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Abstract: Several tools have been put forth to handle the problem of uncertain knowledge. Pawlak
(1982) initiated the concept of rough set theory, which is a completely new tool for solving imprecision
and vagueness (uncertainty). The main notions in this theory are the upper and lower approximations.
One of the most important aims of this theory is to reduce the vagueness of a concept to uncertainty
areas at their borders by decreasing the upper approximations and increasing the lower approximations.
So, the object of this study is to propose four types of approximation spaces in rough set theory
utilizing ideals and a new type of neighborhoods called “the intersection of maximal right and left
neighborhoods”. We investigate the master properties of the proposed approximation spaces and
demonstrate that these spaces reduce boundary regions and improve accuracy measures. A comparative
study of the present methods and the previous ones is given and shown that the current study is more
general and accurate. The importance of the current paper is not only that it is introducing new kinds
of approximation spaces relying mainly on ideals and a new type of neighborhoods which increases
the accuracy measure and reduces the boundary region of subsets, but also that these approximation
spaces are monotonic, which means that it can be successfully used to evaluate the uncertainty in the
data. In the end of this paper, we provide a medical example of the heart attacks problem to show
the efficiency of the current techniques in terms of approximation operators, accuracy measures, and
monotonic property.
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1. Introduction

The classical set theory deal with the kind of problems that are characterized by certainty,
precision, perfection, exactness and specificity. However, there are many problems in the real-life
inherently involve uncertainties, imprecision, ambiguity, vagueness, inconsistency and
incompleteness. In particular, these problems arise in different fields such as computer network,
economics, engineering, image processing, data mining, social, environmental and medical sciences.
The classical set fail to deal with this kind of these problems. There are several tools to manipulate
and understand these problems. For instance, in 1982, the world-known new concept called rough sets
theory on the hand of Pawlak [28, 29]. It is considered as a powerful tool to solve uncertain data and
address the issues of vagueness in knowledge and granularity in information systems. Methodology
of this theory is based on the equivalence relations to classify the objects into three main areas known
as lower, upper approximations and boundary regions. These areas in the classical rough set theory
are expressed in terms of equivalence classes. The lower approximation of a set is the union of
equivalence classes which are entirely included in the set while the upper approximation is the union
of all equivalence classes which have nonempty intersection with the set. The boundary region is the
difference between the upper and lower approximations. The accuracy of the set or ambiguous is
depending on the boundary region is empty or not respectively. If the boundary of a set is nonempty,
then this means that our knowledge about this set is not sufficient to define it precisely. Minimizing
the boundary region is one of the pivotal goal for this theory. To extend the applications of this theory,
many scholars replaced the equivalence relation by reflexive relation [2], similarity
relation [15, 26, 30, 32] or binary relation [3, 31, 36–38].

The most efficacious tools to study the generalization of rough set theory are the neighborhoods
systems. The central idea in this theory is the upper and lower approximations and they have been
defined using different types of neighborhoods instead of equivalence classes such as left and right
neighborhoods [7, 9, 34, 35], minimal left neighborhoods [4] and minimal right neighborhoods [5], the
intersection of minimal left and right neighborhoods [23]. Afterwards, Abo-Tabl [1] defined the
approximations by minimal right neighborhoods which determined by reflexive relations that form the
base of topological space. In 2018, Dai et al. [14] presented new kind of neighborhoods, namely the
maximal right neighborhoods which determined by similarity relations and they have been used to
propose three new kinds of approximations. Dai et al.’s approximations [14] differed from Abo-Tabl’s
approximations [1] in that the corresponding upper and lower approximations, boundary regions,
accuracy measures and roughness measures in two types of Dai et al.’s approximations [14] had
monotonicity. Later on, Al-shami [8] embraced a new type of neighborhoods systems namely, the
intersection of maximal right and left neighborhoods, and then used this type to present new
approximations. These approximations improved the accuracy measures more than Dai et al.’s
approximations [14]. Also, Al-shami’s [8] accuracy measures preserved the monotonic property
under any arbitrary relation. Recently, two classes of neighborhood systems called containment
neighborhoods [6] and subset neighborhoods [10] have been presented and studied.

An ideal is a nonempty collection of sets which is closed under hereditary property and the finite
additivity [27,33]. It is a completely new approach for modeling vagueness and uncertainty by reducing
the boundary region and increasing the accuracy of the set which helped scholars to solve many life
problems [13, 16–19, 21, 23, 24]. More recently, Hosny [20] expressed the main concepts of rough set
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via ideals and maximal right neighborhood deduced by binary relations. Hosny’s approximations was
considered as an extension of Al-shami’s approximations [8] and Dai et al.’s approximations [14].

Although many scholars have published a lot of papers to develop many concepts of rough set
content, yet there is up to now a lot of development for this set. The essential motivation of this paper
is to improve the approximations and accuracy measure of a set by deleting some objects from the
upper approximations of decision categories and/or adding new objects to the lower approximations.
This matter can be achieved using the proposed technique “ideals and the intersection of maximal right
and left neighborhoods deduced by binary relations”. Another motivation is the desire of initiating
approximation spaces keeping the monotonic property, which helps to evaluate the uncertainty in the
given data.

This paper is divided as follows: After the introduction, Section 2 recalls the necessary results
and concepts which required in the sequel to this work. In Section 3, four methods are suggested
to express the main concepts of rough set via ideals and the intersection of maximal right and left
neighborhoods which generated by binary relations. The relevant properties of these methods are
scrutinized. Moreover, it is shown that the boundary of a subset decreases and the accuracy increases
as the ideal increases. More importantly, it is proved that three types of these methods are monotonic.
In Section 4, we compare among the suggested approximations and prove that the third approach is the
best one. Then, we show that the current methods produce better approximations and higher accuracy
values than their counterparts introduced in [8, 11, 14, 20]. Meanwhile, Section 5 shows the overall
benefits of the current study by introducing medical application in the decision making problems. We
computed the approximations, the boundary and the accuracy measure using the proposed method and
the previous approaches [14,20,23] to explain the significance of the suggested techniques in decision
making. The results are shown that Kandil et al.’s methods [23] are not monotonic, so it cannot be
used to evaluate the uncertainty in the data. Whereas, the current methods are solved the trouble
and imperfection of Kandil et al.’s methods [23]. Additionally, the present methods are reduced the
boundary region and improved the accuracy measure in the comparison with Dai et al.’s methods [14].
Consequently, they handle any ambiguity in symptoms of the diseases and this automatically help the
medical staff. The conclusions of this manuscript and remarks for future work are given in Section 6.

2. Preliminaries

Definition 2.1. [28] Let R be an equivalence relation on a universe U and [u]R be the equivalence
class containing u ∈ U. The lower approximation apr(A) and upper approximation apr(A) of a subset
A of U are defined by

apr(A) = {u ∈ U : [u]R ⊆ A}.

apr(A) = {u ∈ U : [u]R ∩ A , φ}.

These approximations satisfy the following properties:

(L1) apr(Ac) = [apr(A)]c, where Ac is the complement of A.

(L2) apr(U) = U.

(L3) apr(φ) = φ.
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(L4) apr(A) ⊆ A.

(L5) apr(A ∩ B) = apr(A) ∩ apr(B).

(L6) apr(A ∪ B) ⊇ apr(A) ∪ apr(B).

(L7) A ⊆ B⇒ apr(A) ⊆ apr(B).

(L8) apr(apr(A)) = apr(A).

(L9) apr(A) ⊆ apr(apr(A)).

(U1) apr(Ac) = [apr(A)]c.

(U2) apr(U) = U.

(U3) apr(φ) = φ.

(U4) A ⊆ apr(A).

(U5) apr(A ∪ B) = apr(A) ∪ apr(B).

(U6) apr(A ∩ B) ⊆ apr(A) ∩ apr(B).

(U7) A ⊆ B⇒ apr(A) ⊆ apr(B).

(U8) apr(apr(A)) = apr(A).

(U9) apr(apr(A)) ⊆ apr(A).

Definition 2.2. [28] Let R be an equivalence relation on a universe U. Then accuracy measure
AccR(A) of any nonempty subset A is defined as follows: AccR(A) =

|apr(A)|

|apr(A)| .
If R1 and R2 are equivalence relations on a universe U such that R1 ⊆ R2. Then the approximations

induced from these relations have the monotonic property if AccR2(A) ≤ AccR1(A).

Definition 2.3. [5, 25] The following types of neighborhoods are defined for each element u of the
universe U with respect to any binary relation R on U.

(i) < u > R means the intersection of all right neighborhoods containing u, i.e., < u > R = ∩{pR : u ∈
pR}.

(ii) R < u > means the intersection of all left neighborhoods containing u, i.e., R < u >= ∩{Rp : u ∈
Rp}.

(iii) R < u > R =< u > R ∩ R < u > .

Definition 2.4. [8, 14] The following types of neighborhoods are defined for each element u of the
universe U with respect to any binary relation R on U.

(i) < u > R̆ means the union of all right neighborhoods containing u, i.e., < u > R̆ = ∪{pR : u ∈ pR}.

(ii) R̆ < u > means the union of all left neighborhoods containing u, i.e., R̆ < u >= ∪{Rp : u ∈ Rp}.

(iii) R̆ < u > R̆ = R̆ < u > ∩ < u > R̆.
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Theorem 2.5. [8] Let R1,R2 be binary relations on the universe U such that R1 ⊆ R2. Then R̆1 < u >
R̆1 ⊆ R̆2 < u > R̆2,∀u ∈ U.

We means by an approximation space the pair (U,R), where R is a binary relation U , φ.

Definition 2.6. [14] Let (U,R) be approximation space, where R is a similarity relation. The first
type of the approximations (lower and upper), boundary region, measures (accuracy and roughness)
of A ⊆ U with respect to < x > R̆ are respectively defined by:
apr

R
(A) = {x ∈ U :< x > R̆ ⊆ A}.

aprR(A) = {x ∈ U :< x > R̆ ∩ A , φ}.
BoundaryR(A) = aprR(A) − apr

R
(A).

AccuracyR(A) =
|apr

R
(A)|

|aprR(A)| , aprR(A) , φ.
RoughnessR(A) = 1 − AccuracyR(A).

Definition 2.7. [14] Let (U,R) be approximation space, where R is a similarity relation. The second
type of the approximations (lower and upper), boundary region, measures (accuracy and roughness)
of A ⊆ U with respect to < x > R̆ are respectively defined by:
apr

′

R
(A) = ∪{< x > R̆ :< x > R̆ ⊆ A}.

apr′R(A) = (apr
′

R
(Ac))c.

Boundary
′

R(A) = apr′R(A) − apr
′

R
(A).

Accuracy
′

R(A) =
|apr

′

R
(A)|

|apr′R(A)|
, apr′R(A) , φ.

Roughness
′

R(A) = 1 − Accuracy
′

R(A).

Definition 2.8. [14] Let (U,R) be approximation space, where R is a similarity relation. The third
type of the approximations (lower and upper), boundary region, measures (accuracy and roughness)
of A ⊆ U with respect to < x > R̆ are respectively defined by:
apr′′R(A) = ∪{< x > R̆ :< x > R̆ ∩ A , φ}.
apr

′′

R
(A) = (apr′′R(Ac))c.

Boundary
′′

R(A) = apr′′R(A) − apr
′′

R
(A).

Accuracy
′′

R(A) =
|apr

′′

R
(A)|

|apr′′R(A)|
, apr′′R(A) , φ.

Roughness
′′

R(A) = 1 − Accuracy
′′

R(A).

Definition 2.9. [8] Let (U,R) be approximation space. The approximations (lower and upper),
boundary region, measures (accuracy and roughness) of A ⊆ U with respect to R̆ < x > R̆ are
respectively defined by:
RFF(A) = {x ∈ U : R̆ < x > R̆ ⊆ A}.
RFF(A) = {x ∈ U : R̆ < x > R̆ ∩ A , φ}.
BFFR (A) = RFF(A) − RFF(A).
AccFFR (A) =

|RFF(A)∩A|
|RFF(A)∪A| .

RoughFFR (A) = 1 − AccFF(A).

Definition 2.10. [22] An ideal I on a set U , φ is nonempty collection of subsets of U that is closed
under finite unions and subsets; i.e., it satisfies the following conditions:
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(i) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I,

(ii) A ∈ I and B ⊆ A⇒ B ∈ I.

Definition 2.11. [23] For two ideals on a nonempty set U, the smallest collection generating by I1,I2,
denoted by I1 ∨ I2, is given by:

I1 ∨ I2 = {G ∪ F : G ∈ I1, F ∈ I2}.

Proposition 2.12. [23] If I1,I2 are two ideals on a nonempty set U and A, B are two subsets of U.
Then, the collection I1 ∨ I2 satisfies the following conditions:

(i) I1 ∨ I2 , φ,

(ii) A ∈ I1 ∨ I2, B ⊆ A⇒ B ∈ I1 ∨ I2,

(iii) A, B ∈ I1 ∨ I2 ⇒ A ∪ B ∈ I1 ∨ I2.

