y;} does toy, if x = 0,
(2) {n;} and {y;} have the same rate of convergence, if x € (0, o).

Definition 2.7. [28] Suppose that EE:A > Aare given operators. An operator = is called an
approximate operator for 2, if for some € > 0, we get

<€ VneA.

—_
— —
Hn_ Hn
— [l

Definition 2.8. [29] Let ] : R* — R* be a nondecreasing function satisfies J(0) = 0 and )(s) > 0 for
all s > 0. A mapping E : A — A is called satisfy a condition (I) if

lv—-Z2v|| >3, T(E))), Yv € A,

where d (v, T(2)) = inf{|ly — £|| : { € T(E)}.
Proposition 2.1. [30] Let 2 : A — A be a given map. If E is

(1) nonexpansive mapping, then it is SGNM.
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(2) SGNM with a non-empty FP set, then it is quasi-nonexpansive mapping.
(3) SGNEM, then it is satisfied the following inequality

lv—Ew|| <3||Ev—V||+|lv-—al|, Yv,o € A.

Lemma 2.1. [30] Let A be a subset of a BS A, which satisfies Opial’s condition and Z : A — A be a
SGNM. If {vi} = { and lim;_, ||2@; — vi|| = 0, then E{ = (, i.e., [ — E is demiclosed at zero.

Lemma 2.2. [30] Let A be a weakly compact convex subset of a BS A with the Opial’s property. If
Z:A - Aisa SGNM, then Z possess a FP.

Lemma 2.3. [28] Assume that {¢;} and {¢’} is nonnegative real sequences satisfy the inequality below:

i1 < (1 =z + ¢},

where z; € (0, 1) for eachi > 1, ), z; = oo and lim;_, % =
i=0 !

0, then lim;_,, ¢; = 0.
Lemma 2.4. [31] Let {¢;} and {¢}} be nonnegative real sequences satisfy the inequality below:
eir1 < (1 = z0)pi + zigp;,

where z; € (0,1) for eachi > 1, }’ z; = 0o and ¢: > 0, then
i=0

0 < limsupy; < limsup¢;.

[—00 [—00

Lemma 2.5. [32] Assume that A is a UCBS and {¢;} is a sequence satisfies 0 < n < & < n* < 1, for
all i € N. Assume also {w;} and {v;} are two sequences in A so that lim sup{w;} < p, limsup{v;} < p

and lim sup ||é@; + (1 — €)vi|| = p for some p > 0. Then lim,;_,, ||@; — v{|| = 0.

i—o0
3. Convergence rate

In this section, we discuss the rate of convergence of our iterative algorithm for ACMs.

Theorem 3.1. Assume that A is a BS and A is a closed convex subset (CCS) of A. Let 2 : A — A be a
mapping satisfying (2.1) with Y(Z) # 0. Suppose that {v;} is the iterative sequence generated by (1.5)

with {a;}, {n:}, {y:} € [0, 1] such that Z v; =00, Then {v;} — { € T(E).

i=0

Proof. Consider ¢ € T(E), then from (1.5), we get

lw: =Ll = (1 —a)vi + @By = |

(1 —a) (vi =) + @i (Bvi = Dl

(I=a)lvi= <l + aillEv; = ¢l

(I =a)llvi =<l + Oa; |lvi = <

(I =1 =8a)llvi -l (3.1

ININ

AIMS Mathematics Volume 7, Issue 10, 19026-19056.



19031

Using (1.5) and (3.1), we have

llpi =l I2((1 = ni@; + niZ@;) = |

154 = EX1 = n)@; + niZa@))||

< 08— ((1 —npw; + niEw))ll + £11¢ — EL|

= 01 —n)(w; = +n; Ew; -

< 0[( =n)llw: = &l + O |l = L]

< 6[1 - -0nlllw: -l

< 00 -(1-0n)(1 -1 -0a)llvi -l (3.2)

Similarly, from (1.5) and (3.2), one can write

19:-¢] < 6 --y)lp:i- 2

< FU-1=-0y)(1=1=0mn) -1 =-0a)llvi—ll. (3.3)
It follows from (1.5) and (3.3) that
i =2l = |2 ¢
< 0f9i-¢]
< CU-0=-0y)(=1=0mn)1 -1 =-0a)llvi—ll. (3.4)

Because 6 € (0, 1) and n;, ; € [0, 1], for all i > 1, then (1 — (1 — 0)n;) (1 — (1 — 6)a;) < 1. Hence (3.4)
reduces to

Vit = I <6 (1= (1 =)y llvi — Il (3.5)
It follows from (3.5) that

vier =2l < € (1= =6y llvi =
< @A —=1=0y)llvia =<l
=2l < &1 =1-8y)lve -l (3.6)
From (3.6), we have _
Vier = £l < €V lvg = £l l—[ (1= =0)y.). (3.7)
u=0

Again, since 6 € (0, 1)and y, € [0, 1], forall u > 1, then (1 — (1 — 6)y,) < 1. Itisknown that 1 -v < e™”
for each v € [0, 1], then by (3.7), we obtain
33i+1)

Vier = &ll € ———=—1Ivo = ZII. (3.8)

(1_9) Z Yu
e u=0

Taking the limit as i — oo in (3.8), we have lim ||v; — {|| = 0, that is {v;} — { € T(5).
For the uniqueness. Let £, {* € T(E) such that { # *, from the definition of Z, we can write

1= =18 - ECN <Ol =l + 118 =B =605 =l < NIE =47l

a contrary. Hence = {*. m|
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The next theorem shows that our iteration (1.5) converges faster than the iteration (1.4) in the sense
of Berinde [28].

Theorem 3.2. Let A be a CCS of a BS A and E : A — A be a mapping satisfies (2.1) with T(E) # 0.
Consider {v;} is the iterative sequence generated by the algorithm (1.5) with {«a;}, {n;}, {v:} € [0, 1] such
that 0 <y < vy; < 1, for alli > 1. Then the sequence {v;} converges faster to v than the iterative
scheme (1.4).

Proof. It follows from (3.7) and the hypothesis 0 <y <y; < 1 that

Ol -2l [ - -0

u=0
D v = 2111 = (1 =)y

vier =<

IA

Analogously, the iterative process (1.4) ( [18], Theorem 3.2) takes the form

i1 = Il < 6Vl = £ l—[ (1-(1-06)y.). (3.9)
u=0

Because y <y; < 1, for some v > 0 and all i > 1, then (3.9) can be written as

0N~ | [ - -6

u=0
DNl = 2111 = (1= y)™!.

iz =

IA

Put

=60V vo -2l = (1 -0y,
and

=62l =211 -1 -6)y)".
Define

é ) PV vy =211 = (1 = 9)’}’)”1 _ g+

i =

D=2 -1 - 6)y)!

