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Abstract: A recent line of works established the approximation complexity estimation of deep
ReLU networks for the bandlimited functions in the MSE (mean square error) sense. In this note,
we significantly enhance this result, that is, we estimate the approximation complexity in the L∞ sense.
The key to the proof is to establish a frequency decomposition lemma which may be of independent
interest.
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1. Introduction

The approximation theory of neural networks has been widely concerned in recent
years [6, 12, 18, 21, 22, 24–27, 30–35]. There are two widely accepted advantages of neural networks,
one is that neural network can overcome the curse of dimensionality [1, 4, 5, 7, 9, 11, 15–17], the other
is that as the number of layers increases, deep neural networks can fit high-oscillation or
high-frequency functions [3, 17–19, 21, 23]. For the bandlimited functions, the approximation
complexity of deep ReLU networks has been studied [3, 17] in the MSE sense. Compared with the
results of the shallow neural networks [1], these results show deep ReLU networks can approximate
the ultrawide bandwidth high-dimensional signals with very low complexity. In this paper, we
continue this line of research, we estimate the approximation complexity of deep ReLU networks in
the L∞ sense, thus, this estimate is significantly better than the previous results [3, 17]. It worths
mentioning that the approximate complexity estimations of the shallow neural networks are
significantly different for different error norms [9, 13]. Similarly, for the deep ReLU networks, we can
not resort to the Maurey’s theorem [20] in the L∞ case. We need to use the fat-shattering dimension
theory [8] to establish a frequency decomposition lemma which is our main result.
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Lemma 1.1. Let f : R→ R be a bandlimited function of the form

f (x) =

∫
[−M,M]d

f̂ (w)ei2πx·wdw,

and ∫
[−M,M]d

| f̂ (w)|dw := C f < ∞,

there exist 2l frequencies

w1,1,w1,2, . . . ,w1,l,w2,1,w2,2, . . . ,w2,l ∈ [−M,M]d,

and 2l coefficients
a1,1, a1,2, . . . , a1,l, a2,1, a2,2, . . . , a2,l ∈ R

satisfying
l∑

j=1

(|a1, j| + |a2, j|) ≤ 2C f

and
l ≥ C(dC2

f /ε
2) log(CDM + log(C f /ε)) ln2(C f /ε),

such that

sup
x∈D

∣∣∣∣ f (x) −
l∑

j=1

(
a1, j cos(2πw1, j · x) + a2, j sin(2πw2, j · x)

)∣∣∣∣ < ε, (1.1)

where C is some universal constant, 0 < ε < 1/2, D is any bounded subset of Rd and

CD := sup
x∈[−1,1]d

sup
y∈D
|x · y|.

On the other hand, a feedforward neural network X̃ consists of layers of nodes, each node of the
form

y = σ
( N∑

k=1

wkxk + b
)
, (1.2)

where {xk : k = 1, 2, . . . ,N} are nodes in the previous layers, and σ is a activation function. If
σ(x) = max(x, 0), the multilayer feedforward neural network is the deep ReLU (Rectified Linear
Unit) network. The complexity of deep neural networks approximating to sinusoidal functions has
been discussed [3, 17, 19].

Lemma 1.2. ( [3]) There exists a deep ReLU network X̃ε with O(log(CDM) log2
2(1/ε)) layers and

O(log CDM log3
2(1/ε)) nodes such that

|X̃ε(t) − cos(2πw · t)| ≤ ε for w ∈ [−M,M]d, t ∈ D. (1.3)

Based on Lemma 1.1 and Lemma 1.2, the following main theorem can be obtained.
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Theorem 1.3. Let f : D→ R be a bandlimited function of the form

f (x) =

∫
[−M,M]d

f̂ (w)ei2πx·wdw,

and
C f :=

∫
[−M,M]d

| f̂ (w)|dw < ∞,

there exists a deep ReLU network X̃ε with

O(log(CDM) log2
2(1/ε))

layers and
O
(
(log(CDM) log3

2(1/ε)dC2
f /ε

2) log2(CDM + log(C f /ε)) ln2(C f /ε)
)

nodes such that
sup
x∈D

∣∣∣∣ f (x) − X̃ε

∣∣∣∣ < ε. (1.4)

2. Proof of the Lemma 1.1

For any complex value z ∈ C, <z and =z denote the real part and the imaginary part of z,
respectively. We denote by C j, j = 1, 2, . . . some universal constants.