It means that the collection I1 ∨ I2 is an ideal on U.

We means by an ideal approximation space the triplet (U,R,I), where R and I are respectively
binary relation and ideal on U , φ.

Definition 2.13. [23] Let (U,R,I) be an ideal approximation space. The lower, upper approximations,
boundary and accuracy of A ⊆ U are defined respectively by:
RF(A) = {x ∈ U : R < x > R ∩ Ac ∈ I}.

RF(A) = {x ∈ U : R < x > R ∩ A < I}.
BFR (A) = RF(A) − RF(A).
AccFR (A) =

|RF(A)|
|RF(A)| ,R

F(A) , φ.

Definition 2.14. [20] Let (U,R,I) be an ideal approximation space. The first kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of A ⊆ U
with respect to < x > R̆ are respectively defined by:
aprI

R
(A) = {x ∈ U :< x > R̆ ∩ Ac ∈ I}.

aprIR(A) = {x ∈ U :< x > R̆ ∩ A < I}.
BoundaryIR(A) = aprIR(A) − aprI

R
(A).

AccuracyIR(A) =
|aprI

R
(A)|

|aprIR(A)|
, aprIR(A) , φ.

RoughnessIR(A) = 1 − AccuracyIR(A).

Definition 2.15. [20] Let (U,R,I) be an ideal approximation space. The second kind of the
generalized approximations (lower and upper), boundary region, measures (accuracy and roughness)
of A ⊆ U with respect to < x > R̆ are respectively defined by:
aprI

R
(A) = {x ∈ A :< x > R̆ ∩ Ac ∈ I}.

apr
I

R(A) = A ∪ aprIR(A).

BoundaryI
R
(A) = apr

I

R(A) − aprI
R
(A).

AccuracyI
R
(A) =

|aprI
R

(A)|

|apr
I

R(A)|
, apr

I

R(A) , φ.

RoughnessI
R
(A) = 1 − AccuracyI

R
(A).

AIMS Mathematics Volume 7, Issue 10, 18971–19017.



18977

Definition 2.16. [20] Let (U,R,I) be an ideal approximation space. The third kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of A ⊆ U
with respect to < x > R̆ are respectively defined by:
apr

′I

R
(A) = ∪{< x > R̆ :< x > R̆ ∩ Ac ∈ I}.

apr′
I

R(A) = (apr
′I

R
(Ac))c.

Boundary
′I

R(A) = apr′
I

R(A) − apr
′I

R
(A).

Accuracy
′I

R(A) =
|apr

′ I

R
(A)|

|apr′
I

R(A)|
, apr′

I

R(A) , φ.

Roughness
′I

R(A) = 1 − Accuracy
′I

R(A).

Definition 2.17. [20] Let (U,R,I) be an ideal approximation space. The fourth kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of A ⊆ U
with respect to < x > R̆ are respectively defined by:

apr′′
I

R(A) = ∪{< x > R̆ :< x > R̆ ∩ A < I}.

apr
′′I

R
(A) = (apr′′

I

R(Ac))c.

Boundary
′′I

R(A) = apr′′
I

R(A) − apr
′′I

R
(A).

Accuracy
′′I

R(A) =
|apr

′′ I

R
(A)|

|apr′′
I

R(A)|
, apr′′R(A) , φ.

Roughness
′′I

R(A) = 1 − Accuracy
′′I

R(A).

Definition 2.18. [11] Let (U,R,I) be an ideal approximation space. The first kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > are respectively defined by:
aprFI

R
(A) = {x ∈ U : R̆ < x > ∩Ac ∈ I}.

aprF
I

R(A) = {x ∈ U : R̆ < x > ∩A < I}.

BoundaryFIR(A) = aprF
I

R(A) − aprFI
R
(A).

AccuracyFIR(A) =
|aprFI

R
(A)∩A|

|aprF
I

R(A)∪A|
.

RoughnessFIR(A) = 1 − AccuracyFIR(A).

Definition 2.19. [11] Let (U,R,I) be an ideal approximation space. The second kind of the
generalized approximations (lower and upper), boundary region, measures (accuracy and roughness)
of φ , A ⊆ U with respect to < x > R̆ are respectively defined by:
aprFI

R
(A) = {x ∈ A : R̆ < x > ∩Ac ∈ I}.

aprF
I

R(A) = A ∪ aprF
I

R(A).

BoundaryFI
R
(A) = aprF

I

R(A) − aprFI
R
(A).

AccuracyFI
R
(A) =

|aprFI
R

(A)|

|aprF
I

R(A)|
.

RoughnessFI
R
(A) = 1 − AccuracyFI

R
(A).
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Definition 2.20. [11] Let (U,R,I) be an ideal approximation space. The third kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > are respectively defined by:
apr

′

F
I

R
(A) = ∪

x∈U
{R̆ < x >: R̆ < x > ∩Ac ∈ I}.

apr′F
I

R(A) = (apr
′

F
I

R
(Ac))c.

Boundary
′

F
I

R(A) = apr′F
I

R(A) − apr
′

F
I

R
(A).

Accuracy
′

F
I

R(A) =
|apr

′
F
I

R
(A)∩A|

|apr′F
I

R(A)∪A|
.

Roughness
′

F
I

R(A) = 1 − Accuracy
′

F
I

R(A).

Definition 2.21. [11] Let (U,R,I) be an ideal approximation space. The fourth kind of the generalized
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > are respectively defined by:

apr′′F
I

R(A) = ∪
x∈U
{R̆ < x >: R̆ < x > ∩A < I}.

apr
′′

F
I

R
(A) = (apr′′F

I

R(Ac))c.

Boundary
′′

F
I

R(A) = apr′′F
I

R(A) − apr
′′

F
I

R
(A).

Accuracy
′′

F
I

R(A) =
|apr

′′
F
I

R
(A)∩A|

|apr′′F
I

R(A)∪A|
.

Roughness
′′

F
I

R(A) = 1 − Accuracy
′′

F
I

R(A).

3. Some new rough set models induced from R̆ < x > R̆-neighborhoods and ideals

We dedicate this main section of the manuscript to display four novel kinds of rough set models.
They are generated using the concepts of R̆ < x > R̆-neighborhoods and ideals. We study their main
properties and provide various illustrative examples.

3.1. The first method of the improvement of the approximations and accuracy measure of a rough set

Definition 3.1. Let (U,R,I) be an ideal approximation space. The first kind of the improvement of
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > R̆ are respectively defined by:
LOWI

R(A) = {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I}.

UPP
I

R(A) = {x ∈ U : R̆ < x > R̆ ∩ A < I}.
BNDIR(A) = UPP

I

R(A) − LOWI

R(A).

ACCIR(A) =
|LOWIR(A)∩A|

|UPP
I

R(A)∪A|
.

RoughIR(A) = 1 − ACCIR(A).

Proposition 3.2. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) UPP
I

R(φ) = φ.
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(ii) A ⊆ B⇒ UPP
I

R(A) ⊆ UPP
I

R(B).

(iii) UPP
I

R(A ∩ B) ⊆ UPP
I

R(A) ∩ UPP
I

R(B).

(iv) UPP
I

R(A ∪ B) = UPP
I

R(A) ∪ UPP
I

R(B).

(v) UPP
I

R(A) = (LOWI

R(Ac))c.

(vi) if A ∈ I, then UPP
I

R(A) = φ.

(vii) if I ⊆ J , then UPP
J

R (A) ⊆ UPP
I

R(A).

(viii) if I = P(U), then UPP
I

R(A) = φ.

(ix) UPP
I∩J

R (A) = UPP
I

R(A) ∪ UPP
J

R (A).

(x) UPP
I∨J

R (A) = UPP
I

R(A) ∩ UPP
J

R (A).

Proof.

(i)

UPP
I

R(φ) = {x ∈ U : R̆ < x > R̆ ∩ φ < I}.

= φ.

(ii) Let x ∈ UPP
I

R(A). Then, R̆ < x > R̆ ∩ A < I. Since, A ⊆ B and I is an ideal. Thus, R̆ < x >
R̆ ∩ B < I. Therefore, x ∈ UPP

I

R(B). Hence, UPP
I

R(A) ⊆ UPP
I

R(B).

(iii) Immediately by part (ii).

(iv) UPP
I

R(A)∪UPP
I

R(B) ⊆ UPP
I

R(A∪ B) by part (ii). Let x ∈ UPP
I

R(A∪ B). Then, R̆ < x > R̆∩ (A∪
B) < I. It follows that ((R̆ < x > R̆∩ A)∪ (R̆ < x > R̆∩ B)) < I. Therefore, R̆ < x > R̆∩ A < I or
R̆ < x > R̆ ∩ B < I, that means x ∈ UPP

I

R(A) or x ∈ UPP
I

R(B). Then, x ∈ UPP
I

R(A) ∪ UPP
I

R(B).
Thus, UPP

I

R(A ∪ B) ⊆ UPP
I

R(A) ∪ UPP
I

R(B). Hence, UPP
I

R(A ∪ B) = UPP
I

R(A) ∪ UPP
I

R(B).

(v)

(LOWI

R(Ac))c = ({x ∈ U : R̆ < x > R̆ ∩ A ∈ I})c.

= {x ∈ U : R̆ < x > R̆ ∩ A < I}.

= UPP
I

R(A).

(vi) Straightforward by Definition 3.1.

(vii) Let x ∈ UPP
J

R (A). Then, R̆ < x > R̆∩A < J . Since, I ⊆ J . Thus, R̆ < x > R̆∩A < I. Therefore,
x ∈ UPP

I

R(A). Hence, UPP
J

R (A) ⊆ UPP
I

R(A).

(viii) Straightforward by Definition 3.1.
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(ix)

UPP
I∩J

R (A) = {x ∈ U : R̆ < x > R̆ ∩ A < I ∩ J}.

= {x ∈ U : R̆ < x > R̆ ∩ A < I} or {x ∈ U : R̆ < x > R̆ ∩ A < J}.

= {x ∈ U : R̆ < x > R̆ ∩ A < I} ∪ {x ∈ U : R̆ < x > R̆ ∩ A < J}.

= UPP
I

R(A) ∪ UPP
J

R (A).

(x)

UPP
I∨J

R (A) = {x ∈ U : R̆ < x > R̆ ∩ A < I ∨ J}.

= {x ∈ U : R̆ < x > R̆ ∩ A < I ∪ J}.

= {x ∈ U : R̆ < x > R̆ ∩ A < I} and {x ∈ U : R̆ < x > R̆ ∩ A < J}.

= {x ∈ U : R̆ < x > R̆ ∩ A < I} ∩ {x ∈ U : R̆ < x > R̆ ∩ A < J}.

= UPP
I

R(A) ∩ UPP
J

R (A).

Proposition 3.3. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) LOWI

R(U) = U.

(ii) A ⊆ B⇒ LOWI

R(A) ⊆ LOWI

R(B).

(iii) LOWI

R(A) ∪ LOWI

R(B) ⊆ LOWI

R(A ∪ B).

(iv) LOWI

R(A ∩ B) = LOWI

R(A) ∩ LOWI

R(B).

(v) LOWI

R(A) = (UPP
I

R(Ac))c.

(vi) if Ac ∈ I, then LOWI

R(A) = U.

(vii) if I ⊆ J , then LOWI

R(A) ⊆ LOWJ

R (A).

(viii) if I = P(U), then LOWI

R(A) = U.

(ix) LOWI∩J

R (A) = LOWI

R(A) ∩ LOWJ

R (A).

(x) LOWI∨J

R (A) = LOWI

R(A) ∪ LOWJ

R (A).

Proof.

(i)

LOWI

R(U) = {x ∈ U : R̆ < x > R̆ ∩ φ ∈ I}.

= U.

(ii) Let x ∈ LOWI

R(A). Then, R̆ < x > R̆ ∩ Ac ∈ I. Since, Bc ⊆ Ac and I is an ideal. Thus,
R̆ < x > R̆ ∩ Bc ∈ I. Therefore, x ∈ LOWI

R(B). Hence, LOWI

R(A) ⊆ LOWI

R(B).
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(iii) Immediately by part (ii).

(iv) LOWI

R(A) ∩ LOWI

R(B) ⊇ LOWI

R(A ∩ B) by part (ii). Let x ∈ LOWI

R(A) ∩ LOWI

R(B). Then,
R̆ < x > R̆ ∩ Ac ∈ I and R̆ < x > R̆ ∩ Bc ∈ I. It follows that (R̆ < x > R̆ ∩ (Ac ∪ Bc)) ∈ I.
So, (R̆ < x > R̆ ∩ (A ∩ B)c) ∈ I. Therefore, x ∈ LOWI

R(A ∩ B). Thus, LOWI

R(A) ∩ LOWI

R(B) ⊆
LOWI

R(A ∩ B). Hence, LOWI

R(A) ∩ LOWI

R(B) = LOWI

R(A ∩ B).