Taking the limit as i — oo, we have lim p; = 0. This means that {v;} converges faster than {/;}tov. O

i—o0
4. Weak and strong convergence

This part has been enriched to obtain some convergence results of our iteration procedure (1.5) for
SGNMs in the setting of UCBSs.
We begin with the proof of the following lemmas:

Lemma 4.1. Let Abe a CCSofa BS A and E : A — A be SGNM with Y(E) # 0. If {v;} is the iterative
sequence given by the algorithm (1.5), then lim ||lv; — (|| exists for each { € Y(E).

AIMS Mathematics Volume 7, Issue 10, 19026-19056.
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Proof. Let { € Y(E) and 6 € A. Clearly, from Proposition 2.1 (2), every SGNM is quasi-nonexpansive
mapping, so

1
5 I =&l =0 < IZ - oll = [I=¢ = Zdll < i~ ol

Now, using (1.5), we obtain

l; = <l (1 — a)vi + a;Zv; = ]|
(I =a)llvi= <Ll + a; lIEv; = ||

(I = a)|lvi = Zll + @i llvi = £
lvi =<l (4.1)

IANIA

It follows from (1.5) and (4.1) that

lpi =<l = [EW1 - n)@; + niEw;) = |
< A =n)w; + niEw; = |
< (I =m)llw; =l +nil|IEw; =l
< (I =n)llw; =Ll + nill@; =
= @i =l
< lvi={lI. (4.2)

Similarly, from (1.5) and (4.2), one can write

13: = 2] = 1= = )i + v:Ep) = 2l < llpi = 2l < lvi = 11

At the last, using (1.5) and (4.3), we get
Wi =2l = |ES: = | < |3 = &l < Ivi = 2.

This leads to the sequence {||v; — £||} is bounded and nondecreasing for all £ € Y(Z). Hence lim ||v; — {||

exists. O

Lemma 4.2. Let A be a non-empty CCS of a UCBS A and 2 : A — A be SGNM. If {v;} is the
iterative sequence defined by the algorithm (1.5). Then YV (Z) # 0 if and only if {v;} is bounded and
hm ||EV,' - V,‘” =0.

Proof. Assume that T(Z) # 0 and take { € T (Z). Based on Lemma 4.1, lim ||v; — || exists and {v;} is
bounded. Put
lim [lv; = ¢1l = ¢. 43)

Applying (4.3) in (4.1) and taking lim sup, we can write

lim sup ||@; — £|| < limsup ||lv; — £|| = ¢.

[—00 1—00

According to Proposition 2.1 (2), we have

lim sup [[2v; - ¢II < limsup Iv; — ZI| = ¢. (4.4)

i—00 i—o0
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Again, using (1.5) and (4.1)—(4.3), we obtain

Vit =4Il = |23 = ¢

IZ (1 =y + viEp:) = <l

(1 —y)ei + viZEp: — ¢l

(I =y llp: = Ll +villEp; = <l
(I =y llp: = Ll + llp: — <l

llp: — <]l

IZ2((1 - n)w; + niEw;) —
(1 = n)w; + niEw; — |

(I =) llw; = &Il + n; |E@; -
(I =n) [lvi = 2l + millw: = |
vi = &Il =nillvi = Wl + mi llwwi = <11

IANIN IA

IA

IANIN A

Thus, we have

Vi1 =<l — lvi = <l <lw: =2l - vi = . 4.5)

i

Since 7n; € [0, 1], then by (4.5), we get

vier =2l =1lvi = 4l <

1

Vier =l =1vi =<l < @i = 2l = livi = £,

which implies that ||v;;; — || < ||@; — £|| . Then from (4.3), we have

¢ < liminf ||@; - ]| . (4.6)
It follows from (4.4) and (4.6) that
¢ = lim|lo; -l =lim||(1 - a)v; + &Bv; = {]|
= Iml(1 —a) (vi = O + @ Ev; = Dl
= limjla; (Evi - + (1 —a) vi = DIl 4.7)

From (4.3), (4.4), (4.7) and Lemma 2.5, we have lim;_,., ||Zv; — v;|| = 0.
Conversely, suppose that {v;} is bounded and lim ||Zv; — v;|| = 0. Suppose also E¢ € Q(A, {v;}), then

by Definition 2.4 and Proposition 2.1 (3), we can write

R(E{{vi}) = limsupljy; — EZ]|

< limsup B IEv; — vill + [lv; = £ID
= limsup|lv; - {ll = R({, {vi}),

which leads to £ € Q (A, {v;}). Since Q (A, {v;}) is singleton and A is a uniformly convex, thus, we get

Bl ={. O
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Theorem 4.1. Let A, A and E be as in Lemma 4.2. If A satisfies Opial’s condition and ('(Z) # 0, then
the sequence {v;} iterated by (1.5) converges weakly to a FP of E, that is {v;} — { € T(E).
Proof. Let { € T(E), based on Lemma 4.1, lim ||v; — {]| exists.

Now, we prove that {v;} has a weak sequlg;?[ial limit in (Z). Let {v; } and {v; } be subsequences of
{vi} so that {v; } — v and {v;} — v* for each v,v* € A. Using Lemma 4.2, we obtain lim ||Zv; — v;|| = 0.
From Lemma 2.1 and / — = is demiclosed at zero, we have (/ - Z)v = 0 = Evl_:mv, analogously,
=V =y,

For the uniqueness. Let v # v*, then by Opial’s property, we find that

lim|yv; =v|| = lim ||vl-j — v|| < lim ||v,-j -V
11— 00

j—oo Jj—oo

*

lim lv; — v*[| = lim |[v;, — v
i—00 k—o0
< lim |jv;, = v|| = lim [lv; = vll,
k— o0 i—o0
a contradiction, so v = v* and {v;} — { € T(E). O

Theorem 4.2. Let A be a UCBS and A be a non-empty compact convex subset of A. Assume that
Z:A — Ais SGNM and {v;} is the iterative sequence given by (1.5). Then {v;} — { € Y(E).

Proof. According to Lemmas 2.2 and 4.2, we have Y(E) # 0 and lim;, ||Zv; —vi|]| = 0. The
compactness of A implies that there is a subsequence {v;} of {v;} so that v; — { for some { € A.
Using Proposition 2.1 (3), one can get

Ivie = 2]l < 3| = Zvi [+ [lvic - ¢

, Vi> 1.