To prove Lemma 1.1, some notations and lemmas are needed. Given a class H of real-valued
functions defined on X and a real number γ ≥ 0. The fat-shattering dimension of H , denoted fatH(γ),
is the largest integer m satisfying the following property: There exist V = {x1, x2, . . . , xm} is a subset of
the domain X, and the real numbers r1, r2, . . . , rm such that for all b ∈ {0, 1}m there is a function fb in
H with fb (xi) ≥ ri + γ if bi = 1 and fb (xi) < ri − γ if bi = 0 for 1 ≤ i ≤ m. Fat-shattering
dimension is a generalization of Vapnik-Chervonenkis dimension [29] which is often used to estimate
approximation complexity [10, 14, 35].

Lemma 2.1. ( [2]) Let H be a class of functions from some domain X into [0, 1]. Then for all
distributions P over X and for all 0 < ε, δ < 1/2

Prx1,x2,...,xl

sup
f∈H

∣∣∣∣∣∣∣ 1
m

m∑
i=1

f (xi) − Ex∼P[ f (x)]

∣∣∣∣∣∣∣ ≥ ε
 ≤ δ

where {xi}
l
i=1 are l independent draws from P, Prx1,x2,...,xl denotes the joint probability distribution

function for random variables x1, x2, . . . , xl and

l = O
(

1
ε2

(
fatH(ε/5) ln2 1

ε
+ ln

1
δ

))
.

Lemma 2.2. ( [28]) Let p1, p2, . . . , pl be d-variable real polynomials of degree at most q. If l ≥ d, then
the number of vectors

(sgn(p1(x)), sgn(p2(x)), . . . , sgn(pl(x)))

is at most (4elq/d)d, where sgn(x) :=
{

1, x ≥ 0,
−1, x < 0.
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By the Taylor expansion, the sines and cosines can be approximation by polynomials.

Lemma 2.3. Let 0 < ε < 1, a > 0 and f (x) = sin(x) or cos(x). Then there exist C1 > 0 and a
polynomial Q of order less than or equal to C1(a + log(1/ε)) such that supx∈[−a,a] | f (x) − Q(x)| ≤ ε.

Proof. The Taylor expansion for an n times differentiable function f at 0 with the Lagrange remainder
is given by

f (x) =

n−1∑
j=1

f ( j)(0)
j!

x j +
f (n)(x0)

n!
xn, (2.1)

where x0 is between 0 and x, f ( j) denotes the derivative of order j, and the factorial n! = n(n − 1) · · · 1.
Applying the Stirling formula to n!, we have

n! ≥
√

2πn
(n
e

)n
>

(n
e

)n
, n ∈ N. (2.2)

Note that | sin(n)(x)| ≤ 1 and | cos(n)(x)| ≤ 1 for all x ∈ R. Thus, by (2.1) and (2.2), we have for all
n ≥ max{2ea, 1

log 2 log(1
ε
)}

sup
x∈[−a,a]

∣∣∣∣ f (n)(x0)
n!

(x)n
∣∣∣∣ ≤ an

n!
<

(ea
n

)n
<

1
2n < ε.

The proof is hence complete. �

Proof of Lemma 1.1. Since f is a real-valued function, we have for all x ∈ Rd

f (x) =

∫
[−M,M]d

f̂ (w)ei2πw·xdw

=

∫
[−M,M]d

(< f̂ (w) + i= f̂ (w))(cos(2πw · x) + i sin(2πw · x))dw

=

∫
[−M,M]d

cos(2πw · x)< f̂ (w) − sin(2πw · x))= f̂ (w)dw

=: f1 − f2 − f3 + f4,

(2.3)

where
f1(x) :=

∫
[−M,M]d

cos(2πw · x) max(0,< f̂ (w))dw,

f2(x) :=
∫

[−M,M]d
cos(2πw · x) max(−< f̂ (w), 0)dw,

f3(x) :=
∫

[−M,M]d
sin(2πw · x)) max(0,= f̂ (w))dw,

f4(x) :=
∫

[−M,M]d
sin(2πw · x)) max(−= f̂ (w), 0)dw.