(v)

(UPP
I

R(Ac))c = ({x ∈ U : R̆ < x > R̆ ∩ Ac < I})c.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I}.

= LOWI

R(A).

(vi) Straightforward by Definition 3.1.

(vii) Let x ∈ LOWI

R(A). Then, R̆ < x > R̆ ∩ Ac ∈ I. Since, I ⊆ J . Thus, R̆ < x > R̆ ∩ Ac ∈ J .

Therefore, x ∈ LOWI

R(A). Hence, LOWI

R(A) ⊆ LOWJ

R (A).

(viii) Straightforward by Definition 3.1.

(ix)

LOWI∩J

R (A) = {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I ∩ J}.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I} and {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ J}.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I} ∩ {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ J}.

= LOWI

R(A) ∩ LOWJ

R (A).

(x)

LOWI∨J

R (A) = {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I ∨ J}.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I ∪ J}.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I} or {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ J}.

= {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ I} ∪ {x ∈ U : R̆ < x > R̆ ∩ Ac ∈ J}.

= LOWI

R(A) ∪ LOWJ

R (A).

Remark 3.4. In Propositions 3.2 and 3.3 the converse of parts (ii), (iii), (vi), (vii), and (viii) is false,
in general as illustrated by the next example.

Example 3.5. (i) Let U = {u1, u2, u3, u4},I = {φ, {u1}, {u2}, {u3}, {u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}}

and R = {(u1, u2), (u1, u3), (u2, u3), (u2, u4), (u3, u1), (u3, u4)} be a binary relation defined on U. By
calculations, we obtain R̆ < u1 > R̆ = {u1}, R̆ < u2 > R̆ = R̆ < u3 > R̆ = {u2, u3}, R̆ < u4 > R̆ = φ.
For part (ii), take A = {u1, u2} and B = {u1, u4}, then

(a) UPP
I

R(A) = UPP
I

R(B) = φ. Therefore, UPP
I

R(A) ⊆ UPP
I

R(B), but A * B.

(b) LOWI

R(A) = LOWI

R(B) = U. Therefore, LOWI

R(A) ⊆ LOWI

R(B), but A * B.
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(ii) Let U = {u1, u2, u3, u4},J = {φ, {u2}},I = {φ, {u1}} and R = {(u2, u2), (u3, u3), (u4, u4)} be a binary
relation defined on U. By calculations, we obtain R̆ < u1 > R̆ = φ, R̆ < u2 > R̆ = {u2}, R̆ < u3 >

R̆ = {u3}, R̆ < u4 > R̆ = {u4}.

For part (vi), take

(a) A = {u1, u2}, then UPP
J

R (A) = φ. Therefore, UPP
J

R (A) = φ, but A < J .

(b) A = {u3, u4}, then LOWJ

R (A) = U. Therefore, LOWJ

R (A) = U, but Ac < J .

For part (vii), take

(a) A = {u1, u2}, then UPP
I

R(A) = {u2},UPP
J

R (A) = φ. Therefore, UPP
J

R (A) ⊆ UPP
I

R(A), but
I * J .

(b) A = {u3, u4}, then LOWI

R(A) = {u1, u3, u4}, LOWJ

R (A) = U. Therefore, LOWI

R(A)
⊆ LOWJ

R (A), but I * J .

For part (viii), take

(a) A = {u1, u2}, then UPP
J

R (A) = φ, but J , P(U).

(b) A = {u3, u4}, then LOWJ

R (A) = U, but J , P(U).

(iii) Let U = {u1, u2, u3, u4},I = {φ, {u4}} and R = ∆ ∪ {(u2, u1), (u3, u1), (u4, u1)} be a binary relation
defined on U, (where ∆ is the identity relation and equal to {(u1, u1), (u2, u2), (u3, u3), (u4, u4)}). By
calculations, we obtain R̆ < u1 > R̆ = U, R̆ < u2 > R̆ = {u1, u2}, R̆ < u3 > R̆ = {u1, u3}, R̆ < u4 >

R̆ = {u1, u4}. For part (iii), take A = {u1, u4}, B = {u2, u3}. Hence,

(a) A ∩ B = φ, then UPP
I

R(A) = U,UPP
I

R(B) = {u1, u2, u3},UPP
I

R(A ∩ B) = φ. Therefore,
UPP

I

R(A) ∩ UPP
I

R(B) = {u1, u2, u3} , φ = UPP
I

R(A ∩ B).

(b) A ∪ B = U, then LOWI

R(A) = {u4}, LOWI

R(B) = φ,UPP
I

R(A ∪ B) = U. Therefore, LOWI

R(A) ∪
LOWI

R(B) = {u4} , U = LOWI

R(A ∪ B).

Remark 3.6. In the first type of improvement of ideal approximation space, some properties of Pawlak
approximation space are not satisfied.

(i) In Example 3.5 (i) take

(a) A = {u1, u2}, then UPP
I

R(A) = φ. Hence, A * UPP
I

R(A).

(b) A = {u1, u2}, then LOWI

R(A) = U. Hence, LOWI

R(A) * A.

(c) A = U, then UPP
I

R(U) = φ. Hence, UPP
I

R(U) , U.

(d) A = φ, then LOWI

R(φ) = U. Hence, LOWI

R(φ) , φ.

(ii) In Example 3.5 (iii) take

(a) A = {u2, u3}, then UPP
I

R(A) = {u1, u2, u3},UPP
I

R(UPP
I

R(A)) = U. Hence,
UPP

I

R(A) , UPP
I

R(UPP
I

R(A)).

(b) A = {u1, u4}, then LOWI

R(A) = {u4}, LOWI

R(LOWI

R(A)) = φ. Hence,
LOWI

R(A) , LOWI

R(LOWI

R(A)).
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Example 3.7. Let U = {u1, u2, u3, u4},I = {φ, {u1}} and R = ∆ ∪ {(u1, u2), (u2, u1), (u2, u3), (u3, u1),
(u3, u2), (u4, u1), (u4, u2)} be a binary relation defined on U. By calculations, we obtain R̆ < u1 > R̆ =

R̆ < u2 > R̆ = U, R̆ < u3 > R̆ = {u1, u2, u3}, R̆ < u4 > R̆ = {u1, u2, u4}. Then

(i) If A = {u3}, then UPP
I

R(A) = {u1, u2, u3} and LOWI

R(UPP
I

R(A)) = {u3}. Hence,

UPP
I

R(A) * LOWI

R(UPP
I

R(A)).

(ii) If A = {u1, u2, u4}, then LOWI

R(A) = {u4} and UPP
I

R(LOWI

R(A)) = {u1, u2, u4}. Hence,

UPP
I

R(LOWI

R(A)) * LOWI

R(A).

Proposition 3.8. Let (U,R,I) be an ideal approximation space and φ , A ⊆ U. Then

(i) 0 ≤ ACCIR(A) ≤ 1.

(ii) ACCIR(U) = 1.

Proof. We prove (i) only and (ii) is straightforward. Since, φ , A ⊆ U, then UPP
I

R(A) ∪ A , φ.

Hence, φ ⊆ LOWI

R(A) ∩ A ⊆ UPP
I

R(A) ∪ A. Therefore, 0 ≤ |LOWI

R(A) ∩ A| ≤ |UPP
I

R(A) ∪ A|. So,

0 ≤ |LOWIR(A)∩A|

|UPP
I

R(A)∪A|
≤ 1. It means that, 0 ≤ ACCIR(A) ≤ 1.

Theorem 3.9. Let (U,R,I) and (U,R,J) be ideal approximation spaces such that I ⊆ J . Then for
each nonempty subset A of U we have the next results.

(i) BNDJR (A) ⊆ BNDIR(A).

(ii) ACCIR(A) ≤ ACCJR (A).

(iii) RoughJR (A) ≤ RoughIR(A).

Proof.

(i) Let x ∈ BNDJR (A). Then, x ∈ UPP
J

R (A) − LOWJ

R (A). So, x ∈ UPP
J

R (A) and x ∈ (LOWJ

R (A))c.

Hence, x ∈ UPP
I

R(A) and x ∈ (LOWI

R(A))c by Propositions 3.2 and 3.3 part (vii). It follows that
x ∈ BNDIR(A). Therefore, BNDJR (A) ⊆ BNDIR(A).

(ii)

ACCIR(A) =
|LOWI

R(A) ∩ A|

|UPP
I

R(A) ∪ A|
.

≤
|LOWJ

R (A) ∩ A|

|UPP
J

R (A) ∪ A|
.

= ACCJR (A).

(iii) Straightforward by (ii).

Remark 3.10. (i) Example 3.5 (ii) shows that the converse of part (i) in Theorem 3.9 is not necessary
to be true in general. To elucidate that, take, A = {u3, u4}. Then BNDJR (A) = φ ⊆ φ = BNDIR(A),
but I * J .
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(ii) Example 3.5 (iii) shows that the converse of parts (ii) and (iii) in Theorem 3.9 is not necessary to
be true in general. To elucidate that, take, J = {φ, {u1}}, A = {u1, u4}. Then

(a) ACCIR(A) = 1
4 <

1
2 = ACCJR (A), but I * J .

(b) RoughJR (A) = 1
2 <

3
4 = RoughIR(A), but I * J .

Theorem 3.11. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(i) UPP
I

R1
(A) ⊆ UPP

I

R2
(A).

(ii) LOWI

R2
(A) ⊆ LOWI

R1
(A).

(iii) BNDIR1
(A) ⊆ BNDIR2

(A).

(iv) ACCIR2
(A) ≤ ACCIR1

(A).

(v) RoughIR1
(A) ≤ RoughIR2

(A).

Proof.

(i) Let x ∈ UPP
I

R1
(A). Then, R̆1 < x > R̆1∩A < I. Since, R̆1 < x > R̆1 ⊆ R̆2 < x > R̆2 (by Theorem 2.5

[8]). It follows that R̆2 < x > R̆2 ∩ A < I. Thus, x ∈ UPP
I

R2
(A). Hence, UPP

I

R1
(A) ⊆ UPP

I

R2
(A).

(ii) Let x ∈ LOWI

R2
(A). Then, R̆2 < x > R̆2 ∩ Ac ∈ I. Since, R̆1 < x > R̆1 ⊆ R̆2 < x > R̆2

(by Theorem 2.5 [8]). It follows that R̆1 < x > R̆1 ∩ Ac ∈ I. Thus, x ∈ LOWI

R1
(A). Hence,

LOWI

R2
(A) ⊆ LOWI

R1
(A).

(iii) Let x ∈ BNDIR1
(A). Then, x ∈ UPP

I

R1
(A) − LOWI

R1
(A). So, x ∈ UPP

I

R1
(A) and x ∈ (LOWI

R1
(A))c.

Thus, x ∈ UPP
I

R2
(A) and x ∈ (LOWI

R2
(A))c by parts (i) and (ii). Hence, x ∈ BNDIR2

(A). Therefore,
BNDIR1

(A) ⊆ BNDIR2
(A).

(iv)

ACCIR2
(A) = |

LOWI

R2
(A) ∩ A|

UPP
I

R2
(A) ∪ A|

|.

≤
|LOWI

R1
(A) ∩ A|

|UPP
I

R1
(A) ∪ A|

.

= ACCIR1
(A).

(v) Straightforward by (iv).

In Theorem 3.11 the inclusion and less than relations can not be replaced by an equality relation as
the next example elucidates.
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Example 3.12. Let U = {u1, u2, u3, u4},I = {φ, {u2}, {u3}, {u4}, {u2, u3}, {u2, u4}, {u3, u4}, {u2, u3, u4}} and
R1 = ∆∪{(u1, u2), (u2, u1)},R2 = ∆∪{(u1, u2), (u2, u1), (u1, u3), (u3, u1)} be two similarity relation defined
on U thus R̆1 < u1 > R̆1 = R̆1 < u2 > R̆1 = {u1, u2}, R̆1 < u3 > R̆1 = {u3}, R̆1 < u4 > R̆1 = {u4}, R̆2 <

u1 > R̆2 = R̆2 < u2 > R̆2 = R̆2 < u3 > R̆2 = {u1, u2, u3}, R̆2 < u4 > R̆2 = {u4}. Take

(i) A = {u1, u4}, then

1. UPP
I

R1
(A) = {u1, u2} , {u1, u2, u3} = UPP

I

R2
(A).

2. ACCIR1
(A) = 2

3 ,
1
2 = ACCIR2

(A).
3. RoughIR2

(A) = 1
2 ,

1
3 = RoughIR1

(A).