Passing k — oo, we obtain £ = £, thatis { € T(Z). Also, by Lemma 4.1, we get lim ||v; — {|| exists for
all £ € T(E), thus v; — { strongly. |
Theorem 4.3. Let A, A and E be described as Lemma 4.2 and {v;} be an iterative sequence defined

by (1.5). Then
{vi} — £ € Y(E) & liminf d(v;, T(E)) = 0,

where d(v, Y(E)) = inf{||[v - || : { € T (E)}.

Proof. A necessary condition is clear. Let liminf d(v;, Y(Z)) = 0, by Lemma 4.1, we get lim ||v; — {||
exists for all £ € Y(E), this implies tgaog liminf d(v;, T(E)) exists. From our la_;osoumption
liminf d(v;, Y(E)) = 0, we have limd(v;, Y(E)) = 0.

Hliloext, we shall show that thel;eoauence {vi} 1s a Cauchy in A. Because liminf d(v;, T(Z)) = 0, then

1—00

for a given € > 0, there is iy > 1 so that, for each i, j > i, we obtain

d(vi, T(E)) < % and d(v;, T(E)) <

N m

Hence, we get

m

[vi = vi|| < vi = Y@ + | Y @) - v)|| = dvi, YE)) + d(v;, T(E) < S*t5=6
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This proves that {v;} is a Cauchy sequence in A. As A is closed, then there is v € A so that limv; =v.
1—00

Since lim d(v;, T(E)) = 0, yields lim d(v, T(E)) = 0. Thus, v € Y(Z) as A is closed. This finishes the
proof. O

Theorem 4.4. Let A, A and E be defined in Lemma 4.2 and {v;} be an iterative sequence generated
by (1.5). If E fulfills the condition (I), then {v;} — { € T(E).

Proof. 1t follows from Lemma 4.2 that
ilirg IZv; —vi|| = 0. (4.8)
Based on the condition (/) in Definition 2.8 and using (4.8), we observe that
lim 3 (d(v;, Y(E))) < lim [|Ev; = vil| =0,

which leads to lim 1 (d(v;, Y(E))) = 0. From the definition of 1, we get lim d(v;, T(£)) = 0. Applying
Theorem 4.3, we conclude that {v;} — ¢ € T(&). |

5. Stability theorem

In this part, we show that our iteration process (1.5) is E-stable.

Theorem 5.1. Let A be a BS and A be a CCS of A. Suppose that E : A — A is a self-mapping
satisfies (2.1) and {v;} is the iterative sequence iterated by (1.5) with {a;}, {n;}, {y:} € [0, 1] so that

>, vi = oo. Then the algorithm (1.5) is Z-stable.
i=0

Proof. Let {o;} be an arbitrary sequence in A and assume that the sequence of our iteration (1.5) can
be written as v;;1 = f(&,v;), which converges to a unique point { and that ¢; = ||o;31 — f(E,07)||. In
order to show that = is stable, we must prove that lim ¢; = 0 if and only if limo; = £.

i—00 1—00

Assume that lim ¢; = 0, then from (1.5) and (3.5), we get

1—00

llovis1 =<l

o1 = fE, 00) + f(&, ) = Ll

lo7ie1 = fE, ol + [If(Z, o) = L]

¢i +1If (&, o) =<l

(1 =) [:( (1 =n) [(1 - a)o; + a;20] )]

1T\ mmEN - a)o; + aiEo]

_ ( (1 =) [(1 - a0 + &Zor] )] ¢

IA

= ¢i +||El=
+y,E - —
l +n,2[(1 — a)o; + a;Z0]

= (1 -1=-0y)lo; - LIl + i,

fori > 1, set
@i =lloi = ll, zi = (1 —60)y; €(0,1) and ¢ = ¢;.
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Because lim ¢; = 0, then lim Z = lim & = 0. Thus, all requirements of Lemma 2.3 are fulfilled. Hence

i—00 i—oo <i j—o00 i

lim|lo; = {]| =0, thatis limo; = .
11— 00 [— 00
Conversely, assume that lim o; = £, then, we get

¢ = o = fE o)l
= o =+ 7= fE ol
< o =L+ 118 = f(E, ol
< Nlosr =l + 6 (1 = (A = Oy llo; = I,
taking the limit, we have lim ¢; = 0. This finishes the proof. O

The following example support Theorem 5.1.

Example 5.1. Consider A = [0,1] and Ev =

5. Clearly, 0 is a FP of E. To prove E satisfies the
condition (2.1), let 0 = % and for each € > 0, we get

12y — E@l| - 0ly — @l - £]lv — Ev|

)%
clly = =
Y 2”

4
_EV <0, forallv,w € A.

S =l =5y -l -

Now, we illustrate that our algorithm (1.5) is E-stable. Suppose that «; = n; = y; = l+1 and vy € [0, 1],
then we obtain

1 1 v 1
— (11— . A D .
@ = i+1)vl+i+1(2) ( 2(i+1))v"

1 1 1| I |
9 = 2(( TS Ll ﬁ(?))_5(1_(i+1)+4(i+1)2)v"’

1 3 3 1
Ji = E-yei+vEp)=~|1-5= . airyr i
(A =%)pi +7:Z01) 4( 2+ 1) A+ 1) 8(l+1)3)v
1 3 3 1
i1 = Efi=2(1- - i
Vil 8( 2+ 1) AP 8(i+1)3)v

B 1_(z 33 1
= 8 "2G+D) aa+De sa+1p3))"

7 3 3 1 - , - -
Take o = 3 + D~ amE T e It is clear that o; € (0,1) for alli € N, EE) o; = 0. According to

2(i+1)

Lemma 2.3, limv; = 0. Choose h; = +2, we get
¢i = i — fE R
__[[ 1_m[(1_ )h+H{12
1 1 i
L _ l " +2(l+1) [(1 - l+1) i z+1 2]
i+3 4 | (l—m)h+m5’

+2(i+1) [(1 z+1)h T i+1 21]
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= L - l[ - 1)[(1 <z+1> 4(1+1)2 H
4 [ 1—

2(1+] ( (z+]) 4(z+1)2
1 3
4_1_4(z+1) 16( + 1) 32(z+1)%) ”
3 3 1 )

i+ 3 (4(1 +2) 4G+ D(i+2) " 16+ D2 +2) 323+ 1)3(i+2)

when i — oo, we have lim ¢; = 0. This implies that our iterative scheme is Z-stable with respect to E.

1—00

6. Data-dependence theorem
In this part, we present the data-dependence result for the operator = satisfies the inequality (2.1)
via our iterative algorithm (1.5).