Let F1 := max(0,< f̂ ). Without loss of generality, we assume that∫
[−M,M]d

F1(w)dw > 0.

AIMS Mathematics Volume 7, Issue 10, 19018–19025.



19022

We only discuss the approximation for the first term

f1(x) =

∫
[−M,M]d

cos(2πw · x)F1(w)dw, x ∈ Rd.

The other three terms f2, f3, f4 in (2.3) can be handled in a similar manner. Observe that

|w · x| ≤ CDM for all w ∈ [−M,M]d and x ∈ D.

By Lemma 2.3, there exists C2 > 0 and a polynomial Q of degree C2(CDM + log(1/ε)) such that∣∣∣ cos(2πw · x) − Q(2πw · x)
∣∣∣ < ε for all w ∈ [−M,M]d and x ∈ D. (2.4)

Let
f̃ (x) :=

∫
[−M,M]d

Q(2πw · x)F1(w)dw, x ∈ Rd.

Then, we get

| f̃ (x) − f1(x)| < ε
∫

[−M,M]d
F1(w)dw, x ∈ D. (2.5)

Set
G := {gx(w) = cos(2πx · w) : x ∈ D,w ∈ [−M,M]d}

and
Gε = {gx(w) = Q(2πx · w) : x ∈ D,w ∈ [−M,M]d}.

By Lemma 2.2, the number of vectors

(sgn(Q(2πw1 · x)), sgn(Q(2πw2 · x)), . . . , sgn(Q(2πwl · x))

is at most (4elC2(CDM + log(1/ε))/d)d. Thus,

2 f atGε (0) ≤
(
4e f atGε

(0)C2(CDM + log(1/ε)/d
)d
,

that is

f atGε
(0) ≤ d log2

(
4eC2(CDM + log(1/ε)

)
+ d log2

( f atGε
(0)

d

)
.

Note that

d log2

( f atGε
(0)

d

)
≤

1
2

f atGε
(0) for f atGε

(0) > 4d,

then
fatG

(
ε

∫
[−M,M]d

F1(w)dw
)
≤ fatGε

(0) ≤ 2d log2
(
8eC2(CDM + log(1/ε))

)
+ 4d.

By Lemma 2.1, choosing δ < 1/4 and

l &
1
ε2

(
d log2(CDM + log(1/ε)) ln2 1

ε
+ ln

1
δ

)
,

we have
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Prw1,w2,...,wl

(
supx∈D,

∣∣∣∣∣∣ ∫[−M,M]d F1(w)dw

l

∑l
j=1 cos(w j · x) − f1(x)

∣∣∣∣∣∣ > ε ∫[−M,M]d F1(w)dw
)
≤ δ < 1,

where {wi}
l
i=1 obeys the probability distribution generated by the density function

F1(w)∫
[−M,M]d F1(w)dw

.

Therefore, there exist w1,w2, . . . ,wl such that∣∣∣∣∣∣
∫

[−M,M]d F1(w)dw

l

l∑
j=1

cos(w j · x) − f1(x)

∣∣∣∣∣∣ ≤ O(ε
∫

[−M,M]d
F1(w)dw). (2.6)

The approximation for f2 is similar to f1 given as in (2.6). Hence, we can obtain an approximation for
f3 or f4 by the linear combination of sines. The sum of 2l coefficients in (1.1) is bounded by∑l

j=1(|a1, j| + |a2, j|) ≤
∫

[−M,M]d (max(0,< f̂ (w)) + max(0,−< f̂ (w))
+ max(0,= f̂ (w)) + max(0,−= f̂ (w)))dw ≤ 2C f .

(2.7)

The proof is hence complete.

3. Conclusions

In this paper we prove an interesting frequency decomposition lemma, as a corollary, we establish
the uniform approximation estimation of bandlimited functions via deep ReLU networks. We will
discuss the learnability of neural networks for bandlimied functions in the following work. These
theoretical results will deepen the understanding of machine learning methods in signal processing.
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