(ii) A = {u2, u3}, then LOWI

R1
(A) = {u3, u4} , {u4} = LOWI

R2
(A).

3.2. The second method of improvement of the approximations and accuracy measure of a rough set

Definition 3.13. Let (U,R,I) be an ideal approximation space. The second kind of the improvement of
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > R̆ are respectively defined by:
LOWI

R
(A) = {x ∈ A : R̆ < x > R̆ ∩ Ac ∈ I}.

UPP
I

R(A) = A ∪ UPP
I

R(A).

BNDIR(A) = UPP
I

R(A) − LOWI

R
(A).

ACCIR(A) =
|LOWI

R
(A)|

|UPP
I

R(A)|
.

RoughI
R
(A) = 1 − ACCIR(A).

Proposition 3.14. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) A ⊆ UPP
I

R(A) equality hold if A = φ or U.

(ii) A ⊆ B⇒ UPP
I

R(A) ⊆ UPP
I

R(B).

(iii) UPP
I

R(A) ⊆ UPP
I

R(UPP
I

R(A)).

(iv) UPP
I

R(A ∩ B) ⊆ UPP
I

R(A) ∩ UPP
I

R(B).

(v) UPP
I

R(A ∪ B) = UPP
I

R(A) ∪ UPP
I

R(B).

(vi) UPP
I

R(A) = (LOWI

R
(Ac))c.

(vii) if A ∈ I, then UPP
I

R(A) = A.

(viii) if I ⊆ J , then UPP
J

R (A) ⊆ UPP
I

R(A).

(ix) if I = P(U), then UPP
I

R(A) = A.
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(x) UPP
I∩J

R (A) = UPP
I

R(A) ∪ UPP
J

R (A).

(xi) UPP
I∨J

R (A) = UPP
I

R(A) ∩ UPP
J

R (A).

Proof. Similar to Proposition 3.2.

Proposition 3.15. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) LOWI

R
(A) ⊆ A equality hold if A = φ or U.

(ii) A ⊆ B⇒ LOWI

R
(A) ⊆ LOWI

R
(B).

(iii) LOWI

R
(LOWI

R
(A)) ⊆ LOWI

R
(A).

(iv) LOWI

R
(A) ∪ LOWI

R
(B) ⊆ LOWI

R
(A ∪ B).

(v) LOWI

R
(A ∩ B) = LOWI

R
(A) ∩ LOWI

R
(B).

(vi) LOWI

R
(A) = (UPP

I

R(Ac))c.

(vii) if Ac ∈ I, then LOWI

R
(A) = A.

(viii) if I ⊆ J , then LOWI

R
(A) ⊆ LOWJ

R
(A).

(ix) if I = P(U), then LOWI

R
(A) = A.

(x) LOWI∩J

R
(A) = LOWI

R
(A) ∩ LOWJ

R
(A).

(xi) LOWI∨J

R
(A) = LOWI

R
(A) ∪ LOWJ

R
(A).

Proof. Similar to Proposition 3.3.

Remark 3.16. (i) Example 3.5 (i) also shows that the converse of parts (vii) and (ix) in Propositions
3.14 and 3.15 is not necessarily to be true in general.
For part (vii), take

(a) A = {u1, u3, u4}, then UPP
I

R(A) = A, but A < I.

(b) A = {u2}, then LOWI

R
(A) = A, but Ac < I.

For part (ix), take

(a) A = {u1, u3, u4}, then UPP
I

R(A) = A, but I , P(U).

(b) A = {u2}, then LOWI

R
(A) = A, but I , P(U).

(ii) Example 3.5 (ii) also shows that the converse of part (viii) in Propositions 3.14 and 3.15 is not
necessarily to be true in general. Take
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(a) A = {u1, u2}, then UPP
J

R (A) = {u1, u2} ⊆ {u1, u2} = UPP
I

R(A), but I * J .

(b) A = {u3, u4}, then LOWI

R
(A) = {u3, u4} ⊆ {u3, u4} = LOWJ

R
(A), but I * J .

(iii) Example 3.5 (iii) also shows that the inclusion of parts (ii)-(iv) in Propositions 3.14 and 3.15 can
not be replaced by the equality in general.
For part (ii), take A = {u2}, B = {u1}, then

(a) UPP
I

R(A) = {u1, u2} ⊆ U = UPP
I

R(B), but A * B.

(b) LOWI

R
(A) = φ ⊆ φ = LOWI

R
(B), but A * B.

For part (iii), take

(a) A = {u2, u3}, then UPP
I

R(A) = {u1, u2, u3},UPP
I

R(UPP
I

R(A)) = U. Therefore, UPP
I

R(A) =

{u1, u2, u3} , U = UPP
I

R(UPP
I

R(A)).

(b) A = {u1, u4}, then LOWI

R
(A) = {u4}, LOWI

R
(LOWI

R
(A)) = φ. Therefore, LOWI

R
(A) = {u4} ,

φ = LOWI

R
(LOWI

R
(A)).

For part (iv), take A = {u1, u4}, B = {u2, u3}, then

(a) A∩ B = φ. Hence, UPP
I

R(A) = U,UPP
I

R(B) = {u1, u2, u3}. Therefore, UPP
I

R(A)∩UPP
I

R(B) =

{u1, u2, u3} , φ = UPP
I

R(A ∩ B).

(b) A ∪ B = U. Hence, LOWI

R
(A) = {u4}, LOWI

R
(B) = φ. Therefore, LOWI

R
(A) ∪ LOWI

R
(B) =

{u4} , U = LOWI

R
(A ∪ B).

Remark 3.17. In the second type of improvement of ideal approximation space, some properties of
Pawlak approximation space are not satisfied.

(i) In Example 3.5 (i) take

(a) A = {u1} ∈ I, then UPP
I

R(A) = A. Hence, if A ∈ I; UPP
I

R(A) = φ.

(b) Ac = {u1} ∈ I, then LOWI

R
(A) = A. Hence, if Ac ∈ I; LOWI

R
(A) = U.

(ii) In Example 3.5 (ii) take

(a) J = P(U), A = {u1, u3}, then UPP
J

R (A) = A. Hence, if J = P(U) ; UPP
J

R (A) = φ.

(b) J = P(U), A = {u2, u4}, then LOWJ

R
(A) = A. Hence, if J = P(U) ; LOWJ

R
(A) = U.

(iii) In Example 3.7 take

(a) A = {u3}, then UPP
I

R(A) = {u1, u2, u3}, LOWI

R
(UPP

I

R(A)) = {u3}. Therefore, UPP
I

R(A) =

{u1, u2, u3} * {u3} = LOWI

R
(UPP

I

R(A)).
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(b) A = {u1, u2, u4}, then LOWI

R
(A) = {u4},UPP

I

R(LOWI

R
(A)) = {u1, u2, u4}. Therefore,

UPP
I

R(LOWI

R
(A)) = {u1, u2, u4} * {u4} = LOWI

R
(A).

Proposition 3.18. Let (U,R,I) be an ideal approximation space and φ , A ⊆ U. Then

(i) 0 ≤ ACCIR(A) ≤ 1.

(ii) ACCIR(U) = 1.

Proof. It is similar to Proposition 3.8.

Theorem 3.19. Let (U,R,I) and (U,R,J) be ideal approximation spaces such that I ⊆ J . Then for
each nonempty subset A of U we have the next results.

(i) BNDJR (A) ⊆ BNDIR(A).

(ii) ACCIR(A) ≤ ACCJR (A).

(iii) RoughJ
R

(A) ≤ RoughI
R
(A).

Proof. Similar to the proof of Theorem 3.9.

Remark 3.20. Example 3.5 (ii) shows that the converse of parts (i) and (ii) in Theorem 3.19 is not
necessary to be true in general. Take, A = {u2, u4}, then

(i) BNDJR (A) = φ ⊆ φ = BNDIR(A), but I * J .

(ii) ACCJR (A) = 1 ≤ 1 = ACCIR(A), but I * J .

(iii) RoughJ
R

(A) = 0 ≤ 0 = RoughI
R
(A), but I * J .

Theorem 3.21. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(i) UPP
I

R1
(A) ⊆ UPP

I

R2
(A).

(ii) LOWI

R2
(A) ⊆ LOWI

R1
(A).

(iii) BNDIR1
(A) ⊆ BNDIR2

(A).

(iv) ACCIR2
(A) ≤ ACCIR1

(A).

(v) RoughI
R1

(A) ≤ RoughI
R2

(A).

Proof. Similar to Theorem 3.11.

Remark 3.22. Example 3.12 shows that the inclusion and the less than in Theorem 3.21 can not be
replaced by equality relation in general. Take A = {u1, u4}, then

(i) UPP
I

R1
(A) = {u1, u2, u4} , U = UPP

I

R2
(A).

(ii) BNDIR1
(A) = {u2} , {u2, u3} = BNDIR2

(A).

(iii) ACCIR1
(A) = 2

3 ,
1
2 = ACCIR2

(A).

(iv) RoughI
R1

(A) = 1
3 ,

1
2 = RoughI

R2
(A).
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3.3. The third method of the improvement of the approximations and accuracy measure of a rough set

Definition 3.23. Let (U,R,I) be an ideal approximation space. The third kind of the improvement of
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > R̆ are respectively defined by:
LOW

′I

R(A) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ I}.

UPP′
I

R(A) = (LOW
′I

R(Ac))c.

BND
′I

R(A) = UPP′
I

R(A) − LOW
′I

R(A).

ACC
′I

R(A) =
|LOW

′ I

R(A)∩A|

|UPP′
I

R(A)∪A|
.

Rough
′I

R(A) = 1 − ACC
′I

R(A).

Proposition 3.24. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) A ⊆ B⇒ LOW
′I

R(A) ⊆ LOW
′I

R(B).

(ii) LOW
′I

R(A) ∪ LOW
′I

R(B) ⊆ LOW
′I

R(A ∪ B).

(iii) LOW
′I

R(A ∩ B) ⊆ LOW
′I

R(A) ∩ LOW
′I

R(B).

(iv) LOW
′I

R(A) = (UPP′
I

R(Ac))c.

(v) if I ⊆ J , then LOW
′I

R(A) ⊆ LOW
′J

R (A).

(vi) LOW
′I∩J

R (A) = LOW
′I

R(A) ∩ LOW
′J

R (A).

Proof.

(i) Let A ⊆ B and x ∈ LOW
′I

R(A). Then, ∃ y ∈ U such that x ∈ R̆ < y > R̆ ∩ Ac ∈ I. Hence,
x ∈ R̆ < y > R̆ ∩ Bc ∈ I (by Bc ⊆ Ac, and the properties of ideal). Thus, x ∈ LOW

′I

R(B).
Therefore, LOW

′I

R(A) ⊆ LOW
′I

R(B).

(ii) Immediately by part (i).

(iii) Immediately by part (i).

(iv) Straightforward by Definition 3.23.

(v) Let I ⊆ J and x ∈ LOW
′I

R(A). Then, ∃ y ∈ U such that x ∈ R̆ < y > R̆ ∩ Ac ∈ I ⊆ J . So,
x ∈ LOW

′J

R (A), and hence LOW
′I

R(A) ⊆ LOW
′J

R (A).

(vi)

LOW
′I∩J

R (A) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ I ∩ J}.

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ I}) and ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ J}).

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ I}) ∩ ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ Ac ∈ J}).

= LOW
′I

R(A) ∩ LOW
′J

R (A).
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Proposition 3.25. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) A ⊆ B⇒ UPP′
I

R(A) ⊆ UPP′
I

R(B).

(ii) UPP′
I

R(A ∩ B) ⊆ UPP′
I

R(A) ∩ UPP′
I

R(B).

(iii) UPP′
I

R(A) ∪ UPP′
I

R(B) ⊆ UPP′
I

R(A ∪ B).

(iv) UPP′
I

R(A) = (LOW
′I

R(Ac))c.

(v) if I ⊆ J , then UPP′
J

R (A) ⊆ UPP′
I

R(A).

(vi) UPP′
I∩J

R (A) = UPP′
I

R(A) ∪ UPP′
J

R (A).

Proof.

(i) Let A ⊆ B. Thus, Bc ⊆ Ac, and hence LOW
′I

R(Bc) ⊆ LOW
′I

R(Ac) (by No. (1) in Proposition 3.24).

So, (LOW
′I

R(Ac))c ⊆ (LOW
′I

R(Bc))c. Consequently, UPP′
I

R(A) ⊆ UPP′
I

R(B).

(ii) Immediately by part (i).

(iii) Immediately by part (i).

(iv) Straightforward by Definition 3.23.

(v) Let I ⊆ J and x ∈ UPP′
J

R (A). Then, x ∈ (LOW
′J

R (Ac))c ⊆ (LOW
′I

R(Ac))c, (by No. (5) in

Proposition 3.24). Thus, x ∈ (LOW
′I

R(Ac))c = UPP′
I

R(A). Therefore, UPP′
J

R (A) ⊆ UPP′
I

R(A).