Theorem 6.1. Let = be an approximation operator for a mapping E fulfills (2.1). Suppose that {v;} is
the iterative sequence given by (1.5) for E. Define an iterative sequence {v;} for Z as follows:

Vo €A,

@; = (1 —a)vi + Cl’i/E\Vi,

g- =E(( -m)@: +nEs), 6.1)
(= E(( =709+ 7ED).

Vi1 = EY,,

foralli > 1, where {a;}, {n;} and {y;} are sequences in [0, 1] such that

(p1) foralli>1,2y; > 1,
(p2) %% = oo.

IfE¢ = ¢ and B¢ = T so that limV; = £, then

-2« 75

for any fixed number € > 0.

Proof. 1t follows from (2.1), (1.5), (6.1) and Definition 2.7 that

o=@ = |1 - e+ @@y - ((1 - a7 + )

H(l —a)(vi—vi) + (EVi - ET/;)H

IA

(1 = |y =7 + i (e - =7 + |27 - 5

IA

(1 -a) ||v,- —/v\,-” + aﬁ”vi —/v\i” + il |lvi — Evill + ase
(1= (1= 0)a) |y = V|| + @il Ilvi — Evill + ave. (6.2)
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Again, using (2.1), (1.5), (6.1) and Definition 2.7, we have

loi =91l = n)w; + NEw;) — E((l —n)@; + nigai)H
< n)w; + Ni=w;) — & ((1 —N)@; + nigai)H
E((l - )i + nigai) - E((l - )i + nigai)H
< ((1 - 1) ||w, w@; | + n; |[|E@; ”)
+([(1 - )@ + nEw; - E((1 - n)w; + niEw)] + €
< 0(( = mllw; - @ + ni (2w - =7 + |27 - E5)))
+[(1 = )@ + niE@; — E((1 — n)w; + niEw;)] + €
< 9((1 — 1) ||Wi - ‘51'“ + 771'9“131' - 51'” +nilllw; — Ewil| + E)

+C[(1 = np)w; + niEw; — E((1 — g)w; + niEw;)] + €
= 01 -1 -0n) | @ - @|| + it l|w; - Ewil| + 0e
+C[(1 = n)w; + niEw; — E((1 — p)w; + n;2@;)] + €. (6.3)

Applying (6.2) on (6.3), we get

loi =9l = 00— =0m)[(1 =1 =0y =V + ail v - Evill + e

+0n;l ||w; — Ew;|| + 0 + €
+[(1 = p)@; + niEw; — E((1 - ngy)@; + nEw@;)]

= 01 =1 -0n) (-1 -0 |v -7
+0(1 — (1 —0)m) ail|lvi — Evi|| + Oa;€e + On;aie (0 — 1)
+0nl ||w; — Ew|| + e + €
+[(1 = p)@; + niEw; — E((1 - gy)@; + nEw@;)]

= 0(1-1-0n) (1 -1 -0a)]|vi -7
+0(1 = (1 = Om) il |lvi — Evill + Ol ||w; — Eai|
+[(1 - p)@; + niEw; — E((1 - ny)@; + nEw@;)]
+0a;€ + Onaie (B — 1) + O + €. (6.4)

Similar to (6.3), one can write
|[3:-5| < ea-a-omllei-5+ orclio: - =il + ve
+[(1 = y)@i + ¥iZpi — Z((1 — y)pi + viEp)] + €. (6.5)

Applying (6.4) on (6.5), we have

|9:-3 < ea-a-om{ea-a-ema-a-eam -7
0(1 = (1 - Om) @il |1v; — Zvill + it ||, — Eai
+C[(1 = n)w; + n,2w; — E((1 - n)w; + n,Ew;)]
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it follows that

Js:-5i]

<

+0a;€ + On;aie (0 — 1) + Oe + €}

+0yilllpi — Egill + O€ + €

+[(1 = )i + ¥iEpi — E((1 = y)gi + ¥iZp))]

6° (1= (1 =6)y) (1 = (1 =60 (1 = (1 =6 ||, =V

+6> (1 - (1 = 0)y,) (1 = (1 = O)n) il ||vi — Evi|

+6% (1 = (1 = O)y) nit |lw; — Ewi|

+0(1 = (1= 6)y) C[(1 = py)w; + niEw; — Z((1 - p)@; + niZw;)]
+0%a€ — Pyaie + Pyaie + e (0 — 1) — Pymaie (0 — 1)
+@ymiaie (@ — 1) + 0% — 07y,e + B yie + e — Oyie + Bye
+0yilllpi — Egill + Oe + €

+[(1 = )i + ¥iEpi — E((1 = y)gi + ¥iEpi],

0> (1—(1=0)y) (1= (1 =0n) (1= (1 = 0ay) v =7

+6° (1= (1= 0)y) (1 — (1 - O)n) ail llv; — Evil

+6 (I -1 =-0y)nlllw; — Ewi

+0(1 — (1 =0)y) t[(1 = n)w; + nEw; — E((1 - n)@; + nEw;)]
+C[(1 = y)pi + 7iEpi — E((1 — y)gi + viE))]

+0yil llpi — Egill + e + Fyiaie (0 — 1) + 8 niaie (0 - 1)
+60*ymiaie (0 — 1)* + 6% + y,e (0 — 1) + 20€ + Oy;e(0 — 1) + €.

Finally, from (2.1), (1.5) and (6.6), we get

||Vi+1 - Vi+1||

AIMS Mathematics

IA

IA

IA

=9, -E9

”ESI - Egl + Egl - EA,H

Haﬁi—fﬁiﬂ + =5, —EAiH

GHSI - SIH + 5”51 - ES,” + €

0 (1—(1-0y) (1 =1 =0n) (1 -1 -0a)]|vi =V

+6° (1 = (1= 0)y) (1 — (1 - O)n) ailllv; — Evil

+6° (1 - (1 - O)y) it |lw; — Ewl

+6° (1 = (1 = Oy £ [(1 — m)@; + niEw; — E((1 — n)w; + nZw))]
+0C[(1 —yp)oi + viZpi — E((1 — y)@i + ¥iEp)]

+0%yil llpi — Epill + €||3; — EF|| + Poe + Byiaie (0 - 1)
+93nl~a/,~e @-1+ 03yl~nlal~e O-17°+e+ 93’)/,6 O -1)+26%€
+927,~6(9 — 1)+ 6e+e.

(6.6)

(6.7)
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Since a;,7n;,v; € [0, 1] and 8 € (0, 1), we conclude that

(1-(1-0a)<1,
(1-0=-60m) <1,
(1-(1-0y) <1,
@-1)<0,
6,6%,6 <1,
Fa;, Py, P < 1.