(vi)

UPP′
I∩J

R (A) = (LOW
′I∩J

R (Ac))c.

= (LOW
′I

R(Ac) ∩ LOW
′J

R (Ac))c(by No. (6) in Proposition 3.24).

= (LOW
′I

R(Ac))c ∪ (LOW
′J

R (Ac))c.

= UPP′
I

R(A) ∪ UPP′
J

R (A).

Remark 3.26. (i) Example 3.5 (i) shows that the converse of part (i) in Propositions 3.24 and 3.25 is
not necessarily to be true in general. Take

(a) A = {u1}, B = {u4}, then UPP′
I

R(A) = UPP′
I

R(B) = {u4}. Therefore, UPP′
I

R(A) ⊆ UPP′
I

R(B),
but A * B.

(b) A = {u2}, B = {u1, u3, u4}, then LOW
′I

R(A) = LOW
′I

R(B) = {u1, u2, u3}. Therefore, LOW
′I

R(A) ⊆
LOW

′I

R(B), but A * B.

(ii) Example 3.5 (iii) shows that the inclusion of part (ii) in Propositions 3.24 and 3.25 can not be
replaced by equality relation in general. Take A = {u1, u4}, B = {u2, u3}, then
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(a) UPP′
I

R(A) = U,UPP′
I

R(B) = B,UPP′
I

R(A ∩ B) = φ. Therefore, UPP′
I

R(A) ∩UPP′
I

R(B) = B ,

φ = UPP′
I

R(A ∩ B).

(b) LOW
′I

R(A) = A, LOW
′I

R(B) = φ, LOW
′I

R(A ∪ B) = U. Therefore, LOW
′I

R(A) ∪ LOW
′I

R(B) =

A , U = LOW
′I

R(A ∪ B).

(iii)

Example 3.27. Let U = {u1, u2, u3, u4},I = {φ, {u1}} and R = {(u1, u1), (u1, u3), (u1, u4), (u2, u1),
(u2, u2), (u2, u3), (u3, u1), (u3, u2), (u4, u1), (u4, u2)} be a binary relation defined on U thus R̆ < u1 >

R̆ = R̆ < u3 > R̆ = U, R̆ < u2 > R̆ = {u1, u2, u3}, R̆ < u4 > R̆ = {u1, u3, u4}. This example shows that
the inclusion of part (iii) in Propositions 3.24 and 3.25 can not be replaced by equality relation
in general. Take

(a) A = {u1, u3, u4}, B = {u1, u2, u3}, A ∩ B = {u1, u3}, then LOW
′I

R(A) = A, LOW
′I

R(B)
= B, LOW

′I

R(A∩ B) = φ. Therefore, LOW
′I

R(A)∩ LOW
′I

R(B) = {u1, u3} , φ = LOW
′I

R(A∩ B).

(b) A = {u2}, B = {u4}, A ∪ B = {u2, u4}, then UPP′
I

R(A) = A,UPP′
I

R(B) = B,UPP′
I

R(A ∪ B) = U.

Therefore, UPP′
I

R(A) ∪ UPP′
I

R(B) = {u2, u4} , U = UPP′
I

R(A ∪ B).

(iv) Example 3.5 (ii) shows that the converse of part (v) in Propositions 3.24 and 3.25 is not necessarily
to be true in general. Take

(a) A = {u1, u2}, then UPP′
I

R(A) = {u1, u2},UPP′
J

R (A) = {u1}. Therefore, UPP′
J

R (A) ⊆ UPP′
I

R(A),
but I * J .

(b) A = {u1, u2, u3}, then LOW
′I

R(A) = {u2, u3}, LOW
′J

R (A) = {u2, u3}. Therefore, LOW
′I

R(A) ⊆
LOW

′J

R (A), but I * J .

Remark 3.28. In the third type of improvement of ideal approximation space, some properties of
Pawlak approximation space are not satisfied.

(i) In Example 3.5 (i) take

(a) A = {u1}, then UPP′
I

R(A) = {u4}. Hence, A * UPP′
I

R(A).

(b) A = {u2}, then LOW
′I

R(A) = {u1, u2, u3}. Hence, LOW
′I

R(A) * A.

(c) A = U, then UPP′
I

R(U) = {u4}. Hence, UPP′
I

R(U) , U.

(d) A = φ, then LOW
′I

R(φ) = {u1, u2, u3}. Hence, LOW
′I

R(φ) , φ.

(ii)

Example 3.29. Let U = {u1, u2, u3, u4},I = {φ, {u1}} and R = {(u1, u1)} be a binary relation
defined on U thus R̆ < u1 > R̆ = {u1}, R̆ < u2 > R̆ = R̆ < u3 > R̆ = R̆ < u4 > R̆ = φ. Take

(a) A = U, then LOW
′I

R(U) = {u1}. Hence, LOW
′I

R(U) , U.

(b) A = φ, then UPP′
I

R(φ) = {u2, u3, u4}. Hence, UPP′
I

R(φ) , φ.

(iii) In Example 3.7 if
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(a) A = {u3}, then UPP′
I

R(A) = A, LOW
′I

R(UPP′
I

R(A)) = φ. Hence,

UPP′
I

R(A) * LOW
′I

R(UPP′
I

R(A)).

(b) A = {u1, u2, u4}, then LOW
′I

R(A) = A,UPP′
I

R(LOW
′I

R(A)) = U. Hence, UPP′
I

R

(LOW
′I

R(A)) * LOW
′I

R(A).

(iv) In Example 3.29 take

(a) A = {u2, u3, u4}, then Ac ∈ I, then LOW
′I

R(A) = {u1}. Hence, if Ac ∈ I ; LOW
′I

R(A) = U or
A.

(b) A = {u1} ∈ I, then UPP′
I

R(A) = {u2, u3, u4}. Hence, if A ∈ I; UPP′
I

R(A) = φ or A.

(c) A = {u2, u3, u4},I = P(U), then LOW
′I

R(A) = {u1}. Hence, if I = P(U) ; LOW
′I

R(A) = U, or
A.

(d) A = {u1},I = P(U), then UPP′
I

R(A) = {u2, u3, u4}. Hence, if I = P(U) ; UPP′
I

R(A) = φ, or
A.

Proposition 3.30. Let (U,R,I) be an ideal approximation space and φ , A ⊆ U. Then

(i) 0 ≤ ACC
′I

R(A) ≤ 1.

(ii) ACCIR(U) = 1.

Proof. It is similar to Proposition 3.8.

Theorem 3.31. Let (U,R,I) and (U,R,J) be ideal approximation spaces such that I ⊆ J . Then for
each nonempty subset A of U we have the next results.

(i) BND
′J

R (A) ⊆ BND
′I

R(A).

(ii) ACC
′I

R(A) ≤ ACC
′J

R (A).

(iii) Rough′JR (A) ≤ Rough
′I

R(A).

Proof. Similar to Theorem 3.9.

Remark 3.32. Example 3.5 (ii) shows that the converse of parts (i) and (ii) in Theorem 3.31 is not
necessary to be true in general. Take, A = {u3, u4}. Then

(i) BND
′J

R (A) = {u1} ⊆ {u1} = BND
′I

R(A), but I * J .

(ii) ACC
′I

R(A) = 2
3 ≤

2
3 = ACC

′J

R (A), but I * J .

(iii) Rough
′J

R (A) = 1
3 ≤

1
3 = Rough

′J

R (A), but I * J .
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The third type of improvement of ideal approximation space does not have the monotonicity with
respect to the its approximations (lower and upper), boundary region, measures (accuracy and
roughness). The the next example clarifies this matter.

Example 3.33. Let U = {u1, u2, u3, u4, u5, u6, u7},I = {φ, {u1}}, R1,R2 be two binary relations on U
where

R1 = ∆ ∪ {(u1, u3), (u3, u1), (u3, u7), (u4, u6), (u5, u7), (u6, u4), (u7, u3), (u7, u5)},

R2 = R1 ∪ {(u1, u4), (u1, u5), (u2, u6), (u4, u1), (u5, u1), (u6, u2)}.

Thus, R̆1 < u1 > R̆1 = {u1, u3, u7}, R̆1 < u2 > R̆1 = {u2}, R̆1 < u3 > R̆1 = R̆1 < u7 > R̆1 =

{u1, u3, u5, u7}, R̆1 < u4 > R̆1 = R̆1 < u6 > R̆1 = {u4, u6}, R̆1 < u5 > R̆1 = {u3, u5, u7}, R̆2 < u1 > R̆2 =

{u1, u3, u4, u5, u6, u7}, R̆2 < u2 > R̆2 = {u2, u4, u6}, R̆2 < u3 > R̆2 = R̆2 < u5 > R̆2 =

{u1, u3, u4, u5, u7}, R̆2 < u4 > R̆2 = {u1, u2, u3, u4, u5, u6}, R̆2 < u6 > R̆2 = {u1, u2, u4, u6}, R̆2 < u7 > R̆2 =

{u1, u3, u5, u7}. Take

(i) A = {u1, u2, u3, u4, u5, u6}, then LOW
′I

R1
(A) = {u2, u4, u6}, LOW

′I

R2
(A) = {u1, u2, u3, u4, u5, u6}.

Therefore, LOW
′I

R1
(A) + LOW

′I

R2
(A).

(ii) A = {u7}, then UPP′
I

R1
(A) = {u1, u3, u5, u7},UPP′

I

R2
(A) = {u7}. Therefore, UPP′

I

R1
(A) * UPP′

I

R2
(A).

(iii) A = {u1, u2, u3, u4, u5, u6}, then
LOW

′I

R1
(A) = {u2, u4, u6},UPP′

I

R1
(A) = U, LOW

′I

R2
(A) = A,UPP′

I

R2
(A) = U. Therefore,

(a) BND
′I

R1
(A) = {u1, u3, u5, u7} * {u7} = BND

′I

R2
(A).

(b) ACC
′I

R1
(A) = 3

7 <
6
7 = ACC

′I

R2
(A).

(c) Rough
′I

R1
(A) = 4

7 >
1
7 = Rough

′I

R2
(A).

Although, R1 ⊆ R2.

3.4. The fourth method of the improvement of the approximations and accuracy measure of a rough
set

Definition 3.34. Let (U,R,I) be an ideal approximation space. The fourth kind of the improvement of
approximations (lower and upper), boundary region, measures (accuracy and roughness) of φ , A ⊆ U
with respect to R̆ < x > R̆ are respectively defined by:

UPP′′
I

R(A) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}.

LOW
′′I

R(A) = (UPP′′
I

R(Ac))c.

BND
′′I

R(A) = UPP′′
I

R(A) − LOW
′′I

R(A).

ACC
′′I

R(A) =
|LOW

′′ I

R(A)∩A|

|UPP′′
I

R(A)∪A|
.

Rough
′′I

R(A) = 1 − ACC
′′I

R(A).

Proposition 3.35. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.
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(i) UPP′′
I

R(φ) = φ.

(ii) A ⊆ B⇒ UPP′′
I

R(A) ⊆ UPP′′
I

R(B).

(iii) UPP′′
I

R(A ∩ B) ⊆ UPP′′
I

R(A) ∩ UPP′′
I

R(B).

(iv) UPP′′
I

R(A ∪ B) = UPP′′
I

R(A) ∪ UPP′′
I

R(B).

(v) UPP′′
I

R(A) = (LOW
′′I

R(Ac))c.

(vi) if A ∈ I, then UPP′′
I

R(A) = φ.

(vii) if I ⊆ J , then UPP′′
J

R (A) ⊆ UPP′′
I

R(A).

(viii) if I = P(U), then UPP′′
I

R(A) = φ.

(ix) UPP′′
I∩J

R (A) = UPP′′
I

R(A) ∪ UPP′′
J

R (A).

(x) UPP′′
I∨J

R (A) = UPP′′
I

R(A) ∩ UPP′′
J

R (A).

Proof.

(i) UPP′′
I

R(φ) = ∪{R̆ < x > R̆ : R̆ < x > R̆ ∩ φ < I} = φ.

(ii) Let A ⊆ B and x ∈ UPP′′
I

R(A). Then, ∃ y ∈ U such that x ∈< y > R̆ and R̆ < y > R̆ ∩ A < I. Thus,

R̆ < y > R̆ ∩ B < I. So, x ∈ UPP′′
I

R(B). Consequently, UPP′′
I

R(A) ⊆ UPP′′
I

R(B).

(iii) Immediately by part (ii).

(iv)

UPP′′
I

R(A ∪ B) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ (A ∪ B) < I}.

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) ∪ ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ B < I}).

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) or ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ B < I}).

= UPP′′
I

R(A) ∪ UPP′′
I

R(B).