Applying (6.8) in (6.7), we have

[Vie1 =Vt < (L= A =0 |vi =7 + €lvi = Evill + L1l - Ewi|
+C[(1 = np)w; + nEw; — E((1 — )@, + n;.2@,)]
+C[(1 —y)pi + viEpi — E(1 =y + viEi)]
+€||3; = E4|| + vit llp: — Epill + 2y:€ + 6€.

From the axiom 2y; > 1, we can obtain

||Vi+1 —37i+1||
(1= (1= 0)y) |jvi = || + 29 1lvi — Evil
+2yil lw; — E@ill + 2y:€ ||3: — ET || + vit llp: — Epil

IA

+2y: [(1 = p)w; + niBw; — E((1 — n)w; + niEwy)]
+2yL[(1 = y)oi + viEp: — E((1 —y)@i + viEp:)]
+2y;€ + 12vy;€e

= (L= =-0y|vi-¥

26 |lv; — Evill + 2L llw; — Ewil| + 2¢||3; — ET || + Lllp; — Egil
+yi(1 — 0) X 1-8
+2f (1 - )@ + nEw; — E((1 — n)w; + n.Ewy)]
(1-6)
L2 [(1 = y)pi + ¥Zpi — E((1 = y)pi + ¥Ep)] + 146}
(1-6) '

Putg; = ||vi =¥,z = (1 - 6)y; € (0, 1) and

. (20 =Byl + 2L @i - Ewill + 2¢]|3; - 2| + Cllp: - Epil
+25 [(1 =)@ + nEw; — Z((1 - n)@; + NEw;)]
(1-96)
N 20[(1 = y)pi + viZp; — E((1 — y)gi + viEpi)] + 14€
(1-96) '

We know that from Theorem 3.1, lim v; = { and since = = £, we have

1—00

(6.8)
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lim|jy; - Evj|| = lim||lz; - Z@i|
[—00 =0
= lim||9; - £5/| = lim[lp; - Epill
[—00 1—00

= }Lﬁ (1 =)@ + niEw; — E((1 - n)w; + nEwy)]

= llgg [(1 —y)pi + viEpi — E(1 —y)ep:i + viEp)]| = 0.

Hence, from Lemma 2.4, we get

—~ . 14
0< hriiup |vi =¥ < hrirliup a _Eg). (6.9)
Since lim v; = ¢ and by our axiom limv; = Z the inequality (6.9) leads to
14e
”5 _EH =<0
This completes the proof. O

7. Numerical examples

The following example supports the analytical results obtained from Theorem 3.2 and studies the
performance and speed of our algorithm compared with the previous algorithms.

Example 7.1. Let A =R, A =[0,50], and E : A — A be a mapping defined by
v) = Vv2 =9y + 54,

(1]

Clearly, 6.0000 is a FP of the mapping E. Take a; = n; = y; = ﬁ, with different initial values. Then
we obtain the following tables (see Tables 1-3) and graph (see Figures 1-3) for comparison of the
various iterative methods.

102 T T T T 102
—— S algorithm
100F Picard-S algorithm| ] 100k ~~.
————— Thakur algorithm S~o
P N NG E K*—algorithm SE S~o

10 - - -HR algorithm e T \‘

T \
10 ——§ algorithm YA
S S Picard-S algorithm T, : i
100 v NN A - Thakur algorithm |i
---------- K*—algorithm 1 i
. [
1078 - - —=HR algorithm \ !
Vil
1
1010k . . 1010F 1
\ 13

10-12 1 1 1 1 1 L L L 1 10-12 1 1 1 L L
2 4 6 8 10 12 14 16 18 20 1 2 3 4 5 6 7
Number of iterations Elapsed time [sec] %107

Figure 1. Graphically comparison of the proposed algorithm (HR algorithm) when v, = 1.
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Table 1. Example 7.1: Numerical effectiveness comparison of the proposed algorithm (HR
algorithm) when v, = 1.

Iter (n) S algorithm Picard-§S algorithm  Thakur algorithm K*-algorithm HR algorithm

1 8.70091704981746  7.16921920849454 7.16914772374443  6.36059443309194  6.00727524833131
2 7.16526232112099  6.10977177957558  6.10975923118057  6.01468466644452  6.00002780412529
3 6.39088232469395  6.00714403607375 6.00714316980988  6.00065450058063  6.00000018328059
4 6.10931564922512  6.00044721072023  6.00044715630748  6.00003168526056  6.00000000153606
5 6.02823416956883  6.00002793225376 6.00002792885454  6.00000161316022  6.00000000001474
6 6.00711636371271  6.00000174471605  6.00000174450373  6.00000008491151  6.00000000000015
7 6.00178220920879  6.00000010899371  6.00000010898045  6.00000000457683

8 6.00044563525887  6.00000000680959  6.00000000680876  6.00000000025113

9 6.00011139089900  6.00000000042547  6.00000000042542  6.00000000001397

10 6.00002784178933  6.00000000002659  6.00000000002658  6.00000000000079

11 6.00000695905778  6.00000000000166  6.00000000000166

12 6.00000173945939

13 6.00000043479852

14 6.00000010868515

15 6.00000002716811

16 6.00000000679132

17 6.00000000169767

18 6.00000000042438

19 6.00000000010609
20 6.00000000002652

Note: CPU time in seconds, respectively: 0.0036537, 0.0067923, 0.0067674, 0.0067261, 0.0066002.

1010k

S algorithm
Picard-S algorithm| ]
Thakur algorithm
—algorithm
- - =HR algorithm

K*

10-12

1 1
5 10

1
15

1
20 25

Number of iterations

100 F

102 F

104

S algorithm

10

Picard-S algorithm

K*—algorithm
8= — —HR algorithm

1010 F

\
1
1
1
1
1
————— Thakur algorithm :
1
1
1
1
1

10-12 1 L
2 3

4 5 6 7 8
Elapsed time [sec]

9
%1078

Figure 2. Graphically comparison of the proposed algorithm (HR algorithm) when v, = 23.
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Table 2. Example 7.1: Numerical effectiveness comparison of the proposed algorithm (HR
algorithm) when v, = 23.