(v)

(LOW
′′I

R(Ac))c = ((UPP′′
I

R(A))c)c.

= UPP′′
I

R(A).

(vi) Straightforward by Definition 3.34.

(vii) Let I ⊆ J , x ∈ UPP′′
J

R (A). Then, ∃ y ∈ U such that x ∈ R̆ < y > R̆ and R̆ < y > R̆ ∩ A < J .

Thus, R̆ < y > R̆ ∩ A < I as I ⊆ J . So, x ∈ UPP′′
I

R(A). Hence, UPP′′
J

R (A) ⊆ UPP′′
I

R(A).
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(viii) Straightforward by Definition 3.34.

(ix)

UPP′′
I∩J

R (A) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I ∩ J}.

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) or ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < J}).

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) ∪ ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < J}).

= UPP′′
I

R(A) ∪ UPP′′
J

R (A).

(x)

UPP′′
I∨J

R (A) = ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I ∨ J}.

= ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I ∪ J}.

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) and ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < J}).

= ( ∪
x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < I}) ∩ ( ∪

x∈U
{R̆ < x > R̆ : R̆ < x > R̆ ∩ A < J}).

= UPP′′
I

R(A) ∩ UPP′′
J

R (A).

Proposition 3.36. Let (U,R,I) and (U,R,J) be two ideal approximation spaces and let A, B ⊆ U.
Then, we have next properties.

(i) LOW
′′I

R(U) = U.

(ii) A ⊆ B⇒ LOW
′′I

R(A) ⊆ LOW
′′I

R(B).

(iii) LOW
′′I

R(A) ∪ LOW
′′I

R(B) ⊆ LOW
′′I

R(A ∪ B).

(iv) LOW
′′I

R(A ∩ B) = LOW
′′I

R(A) ∩ LOW
′′I

R(B).

(v) LOW
′′I

R(A) = (UPP′′
I

R(Ac))c.

(vi) if Ac ∈ I, then LOW
′′I

R(A) = U.

(vii) if I ⊆ J , then LOW
′′I

R(A) ⊆ LOW
′′J

R (A).

(viii) if I = P(U), then LOW
′′I

R(A) = U.

(ix) LOW
′′I∩J

R (A) = LOW
′′I

R(A) ∩ LOW
′′J

R (A).

(x) LOW
′′I∨J

R (A) = LOW
′′I

R(A) ∪ LOW
′′J

R (A).

Proof.

(i) LOW
′′I

R(U) = (UPP′′
I

R(φ))c = φc = U by Proposition 3.35 part (i).
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(ii) Let A ⊆ B. Thus, Bc ⊆ Ac and hence UPP′′
I

R(Bc) ⊆ UPP′′
I

R(Ac) (by Proposition 3.35 part (ii)).

Then, (UPP′′
I

R(Ac))c ⊆ (UPP′′
I

R(Bc))c. So, LOW
′′I

R(A) ⊆ LOW
′′I

R(B).

(iii) Immediately by part (ii).

(iv)

LOW
′′I

R(A ∩ B) = (UPP′′
I

R(A ∩ B)c)c.

= (UPP′′
I

R(Ac ∪ Bc))c.

= (UPP′′
I

R(Ac) ∪ UPP′′
I

R(Bc))c( by No. (4) in Proposition 3.35).

= (UPP′′
I

R(Ac))c ∩ (UPP′′
I

R(Bc))c.

= LOW
′′I

R(A) ∩ LOW
′′I

R(B).

(v) Straightforward by Definition 3.34.

(vi) Let Ac ∈ I, then LOW
′′I

R(A) = (UPP′′
I

R(Ac))c = (φ)c = U by Proposition 3.35 part (vi).

(vii) Let I ⊆ J . Then, UPP′′
J

R (Ac) ⊆ UPP′′
I

R(Ac) by Proposition 3.35 part (vii). Thus,

(UPP′′
I

R(Ac))c ⊆ (UPP′′
J

R (Ac))c. Hence, LOW
′′I

R(A) ⊆ LOW
′′J

R (A).

(viii) Let I = P(U), then LOW
′′I

R(A) = (UPP′′
I

R(Ac))c = (φ)c = U by Proposition 3.35 part (viii).

(ix)

LOW
′′I∩J

R (A) = (UPP′′
I∩J

R (Ac))c.

= (UPP′′
I

R(Ac) ∪ UPP′′
J

R (Ac))c( by Proposition 3.35 part (ix)).

= (UPP′′
I

R(Ac))c ∩ (UPP′′
J

R (Ac))c.

= LOW
′′I

R(A) ∩ LOW
′′J

R (A).

(x)

LOW
′′I∨J

R (A) = (UPP′′
I∨J

R (Ac))c.

= (UPP′′
I

R(Ac) ∩ UPP′′
J

R (Ac))c( by Proposition 3.35 part (x)).

= (UPP′′
I

R(Ac))c ∪ (UPP′′
J

R (Ac))c.

= LOW
′′I

R(A) ∪ LOW
′′J

R (A).

Remark 3.37. (i) Example 3.5 (i) shows that the converse of part (ii) in Propositions 3.35 and 3.36 is
not necessarily to be true in general. Take

(a) A = {u1}, B = {u4}, then UPP′′
I

R(A) = UPP′′
I

R(B) = φ. Therefore, UPP′′
I

R(A) ⊆ UPP′′
I

R(B),
but A * B.
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(b) A = {u2, u3, u4}, B = {u1, u2u3}, then LOW
′′I

R(A) = LOW
′′I

R(B) = U. Therefore, LOW
′′I

R(A) ⊆
LOW

′′I

R(B), but A * B.

(ii) Example 3.5 (ii) shows that the converse of parts (vi)-(viii) in Propositions 3.35 and 3.36 is not
necessarily to be true in general.
For part (vi) take

(a) A = {u1, u2}, then UPP′′
J

R (A) = φ. Therefore, UPP′′
J

R (A) = φ, but A < J .

(b) A = {u3, u4}, then LOW
′′J

R (A) = U. Therefore, LOW
′′J

R (A) = U, but Ac < J .

For part (vii) take

(a) A = {u1, u2}, then UPP′′
I

R(A) = {u2},UPP′′
J

R (A) = φ. Therefore, UPP′′
J

R (A) ⊆ UPP′′
I

R(A), but
I * J .

(b) A = {u3, u4}, then LOW
′′I

R(A) = {u1, u3, u4}, LOW
′′J

R (A) = U. Therefore,
LOW

′′I

R(A) ⊆ LOW
′′J

R (A), but I * J .

For part (viii) take

(a) A = {u1, u2}, then UPP′′
J

R (A) = φ, but J , P(U).

(b) A = {u3, u4}, then LOW
′′J

R (A) = U, but J , P(U).

(iii) Example 3.5 (iii) shows that the inclusion of part (iii) in Propositions 3.35 and 3.36 can not be
replaced by equality relation in general. Take A = {u1, u4}, B = {u2, u3}, then

(a) UPP′′
I

R(A) = UPP′′
I

R(B) = U,UPP′′
I

R(A ∩ B) = φ. Therefore, UPP′′
I

R(A) ∩UPP′′
I

R(B) = U ,

φ = UPP′
I

R(A ∩ B).

(b) LOW
′′I

R(A) = LOW
′′I

R(B) = φ, LOW
′′I

R(A ∪ B) = U. Therefore, LOW
′′I

R(A) ∪ LOW
′′I

R(B) =

φ , U = LOW
′′I

R(A ∪ B).

Remark 3.38. In the fourth type of improvement of ideal approximation space, some properties of
Pawlak approximation space are not satisfied.

(i) In Example 3.5 (i) take

(a) A = {u1}, then UPP′′
I

R(A) = φ. Hence, A * UPP′′
I

R(A).

(b) A = {u2, u3, u4}, then LOW
′′I

R(A) = U. Hence, LOW
′′I

R(A) * A.

(ii) In Example 3.5 (ii) take

(a) A = U, then UPP′′
I

R(U) = {u2, u3, u4}. Hence, UPP′′
I

R(U) , U.

(b) A = φ, then LOW
′′I

R(φ) = {u1}. Hence, LOW
′′I

R(φ) , φ.

Proposition 3.39. Let (U,R,I) be an ideal approximation space and φ , A ⊆ U. Then

(i) 0 ≤ ACC
′′I

R(A) ≤ 1.
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(ii) ACC
′′I

R(U) = 1.

Proof. It is similar to Proposition 3.8.

Theorem 3.40. Let (U,R,I) and (U,R,J) be ideal approximation spaces such that I ⊆ J . Then for
each nonempty subset A of U we have the next results.

(i) BND
′′J

R (A) ⊆ BND
′′I

R(A).

(ii) ACC
′′I

R(A) ≤ ACC
′′J

R (A).

(iii) Rough
′′J

R (A) ≤ Rough
′′I

R(A).

Proof. Similar to Theorem 3.9.

Remark 3.41. Example 3.5 (ii) shows that the converse of parts (i) and (ii) in Theorem 3.40 is not
necessary to be true in general. Take, A = {u3, u4}, then

(i) BND
′′J

R (A) = φ ⊆ φ = BND
′′I

R(A), but I * J .

(ii) ACC
′′I

R(A) = 1 ≤ 1 = ACC
′′J

R (A), but I * J .

(iii) Rough
′′J

R (A) = 0 ≤ 0 = Rough
′′I

R(A), but I * J .

Theorem 3.42. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(i) UPP′′
I

R1
(A) ⊆ UPP′′

I

R2
(A).

(ii) LOW
′′I

R2
(A) ⊆ LOW

′′I

R1
(A).

(iii) BND
′′I

R1
(A) ⊆ BND

′′I

R2
(A).

(iv) ACC
′′I

R2
(A) ≤ ACC

′′I

R1
(A).

(v) Rough
′′I

R1
(A) ≤ Rough

′′I

R2
(A).

Proof.

(i) Let x ∈ UPP′′
I

R1
(A). Then, ∃ y ∈ U such that x ∈ R̆1 < y > R̆1 ∩ A < I. Since, R̆1 < y > R̆1 ⊆ R̆2 <

y > R̆2 (by Theorem 2.5 [8]). It follows that x ∈ R̆2 < y > R̆2 ∩ A < I. Thus, x ∈ UPP′′
I

R2
(A).

Hence, UPP′′
I

R1
(A) ⊆ UPP′′

I

R2
(A).

(ii)

x ∈ LOW
′′I

R2
(A) = (UPP′′

I

R2
(Ac))c.

⊆ (UPP′′
I

R1
(Ac))c( by part (i)).

= LOW
′′I

R1
(A).
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(iii) Let x ∈ BND
′′I

R1
(A). Then, x ∈ UPP′′

I

R1
(A) − LOW

′′I

R1
(A). So, x ∈ UPP′′

I

R1
(A) and

x ∈ (LOW
′′I

R1
(A))c. Thus, x ∈ UPP′′

I

R2
(A) and x ∈ (LOW

′′I

R2
(A))c by parts (i) and (ii). Hence,

x ∈ BND
′′I

R2
(A). Therefore, BND

′′I

R1
(A) ⊆ BND

′′I

R2
(A).

(iv)

ACC
′′I

R2
(A) =

|LOW
′′I

R2
(A) ∩ A|

|UPP′′
I

R2
(A) ∪ A|

≤
|LOW

′′I

R1
(A) ∩ A|

|UPP′′
I

R1
(A) ∪ A|

= ACC
′′I

R1
(A).

(v) Straightforward by (iv).

Remark 3.43. It can not be replaced the inclusion and the less than relations, in Theorem 3.42, by an
equality relation as Example 3.12 shows.

(i) Take A = {u1, u4}, then

(a) UPP′′
I

R1
(A) = {u1, u2} , {u1, u2, u3} = UPP′′

I

R2
(A).

(b) ACC
′′I

R1
(A) = 2

3 ,
1
2 = ACC

′′I

R2
(A).

(c) Rough
′′I

R1
(A) = 1

3 ,
1
2 = Rough

′′I

R2
(A).

(ii) A = {u2, u3}, then LOW
′′I

R1
(A) = {u3, u4} , {u4} = LOW

′′I

R2
(A).

4. Comparison the proposed methods and their advantages compared to the previous ones

In this section, we first compare among the suggested approximations and prove that the third
approach is the best one. Then, we show that the current methods produce better approximations and
higher accuracy values than their counterparts introduced in [20]. Also, we demonstrate that the current
methods are better than the methods defined by Al-shami [8] and Dai et al. [14].

4.1. Comparison the proposed methods in terms approximations and accuracy measures of subsets

Theorem 4.1. Let (U,R,I) be an ideal approximation space and let A ⊆ U. Then, we have the next
properties.

(i) UPP
I

R(A) ⊆ UPP
I

R(A).

(ii) LOWI

R
(A) ⊆ LOWI

R(A).