Iter (n) S algorithm Picard-S algorithm Thakur algorithm K*-algorithm HR algorithm

1 19.3563152555029  15.9518056335603  15.9517798586745 12.5877267284391 6.85064626172682
2 15.9377280808459  10.1547429779848  10.1547063746371 7.21310921795745 6.00404110670722
3 12.8216267389821  6.83637415013381  6.83635232023217 6.07773436689889  6.00002666859578
4 10.1453665006161  6.07061076131832  6.07060799598213  6.00385998151440  6.00000022350839
5 8.09904894091384  6.00453182122915  6.00453163699128  6.00019677562843  6.00000000214472
6 6.83342864338475  6.00028356649349  6.00028355493982  6.00001035833149  6.00000000002245
7 6.26044908931579  6.00001771655983  6.00001771583789  6.00000055832830  6.00000000000025
8 6.07032543085564  6.00000110688254  6.00000110683744  6.00000003063582

9 6.01796113338512  6.00000006915944  6.00000006915662  6.00000000170455

10 6.00451434416413  6.00000000432139  6.00000000432122  6.00000000009591

11 6.00112994220417  6.00000000027003  6.00000000027002  6.00000000000545

12 6.00028253511929  6.00000000001687  6.00000000001687

13 6.00007062920329  6.00000000000105  6.00000000000105

14 6.00001765533615

15 6.00000441334114

16 6.00000110322227

17 6.00000027578013

18 6.00000006893931

19 6.00000001723354
20 6.00000000430809
21 6.00000000107696

22 6.00000000026923

23 6.00000000006730

24 6.00000000001683

Note: CPU time in seconds, respectively: 0.0088935, 0.0065673, 0.0062978, 0.0054715, 0.0052041.

1010k

' ."‘-,‘ N\ - - —-HR algorithm

S algorithm
Picard-S algorithm| ]
Thakur algorithm
K*—algorithm

100 F

102 F

10'4 L

10-12

5

1
10

1
15

1
20

Number of iterations

1
25

30

10° ¢

1010 F

10-12

S algorithm
Picard-S algorithm
Thakur algorithm
K*—algorithm

HR algorithm

-2

2

3

4

5

6

7

Elapsed time [sec]

8
%1078

Figure 3. Graphically comparison of proposed algorithm (HR algorithm) when v, = 41.
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Table 3. Example 7.1: Numerical effectiveness comparison of the proposed algorithm (HR
algorithm) when v, = 41.

Iter (n) S algorithm Picard-S algorithm Thakur algorithm K*-algorithm HR algorithm
1 36.9195393902310  32.9359459295575  32.9359410372494  28.6777050430159 18.0010100671820
2 32.9185209048623  25.1854713159820  25.1854637821918 19.1184050275537 6.99692674147933
3 28.9966652255498  17.9433658908193  17.9433563898048 11.5396125686070 6.00870649597241
4 25.1701649172411  11.6863804499820  11.6863697408416 7.09098245036886 6.00007316294814
5 21.4670877470757  7.49707008913586  7.49706191231517 6.07877285288080  6.00000070206652
6 17.9313757495734  6.15612940775542  6.15612775011077 6.00426075582864  6.00000000734890
7 14.6320375697776  6.01035659987680  6.01035647945727  6.00023000499555  6.00000000008173
8 11.6781275774842  6.00064966715110  6.00064965955411  6.00001262154899  6.00000000000095
9 9.23371552492475  6.00004060231534  6.00004060184040  6.00000070225384
10 7.49350575600870  6.00000253705577  6.00000253702609  6.00000003951159
11 6.53524954796329  6.00000015853311  6.00000015853125  6.00000000224357
12 6.15563769964487  6.00000000990656  6.00000000990645  6.00000000012838
13 6.04078294734902  6.00000000061907  6.00000000061906  6.00000000000739
14 6.01032406840519  6.00000000003869  6.00000000003869  6.00000000000043
15 6.00258903649963  6.00000000000242  6.00000000000242
16 6.00064771546926
17 6.00016194664418
18 6.00004048534517
19 6.00001012070523
20 6.00000253001219
21 6.00000063246434
22 6.00000015810715
23 6.00000003952473
24 6.00000000988071
25 6.00000000247007
26 6.00000000061749
27 6.00000000015437
28 6.00000000003859
29 6.00000000000965

Note: CPU time in seconds, respectively: 0.0070634, 0.0068518, 0.0076826, 0.0067694, 0.006222.

In the next example, we consider a mapping Z as SGNM but not nonexpansive and we will show
under certain conditions that our algorithm (1.5) is superior in behavior to some of the leading iterative
methods in the previous literature in terms of convergence speed.

Example 7.2. Consider a mapping = : [0, 1] — [0, 1] described by

—_ _ 1_V9 l:fV € [09 ﬁ)’
._.(v)—{ w13 ey e [ﬁ,l]-

14
Now, we illustrate that Z is a SGNM but not nonexpansive. Set v =

7 _
05 and @ =

1 @+ 13 _’93 183‘_ 9
Y 14 | T 1100~ 196| ~ 2450°
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17> We get

_ = - =
|2Y — 2| = |Ev — Ewl| =
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and
v—o|=v-w = =—.
| =1 | 700
It follows that ||Ev — Ew]|| = 2450 > 700 = |lv — @||. Thus Z is not nonexpansive mapping. To prove that
2 is a SGNM, we consider the cases below:
(1)Ifv e |0, 14) then
1 2v

JER)

—v-= 1-v)| =
2||V || = IV( v)| =

For 1 5y =Evll < |lv — @l , we must obtain 12y 2" <|v-wl. Clearly w < vimpossible. So, we must take
w > v. Thus, 1= 2" < @ — v, which yields @ 2 > and hence w € [ 1]. Now,

3 w+ 13

—-(I-v|=

'w+14v—1‘ 1
— | < s

14
and

-l = |— - 5| =

1 1‘ B 3
=
Hence

1|| =v]| < || | implies ||= | < ! <3 | |
bl | =N % Y — || implies ||=V — ’w' — — = ||V — || .
> = P 147

(2) If v € [, 11, then
1

) v —Evll = )

v+ 13 ‘ 13 - 13y 169
-V = ———

14 3 <1035

For % l[v —&V|| < |lv— @l|, we have 13 13V < |v — @], which leads to the following possibilities:
(i) When v < @, we have

Bl ey s e B e D7 e
28 - 28 392 14
So
o v+13 @+ 13 1
|12y — Ewl| = T 14 Zﬁh/ @| < |v-w].
Hence 1
3 Iv=Evl[<|lv-al = |8y - Ew|| < |lv — @]
(ii) When v > @, we get
13_13v<v—w=w<41v_13:we[_Ml 1
28 - 28 3927

Because w € [0, 1] and w < 41;_13, we can write v > 2812*” => Ve [41, 1].

It should be noted that the case ofv € [41, 1] and w € [, 1] is similar to case (i), so, we will
discuss when v € [%, 1] and @ € [0, L). So, we have

14
14
- v+ 13

12y — Zol| = e —w)]

14

v+14w—l‘ 1
—_— < N
14 14
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and |lv -l = |v—- | > |%—i =

14l = 574

Hence 2 is SGNM.
Now, we will discuss the behavior of the iterative scheme (1.5) and illustrate that it is faster than S,
Tharkur and K* iteration procedure by using different control conditions a;; = n; = y; =

> . Thus 1 |lv=2v|| < |v - @l = [|IBv - Eal| < |Iv - @l

@D

Remark 7.1. The effectiveness and success of the iterative method are measured by two main factors:
The time and the number of repetitions. When obtaining strong convergence in a short time using the
least possible repetitions, saves effort and time in many problems of optimization and variational
inequalities. Based on what has been shown from the tables (see Tables 4 and 5) and figures (see
Figures 4 and 5), it is clear that our method is successful and the behavior of our algorithm is

satisfactory compared to some sober iterations in this direction.

Table 4. Example 7.2: Numerical effectiveness comparison of proposed algorithm (HR
algorithm) when v, = 0.30.

Iter (n) S algorithm Picard-S algorithm Thakur algorithm K*-algorithm HR algorithm

1 0.918925619834711  0.992629601803156  0.992629601803156  0.999385287890171  0.999999491973463
2 0.992659381189810  0.999939333728841  0.999939333728841 0.999997438874483  0.999999999938058
3 0.999334187674034  0.999999499765345  0.999999499765345  0.999999986205653  0.999999999999984
4 0.999939559648030  0.999999995871843  0.999999995871843  0.999999999916912

5 0.999994510972627  0.999999999965918  0.999999999965918  0.999999999999467

6 0.999999501367829  0.999999999999719  0.999999999999719

7 0.999999954695558

8 0.999999995883263

9 0.999999999625887
10 0.999999999966000
11 0.999999999996910

Note: CPU time in seconds, respectively: 0.0021438, 0.0086125, 0.0079631, 0.0063799, 0.0054917.

Table 5. Example 7.2: Numerical effectiveness comparison of proposed algorithm (HR
algorithm) when v, = 0.30.

Iter (n)

S algorithm

Picard-S algorithm

Thakur algorithm

K*-algorithm

HR algorithm

O 0 3 N Lt B W N~

—
(=)

0.981983471074380
0.998368751375513
0.999852041705341
0.999986568810673
0.999998780216139
0.999999889192851
0.999999989932346
0.999999999085170
0.999999999916864
0.999999999992444

0.998362133734035
0.999986518606409
0.999999888836743
0.999999999082632
0.999999999992426
0.999999999999938

0.998362133734035
0.999986518606409
0.999999888836743
0.999999999082632
0.999999999992426
0.999999999999938

0.999863397308927
0.999999430860996
0.999999996934589
0.999999999981536
0.999999999999881

0.999999887105214
0.999999999986235
0.999999999999996

Note: CPU time in seconds, respectively: 0.0053331, 0.0078199, 0.0048301, 0.005278, 0.0001471.
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Figure 4. Graphically comparison of proposed algorithm (HR algorithm) when v, = 0.30.
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Figure 5. Graphically comparison of proposed algorithm (HR algorithm) when v, = 0.80.

8. Solve Volterra-Fredholm integral equation

In this part, we apply our algorithm (1.5) to solve Volterra-Fredholm integral equation which was
suggested by Lungu and Rus [23].
Consider the following problem:

v, @) = Ny, @, 2(E(v, @)) + f fU v, @, k", T, &K, 7)) dr*dT”, (8.1)
0 0

AIMS Mathematics Volume 7, Issue 10, 19026-19056.
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for all v, @w € R,. Assume that (I', |.|) is a BS, s > 0 and
xs ={€ € C(RLT): thereis U(£) > 0so that |¢(v, @)| "™ < U()}.
Define the norm on y as follows:

Il = sup (I€0s @) e ).

v,weR

It follows from the paper [33] that (x;, ||£]],) is a BS.
The following theorem helps us for proving our main result in this section.

Theorem 8.1. [23] Assume that the postulates below are satisfied:

(P) N e C(Ri xr,r) and U € C(Ri xF,F);
(Py;) There are z : yy — xs and m, > 0 so that

IZ(E(v, @) — 2(& (v, )| < 7, ||€ — £ e,

forallv,o e R, and €, & € y;
(Py;) Forallv,w e R, and c,c* €T, there is ng > 0 so that

|N(V’ w, C) - N(V’ w, C*)l <y |C - C*| >
(Py,) Forallv,w,k*, 7™ € R, and c,c* €T, there is ny; (v, @, k*,7°) > 0 so that
O (v, @, k", 7",¢) - O (v,@, &, 7", )| < (v, @, k7, 7) [e — ¢

(Py) my € C(Ri’R+) and
vV @
f f ms (v, @, K, ) €T ddT < et T,
0 0

forallv,o € Ry;
(Py;) moox +m < 1.

Then the problem (8.1) has a unique solution { € y, and the iterative sequence
Ein (v, @) = R, @, 2(6(v, @) + f f O, @,k 7,6k, 7)) ded,
0 0

forall i > 1 converges uniformly to (.
Now, after the above hypotheses, we can present our main theorem as follows:

Theorem 8.2. Let {v;} be an iterative sequence generated by (1.5) with sequences {«;}, {n:},{y:} € [0, 1]

so that ) y; = oo. If the postulates (P;)—(P,;) of Theorem 8.1 hold. Then the problem (8.1) has a unique
i=0
solution { € y, and the intended algorithm (1.5) converges strongly to (.
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Proof. Let {v;} be an iterative sequence generated by (1.5) and define the operator H : y; — x by
H (£(v, w)) = N(v, @, 2(£(v, @)) + fo (v, @, k", T, &K, 7)) dr*dT”.
0 0

We shall prove that lim v; = 0. Based on (1.5), we get

{—o0

Vis1 — {II Sup (|H(8 (v, w)) H(g(v w))| —S(v+w))

Now,
|H(5,-(v, w)) — H (v, w))|
< N0 @, 2B, @) - RO, @, 2 (v, @)
+ f fU v, @, k", 7", 3,(k*, 7)) dc"dT" — fo v, @, k", 7", (K", 7)) dk*dT”
0 0 0 0
< 7 [2(3iv, @) - 2, @)
+ ff |U V@, k7, 3k, 7)) - O (v, @, k", 77, (K", T*))| de*dt”
0
< AN, ||5,- - {”S e ) 4 ff?‘l’u v, @, k", T") |5,~(K*,T*) - (K"
0 0
< 7sm, s(v+w)
— (ﬂNﬂ-z s(v+w).
Thus,
Vier = <l < (s, (8.2)
Again
13: - ¢||, = sup (IH (1 = y)pi + viHe) (v @) = H (v, @))| ™),
and

|H (1 =y)pi +yiHp) (v,@) — H({ (v, @))|
IN(V @, Z((l —yo9i + vilHp) (v, @) — 8(v, @, 2({ (v, @))|