(iii) BNDIR(A) ⊆ BNDIR(A).

(iv) ACCIR(A) = ACCIR(A).
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(v) RoughI
R
(A) = RoughIR(A).

Proof. It directly follows from Definitions 3.1 and 3.13.

Remark 4.2. It can not be replaced the inclusion and less than relations, in Theorem 4.1, by an equality
relation in general. To illustrate this note consider Example 3.12 and take A = {u1, u3, u4}. Then

(i) UPP
I

R1
(A) = {u1, u2} , U = UPP

I

R1
(A).

(ii) LOWI

R1
(A) = {u1, u3, u4} , U = LOWI

R1
(A).

(iii) BNDIR1
(A) = φ , {u2} = BNDIR1

(A).

Theorem 4.3. Let (U,R,I) be an ideal approximation space such that R is a reflexive relation. Then
for each A ⊆ U we have the next results.

(i) LOWI

R
(A) ⊆ LOWI

R(A) ⊆ LOW
′I

R(A).

(ii) UPP′
I

R(A) ⊆ UPP
I

R(A) ⊆ UPP
I

R(A).

(iii) BND
′I

R(A) ⊆ BNDIR(A) ⊆ BNDIR(A).

(iv) ACCIR(A) ≤ ACCIR(A) ≤ ACC
′I

R(A).

(v) Rough
′I

R(A) ≤ RoughIR(A) ≤ RoughI
R
(A).

Proof.

(i) By Theorem 4.1, we have LOWI

R
(A) ⊆ LOWI

R(A). To prove, LOWI

R(A) ⊆ LOW
′I

R(A). Let x ∈

LOWI

R(A), then R̆ < x > R̆ ∩ Ac ∈ I. Hence, R̆ < x > R̆ ⊆ LOW
′I

R(A). Since, R is a reflexive
relation, thus x ∈ R̆ < x > R̆ ⊆ LOW

′I

R(A). Therefore, x ∈ LOW
′I

R(A).

(ii) To prove, UPP′
I

R(A) ⊆ UPP
I

R. Let x ∈ UPP′
I

R(A) = (LOW
′

R(Ac))c, then x < LOW
′

R(Ac). Hence,

by Definition 3.23, we get R̆ < x > R̆ ∩ A < I. It follows that x ∈ UPP
I

R(A). By Theorem 4.1, we

have UPP
I

R(A) ⊆ UPP
I

R(A).

(iii)–(v) Straightforward from (i) and (ii).

Remark 4.4. Example 3.5 (iii) shows that the inclusion and less than in Theorem 4.3 can not be

replaced by equality relation in general. Take A = {u2, u3}, then UPP′
I

R(A) = {u2, u3}  {u1, u2, u3} =

UPP
I

R. Moreover, Take A = {u1, u4}, then

(i) LOWI

R(A) = {u4}  {u1, u4} = LOW
′I

R(A).

(ii) BND
′I

R(A) = {u2, u3}  {u1, u2, u3} = BNDIR(A).

(iii) ACCIR(A) = 1
4 �

1
2 = ACC

′I

R(A).

(iv) Rough
′I

R(A) = 1
2 �

3
4 = RoughIR(A).
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Theorem 4.5. Let (U,R,I) be an ideal approximation space such that R is a reflexive relation. Then
for each A ⊆ U we have the next results.

(i) LOW
′′I

R(A) ⊆ LOWI

R(A) ⊆ LOW
′I

R(A).

(ii) UPP′
I

R(A) ⊆ UPP
I

R ⊆ UPP′′
I

R(A).

(iii) BND
′I

R(A) ⊆ BNDIR(A) ⊆ BND
′′I

R(A).

(iv) ACC
′′I

R(A) ≤ ACCIR(A) ≤ ACC
′I

R(A).

(v) Rough
′I

R(A) ≤ RoughIR(A) ≤ Rough
′′I

R(A).

Proof.

(i) By Theorem 4.3, we have LOWI

R(A) ⊆ LOW
′I

R(A). To prove, LOW
′′I

R(A) ⊆ LOWI

R(A), let x ∈

LOW
′′I

R(A) = UPP′′
I

R(Ac)c. Then, x < UPP′′
I

R(Ac). Thus, by Definition 3.34, R̆ < x > R̆ ∩ Ac ∈ I.

It follows that R̆ < x > R̆ ⊆ LOWI

R(A). Since, R is a reflexive relation, then x ∈ R̆ < x > R̆ ⊆
LOWI

R(A). Therefore, x ∈ LOWI

R(A).

(ii) By Theorem 4.3, we have UPP′
I

R(A) ⊆ UPP
I

R(A). To prove UPP
I

R(A) ⊆ UPP′′
I

R(A), let x ∈

UPP
I

R(A), then R̆ < x > R̆∩ A < I. It follows that R̆ < x > R̆ ⊆ UPP′′
I

R(A). Since, R is a reflexive

relation, then x ∈ R̆ < x > R̆ ⊆ UPP′′
I

R(A). Therefore, x ∈ UPP′′
I

R(A).

(iii)–(v) Straightforward from (i) and (ii).

Remark 4.6. It can not be replaced the inclusion and the less than relations, in Theorem 4.5, by an
equality relation in general. To validate this matter consider Example 3.5 (iii) and take A = {u2, u3}.

Then UPP
I

R = {u1, u2, u3}  U = UPP′′
I

R(A). Moreover, Take A = {u1, u4}, then

(i) LOW
′′I

R(A) = φ  {u4} = LOWI

R(A).

(ii) BNDIR(A) = {u1, u2, u3}  U = BND
′′I

R(A).

(iii) ACC
′′I

R(A) = 0 � 1
4 = ACCIR(A).

(iv) RoughIR(A) = 3
4 � 1 = Rough

′′I

R(A).

Remark 4.7. It follows from Theorems 4.1 and 4.3 that the best method to improve the approximations
and increase the accuracy values is that given in the third type in Subsection 3.3, since this type,
compared to the other types, decreases (or cancels) the boundary region by decreasing the upper
approximation and increasing the lower approximation, which means this type produces accuracy
measures higher than the other types.

In Example 3.5 (iii), we calculate lower and upper approximations, and boundary regions for all
subsets of U in Table 1.
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For example, take {u1}, then the boundary by the first, second and third methods are
{u2, u3}, {u2, u3, u4} and φ, respectively. Whereas, the boundary by the first, third and fourth methods
are {u2, u3}, φ and U, respectively. Now, we calculate the accuracy values for all subsets of U in
Table 2.

Table 2. Accuracy by using the proposed methods.

A First approach Second approach Third approach Fourth approach
{u1}

1
4

1
4

1
4 0

{u2} 0 0 0 0
{u3} 0 0 0 0
{u4} 0 0 0 0
{u1, u2}

1
4

1
4

1
4 0

{u1, u3}
1
4

1
4

1
4 0

{u1, u4}
1
4

1
4

1
2 0

{u2, u3} 0 0 0 0
{u2, u4} 0 0 0 0
{u3, u4} 0 0 0 0
{u1, u2, u3}

3
4

3
4

3
4

3
4

{u1, u2, u4}
1
2

1
2

3
4 0

{u1, u3, u4}
1
2

1
2

3
4 0

{u2, u3, u4} 0 0 0 0
U 1 1 1 1

In Tables 3 and 4, we compare the four approaches given in this manuscript in terms of satisfying
Pawlak properties or not, where

√
means that the property holds, while ×means that the property does

not hold.
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Table 3. Comparison between the first and second methods according to the properties in
Definition 2.1.

The first method The second method
L1

√ √

L2
√ √

L3 ×
√

L4 ×
√

L5
√ √

L6
√ √

L7
√ √

L8 × ×

L9 × ×

U1
√ √

U2 ×
√

U3
√ √

U4 ×
√

U5
√ √

U6
√ √

U7
√ √

U8 × ×

U9 × ×

Table 4. Comparison between the third and fourth methods according to the properties in
Definition 2.1.

The third method The fourth method
L1

√ √

L2 ×
√

L3 × ×

L4 × ×

L5 ×
√

L6
√ √

L7
√ √

U1
√ √

U2 × ×

U3 ×
√

U4 × ×

U5 ×
√

U6
√ √

U7
√ √
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4.2. Comparison the proposed methods with the previous ones

In this subsection, we elucidate the good performance and efficiency of the followed approaches
compared to those given in [8, 11, 14, 20]. Also, we illustrate under what conditions the approaches
presented in [8, 11, 14, 20] are identical with the current approaches.

The following result elucidates that the first type of our approaches is better than the approximation
spaces given in [8] (see, Definition 2.9).

Theorem 4.8. Let (U,R,I) be an ideal approximation space and let A ⊆ U. Then

(i) UPP
I

R(A) ⊆ RFF(A).

(ii) RFF(A) ⊆ LOWI

R(A).

(iii) BNDIR(A) ⊆ BFFR (A).

(iv) ACCIR(A) ≤ AccFFR (A).

(v) RoughFFR (A) ≤ RoughIR(A).

Proof.

(i) Let x ∈ UPP
I

R(A). Then, R̆ < x > R̆ ∩ A < I. Therefore, R̆ < x > R̆ ∩ A , φ. Hence, x ∈ RFF(A),
which means that UPP

I

R(A) ⊆ RFF(A).

(ii) Let x ∈ RFF(A). Then, R̆ < x > R̆ ⊆ A. Therefore, R̆ < x > R̆ ∩ Ac ∈ I. Hence, x ∈ LOWI

R(A),
which means that RFF(A) ⊆ LOWI

R(A).

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.9. It can not be replaced the inclusion and the less than relations, in Theorem 4.8, by an
equality relation in general. To validate this note consider Example 3.12 and take A = {u1, u4}. Then

(i) UPP
I

R1
(A) = {u1, u2} , {u1, u2, u4} = RFF1 (A).

(ii) LOWI

R1
(A) = U , {u4} = R1FF(A).

(iii) BNDIR1
(A) = φ , {u1, u2} = BFFR1

(A).

(iv) ACCIR1
(A) = 2

3 ,
1
3 = AccFFR1

(A).

(v) RoughIR1
(A) = 1

3 ,
2
3 = RoughFFR1

(A).

In the next result, we prove that the first type of our approaches is more accurate than the approach
displayed in [14] (see, Definition 2.6).

Theorem 4.10. Let (U,R,I) be an ideal approximation space such that R is a similarity relation. Then
for each A ⊆ U we have the next results.

(i) UPP
I

R(A) ⊆ aprR(A).

(ii) apr
R
(A) ⊆ LOWI

R(A).
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(iii) BNDIR(A) ⊆ BoundaryR(A).

(iv) AccurceyR(A) ≤ ACCIR(A).

(v) RoughnessR(A) ≤ RoughIR(A).

Proof.

(i) Let x ∈ UPP
I

R(A). Then, R̆ < x > R̆∩ A < I. Since, R̆ < x > R̆∩ A ⊆< x > R̆∩ A. Therefore, < x >
R̆ ∩ A < I. So, < x > R̆ ∩ A , φ. Hence, x ∈ aprR(A), which means that UPP

I

R(A) ⊆ aprR(A).

(ii) Let x ∈ apr
R
(A). Then, < x > R̆ ⊆ A. So, < x > R̆∩ Ac ∈ I. Since, R̆ < x > R̆∩ Ac ⊆< x > R̆∩ Ac.

Therefore, R̆ < x > R̆ ∩ Ac ∈ I. Hence, x ∈ LOWI

R(A), which means that apr
R
(A) ⊆ LOWI

R(A).

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.11. It can not be replaced the inclusion and the less than relations, in Theorem 4.8, by an
equality relation in general. To validate this note consider Example 3.12 and take A = {u1, u4}. Then

(i) UPP
I

R1
(A) = {u1, u2} , {u1, u2, u4} = aprR1

(A).

(ii) LOWI

R1
(A) = U , {u4} = apr

R1
(A).

(iii) BNDIR1
(A) = φ , {u1, u2} = BoundaryR1(A).

(iv) ACCIR1
(A) = 1 , 1

3 = AccuracyR1(A).

(v) RoughIR1
(A) = 0 , 2

3 = RoughnessR1(A).

According to Theorems 4.8 and 4.10, it can be seen that the present methods reduce the boundary
region by increasing the lower approximations and decreasing the upper approximations with the
comparison of Dai et al.’s methods [14] and Al-shami’s methods [8]. This means that the current
approximation spaces are proper generalizations of Dai et al.’s approximations [14] and Al-shami’s
approximations [8].

One can easily prove the next two results, they show that Dai et al.’s approximations [14] and Al-
shami’s approximations [8] are special cases of the current approximations.

Proposition 4.12. If the ideal I is the empty set and the binary relation R is a similarity relation, then
the approximation spaces given herein and the approximation spaces given in [14] are identical.