IA

O, @, &, 7, (1 = y)i + viHp) (&, 7)) de"dt"

fo(szK ™, (K", 7)) dk*dT*

AIMS Mathematics Volume 7, Issue 10, 19026-19056.
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IA

sz (A =y + viHp) (', 7)) — 2({ (v, @)

4

+ff|U(V,W,K*,T*,((1_71')801""71‘['1801')(’(*,7*))
0 0
-0, @, ", 75, (", 7)) dc*dt*

s ||(1 =y + viHp: — PRlaz)
+r||(L = ydei + yiHp; — S @)
= (7TN7TZ + ) ||(1 - ’yi)sol. +vy;Hp; — é«”s oS

IA

Thus
19: = 2], < s, + m) (A = y)p: + viHep; = LI, - (8.3)
Similarly, one can write
llpi = <lly < (xm, + ) [|[(1 = pp)@; + miHw@; = (. (8.4)
Since
(1 —n)w; + niHw; = I, = (1 —n)@; — ) +n;(Hw; — )|
< A =-n)llw; =, +nillHw; = £l . (8.5)
Now
VHw; =l = sup (|H @ (@) = H )l
v,wER
and
|H (@i(v, @) — H({(v,@))|
<INV, @, 2(wi(v, @) = R(v, @, 2({ (v, @)
+ fo v, w, k", 7, (", 7)) dc*dT — fo v, @, k", T, (", 7)) d" dT*
0 0 0 0
< nxl|z(@i(v, @) — 2L (v, @)l
+ f f U0 (v, @, k", 7", wi(k", 7)) = O (v, @, &, 7", { (&, T°))| dk"d 7"
0 0
< mr o = Ll e + ffﬂu v, @, k', ) ok, T) = LK, ) di*dT
0 0
< msr o = Ll e + wllw; - Ll e
= (mxm, + 1)l — I, €.
Thus

IHw; — {ll; < (axm; + ) |lw; = 4l - (8.6)
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Applying (8.6) in (8.5), we have

(1 = n)@; + niH@; — (|,

< (=) llwi = 2, + ni sz + 1) ll@; = | e
= (1-n = @xm, + m) ll@; = Ll - (8.7)
Using (8.4) and (8.7), we get
llpi = <lly < Grsm, + 1) (1 =7 (1 = (e, + 7)) [l = L - (8.8)
By the same manner, (8.3) can be written as
19: = ], < (s, + 1) (1= (1 = (rre + ) [l = £, - (8.9)

From (8.8) in (8.9), we find that

[19: = 2], < Gsm, + 1) (1 =y (1 = (s + 7)) x (1 =i (1 = (s, + ) |l = £l (8.10)
Applying (8.10) in (8.2), we get

vier = Llly < (s + 70 (1= (1 = (e + 1) X (1= (1 = sz + ) [l = Ll . (8.11)
Using (1.5) and similar to (8.6), we obtain that

@i =<l

(1 = @)vi + a;Hv; =

(I —a)llvi =<l + e [|Hv: = £l

(I =a)llvi = s + a; (axm, + ) |lvi = Ll

(I = (1 = a;(mxm, + 1) |lvi = Ll - (8.12)

IANIA

Substituting from (8.12) in (8.11), we find that

Vier =<l < (Grsm + 7 (1= 9 (1 = (axm, + 7))
X (1=-n0-@xr,+m)(1 -1 —a; (mxr, + 1) [lvi =<l -

Since a;,n; € [0, 1] and g, + m < 1, then we have
WVirr = &lly < (1 =y (1 = (s, + ) [vi = Ll

by induction, we can write

Vier = Zlls < lvo = 4 l—[(l =y (1 = (xm, + 1)) (8.13)

It follows from the postulate (P,;) and vy, € [0, 1] that
1 -y (1 —(gm, +m) < 1.

From our information in classical analysis, we can write for v € [0, 1], 1 — v < e™”. Therefore, (8.13)
take the form

_[(I_Yr(l_(”N”z'*'”))] zl: Yr
Vier =l < [vo = Zlls e =0

which implies that lim |[|v; — £]|, = 0. This completes the proof. |
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9. Conclusions and future works

It is well known that the efficiency and effectiveness of iterative methods are measured by two
main factors. The first factor is the speed of convergence and the second is the number of repetitions,
meaning if the convergence is faster with fewer repetitions, the method was successful in
approximating the fixed points. So, in this article, we demonstrated analytically and numerically that
our algorithm is better in conduct than a portion of the main iterative techniques in the past
writing [4, 10, 11, 18] as far as convergence speed.

Also, the prevalence and speed of convergence, stability, and data dependence results were
displayed in comparison graphs of calculations. Moreover, our approach was eventually supported by
a solution to an integral problem as an application. In light of references [4, 10, 11, 18], our method is
therefore successful or effective. Finally, as future works for this paper, we appointed the following:

(1) If we define a mapping = in a Hilbert space A endowed with inner product space, we can find a
common solution to the variational inequality problem by using our iteration (1.5). This problem
can be stated as follows: find p* € A such that

(Ep*, 9 —p*) = 0forall p € A,

where = : A — A is a nonlinear mapping. Variational inequalities are an important and essential
modeling tool in many fields such as engineering mechanics, transportation, economics, and
mathematical programming, see [34,35].

(2) We can generalize our algorithm to gradient and extra-gradient projection methods, these methods
are very important for finding saddle points and solving many problems in optimization, see [36].

(3) We can accelerate the convergence of the proposed algorithm by adding shrinking projection and
CQ terms. These methods stimulate algorithms and improve their performance to obtain strong
convergence, for more details, see [37-39].

(4) If we consider the mapping = as an @—inverse strongly monotone and the inertial term is added
to our algorithm, then we have the inertial proximal point algorithm. This algorithm is used in
many applications such as monotone variational inequalities, image restoration problems, convex
optimization problems, and split convex feasibility problems, see [40—43]. For more accuracy,
these problems can be expressed as mathematical models such as machine learning and the linear
inverse problem.

(5) We can also use our algorithm to solve second-order differential equations and fractional
differential equations, where these equations can be converted into integral equations by Green’s
function. So it is easy to treat and solve with the same approach used in Part 8.

(6) We can try to determine the error of our present iteration.
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