Proposition 4.13. If the ideal I is the empty set, then the approximation spaces given herein and the
approximation spaces given in [8] are identical.

Now, we demonstrate that our approaches improve the rough set models introduced in [11].

Theorem 4.14. Let (U,R,I) be an ideal approximation space. Then

(i) UPP
I

R(A) ⊆ aprF
I

R(A).

(ii) aprFI
R
(A) ⊆ LOWI

R(A).

(iii) BNDIR(A) ⊆ BoundaryFIR(A).
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(iv) AccuracyFI(A) ≤ ACCIR(A).

(v) RoughIR(A) ≤ RoughnessFIR(A).

Proof.

(i) Let x ∈ UPP
I

R(A). Then, R̆ < x > R̆ ∩ A < I. Therefore, R̆ < x > ∩A < I. Thus, x ∈ aprF
I

R(A).

Hence, UPP
I

R(A) ⊆ aprF
I

R(A).

(ii) Let x ∈ aprFI
R
(A). Then, R̆ < x > ∩Ac ∈ I. Therefore, R̆ < x > R̆ ∩ Ac ∈ I. Thus, x ∈ LOWI

R(A).

Hence, aprFI
R
(A) ⊆ LOWI

R(A).

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.15. Example 3.5 (i) shows that the inclusion and the less than in Theorem 4.14 can not
be replaced by equality relation in general. Take A = {u2, u3} and I = {φ, {u1}}, then UPP

I

R(A) =

{u2, u3} , {u1, u2, u3} = aprF
I

R(A). Moreover, take A = {u2, u3} and I = {φ, {u2}}, then

(i) LOWI

R(A) = {u2, u3, u4} , {u3, u4} = aprFI
R
(A).

(ii) BNDIR(A) = φ , {u2} = BoundaryFIR(A).

(iii) AccuracyFIR(A) = 1
2 , 1 = ACCIR(A).

(iv) RoughIR(A) = 0 , 1
2 = RoughnessFIR(A).

Theorem 4.16. Let (U,R,I) be an ideal approximation space. Then

(i) UPP
I

R(A) ⊆ aprF
I

R(A).

(ii) aprFI
R
(A) ⊆ LOWI

R
(A).

(iii) BNDIR(A) ⊆ BoundaryFI
R
(A).

(iv) AccuracyFI
R
(A) ≤ ACCIR(A).

(v) RoughI
R
(A) ≤ RoughnessFI

R
(A).

Proof. The proof is similar to that of Theorem 4.14.

Remark 4.17. In Example 3.5 (i), take I = {φ, {u1}}, then it shows that the inclusion and the less than
in Theorem 4.16 can not be replaced by an equality relation. Take A = {u1}, then LOWI

R
(A) = {u1} ,

φ = aprFI
R
(A). Moreover, if A = {u2, u3, u4}, then

(i) aprF
I

R(A) = U , {u2, u3, u4} = UPP
I

R(A).

(ii) BNDIR(A) = φ , {u1} = BoundaryFI
R
(A).

(iii) AccuracyFI
R
(A) = 3

4 � 1 = ACCIR(A).
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(iv) RoughI
R
(A) = 0 � 1

4 = RoughnessFI
R
(A).

Remark 4.18. It should be noted that, the third type in this work and the previous third type in [11]
are not comparable as it is shown in the following example.

Example 4.19. Let U = {u1, u2, u3, u4},I = {φ, {u1}, {u2}, {u3}, {u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}} and
R = {(u1, u3), (u2, u1), (u3, u1), (u3, u2), (u4, u2), (u4, u3)} be a binary relation defined on U. By
calculations, we obtain R̆ < u1 > R̆ = {u1}, R̆ < u2 > R̆ = R̆ < u3 > R̆ = {u2, u3}, R̆ < u4 > R̆ = φ.

(i) Take A = {u1}; then

(a) apr
′

F
I

R
(A) = {u2, u3} ( {u1, u2, u3} = LOW

′I

R(A).

(b) UPP′
I

R1
(A) = {u4} ) φ = apr′F

I

R(A).

(ii) Take A = {u2, u4}; then

(a) apr
′

F
I

R
(A) = U ) {u1, u2, u3} = LOW

′I

R(A).

(b) UPP′
I

R1
(A) = {u4} ( {u1, u4} = apr′F

I

R(A).

Theorem 4.20. Let (U,R,I) be an ideal approximation space. Then

(i) UPP′′
I

R(A) ⊆ apr′′F
I

R(A).

(ii) apr
′′

F
I

R
(A) ⊆ LOW

′′I

R(A).

(iii) BND
′′I

R(A) ⊆ Boundary
′′

F
I

R(A).

(iv) Accuracy
′′

F
I

R(A) ≤ ACC
′′I

R(A).

(v) Rough
′′I

R(A) ≤ Roughness
′′

F
I

R(A).

Proof.

(i) Let x ∈ UPP′′
I

R(A). Then, ∃ y ∈ U, x ∈ R̆ < y > R̆, R̆ < y > R̆ ∩ A < I. Thus, ∃ y ∈ U, x ∈ R̆ < y >

, R̆ < y > ∩A < I. Hence, x ∈ apr′′
I

R(A). Therefore, UPP′′
I

R(A) ⊆ apr′′F
I

R(A).

(ii) Since, UPP′′
I

R(Ac) ⊆ apr′′F
I

R(Ac) by (1). So, (apr′′F
I

R(Ac))c ⊆ (UPP′′
I

R(Ac))c. Hence,
apr

′′

F
I

R
(A) ⊆ LOW

′′I

R(A) by Definitions 2.21 and 3.34.

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.21. In Example 3.5 (i), take I = {φ, {u2}}, then it shows that the inclusion and the less than
in Theorem 4.35 can not be replaced by equality relation in general. Take A = {u1, u4}, then

(i) UPP′′
I

R(A) = {u1} , {u1, u2, u3} = apr′′F
I

R(A).

(ii) apr
′′

F
I

R
(A) = {u4} , {u1, u4} = LOW

′′I

R(A).

(iii) BND
′′I

R(A) = φ , {u1, u2, u3} = Boundary
′′

F
I

R(A).
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(iv) Accuracy
′′

F
I

R(A) = 1
4 , 1 = ACC

′′I

R(A).

(v) Rough
′′I

R(A) = 0 , 3
4 = Roughness

′′

F
I

R(A).

In the remaining part of this subsection, we demonstrate that our approaches improve the rough set
models introduced in [20]. First, we need the next remark.

Remark 4.22. It is well known that the value of accuracy for every subset lies in the closed interval
[0,1]. The formulations of accuracy values presented in [20] produce accuracy values greater than
one in some cases, which is a contradiction. To demonstrates this matter, in Example 3.12 take

(i) A = {u1, u4}, then

(a) AccuracyIR1
(A) = 2 > 1.

(b) Accuracy
′′I

R1
(A) = 2 > 1.

(ii) A = {u1, u3, u4}, then Accuracy
′I

R1
(A) = 2 > 1.

According to Remark 4.22, we reformulate the three types of accuracy measures introduced in [20]
as follows.

Definition 4.23. Let R be a binary relation on a nonempty set U. For any subset φ , A ⊆ U, the first,
third and fourth kind of the accuracy of A according to R is redefined respectively by:

Accuracy•
I

R (A) =
|aprI

R
(A)∩A|

|aprIR(A)∪A|
.

Accuracy•••IR(A) =
|apr

′ I

R
(A)∩A|

|apr′
I

R(A)∪A|
.

Accuracy••••IR(A) =
|apr

′′ I

R
(A)∩A|

|apr′′
I

R(A)∪A|
.

Proposition 4.24. Let (U,R,I) be an ideal approximation space. Then for each nonempty subset
A ⊆ U we have the next properties.

(i) 0 ≤ Accuracy•
I

R (A) ≤ 1.

(ii) Accuracy•
I

R (U) = 1.

(iii) 0 ≤ Accuracy•••
I

R (A) ≤ 1.

(iv) Accuracy•••
I

R (U) = 1.

(v) 0 ≤ Accuracy••••
I

R (A) ≤ 1.

(vi) Accuracy••••
I

R (U) = 1.

Proof. It is similar to Proposition 3.8.

Definition 4.25. Let R be a binary relation on a nonempty set U. For any subset φ , A ⊆ U, the first,
third and fourth kind of the roughness of A according to R is redefined respectively by:
Roughness•

I

R (A) = 1 − Accuracy•
I

R (A).
Roughness•••IR(A) = 1 − Accuracy•••IR(A).
Roughness••••IR(A) = 1 − Accuracy••••IR(A).
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Theorem 4.26. Let (U,R,I) be an ideal approximation space. Then

(i) UPP
I

R(A) ⊆ aprIR(A).

(ii) aprI
R
(A) ⊆ LOWI

R(A).

(iii) BNDIR(A) ⊆ BoundaryIR(A).

(iv) Accuracy•
I

(A) ≤ ACCIR(A).

(v) RoughIR(A) ≤ Roughness•
I

R (A).

Proof. It is similar to Theorem 4.14.

Remark 4.27. In Example 3.5 (i) take I = {φ, {u2}}, then it shows that the inclusion and the less than
in Theorem 4.26 can not be replaced by equality relation in general. Take A = {u2, u3}, then

(i) UPP
I

R(A) = {u2, u3} , {u2, u3, u4} = aprIR(A).

(ii) LOWI

R(A) = {u2, u3, u4} , {u2} = aprI
R
(A).

(iii) BNDIR(A) = φ , {u3, u4} = BoundaryIR(A).

(iv) Accuracy•
I

R (A) = 1
3 , 1 = ACCIR(A).

(v) RoughIR(A) = 0 , 2
3 = Roughness•

I

R (A).

Theorem 4.28. Let (U,R,I) be an ideal approximation space. Then

(i) UPP
I

R(A) ⊆ apr
I

R(A).

(ii) aprI
R
(A) ⊆ LOWI

R
(A).

(iii) BNDIR(A) ⊆ BoundaryI
R
(A).

(iv) AccuracyI
R
(A) ≤ ACCIR(A).

(v) RoughI
R
(A) ≤ RoughnessI

R
(A).

Proof. The proof is similar to that of Theorem 4.26.

Remark 4.29. In Example 3.5 (i), take I = {φ, {u2}}, then it shows that the inclusion and the less than
in Theorem 4.28 can not be replaced by an equality relation. Take A = {u2, u3, u4}, then

(i) apr
I

R(A) = U , {u2, u3, u4} = UPP
I

R(A).

(ii) LOWI

R
(A) = {u2, u3, u4} , {u2, u3} = aprI

R
(A).

(iii) BNDIR(A) = φ , {u1, u4} = BoundaryI
R
(A).

(iv) AccuracyI
R
(A) = 1

2 � 1 = ACCIR(A).
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(v) RoughI
R
(A) = 0 � 1

2 = RoughnessI
R
(A).

Theorem 4.30. Let (U,R,I) be an ideal approximation space such that R is a similarity relation. Then

(i) apr
′

R
(A) ⊆ LOW

′I

R(A).

(ii) UPP′
I

R(A) ⊆ apr′R(A).

(iii) BND
′I

R(A) ⊆ Boundary
′

R(A).

(iv) Accuracy
′

R(A) ≤ ACC
′I

R(A).

(v) Rough
′I

R(A) ≤ Roughness
′

R(A).

Proof.

(i) Let x ∈ apr
′

R
(A). Then, ∃ y ∈ U, x ∈< y > R̆, < y > R̆ ⊆ A. Hence, x ∈ R̆ < y > R̆, (as R is a

symmetry relation), R̆ < y > R̆ ∩ Ac ∈ I. Therefore, x ∈ LOW
′I

R(A). So, apr
′

R
(A) ⊆ LOW

′I

R(A).

(ii) Since, apr
′

R
(Ac) ⊆ LOW

′I

R(Ac) by (i). So, (LOW
′I

R(Ac))c ⊆ (apr
′

R
(Ac))c. Hence, UPP′

I

R(A) ⊆

apr′R(A) by Definitions 3.23 and 2.7.

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.31. It can not be replaced the inclusion and the less than relations, in Theorem 4.30, by
an equality relation in general. To validate this note consider Example 3.12 and take A = {u1, u3, u4}.
Then

(i) UPP′
I

R1
(A) = {u1, u2} , U = apr′R1

(A).

(ii) apr
′

R1
(A) = {u3, u4} , U = LOW

′I

R1
(A).

(iii) BND
′I

R1
(A) = φ , {u1, u2} = Boundary

′

R1
(A).

(iv) Accuracy
′

R1
(A) = 1

2 �
3
4 = ACC

′I

R1
(A).

(v) Rough
′I

R1
(A) = 1

4 �
1
2 = Roughness

′

R1
(A).

Remark 4.32. It should be noted that, the third type in this work and the previous third type in [20]
are not comparable. In Example 3.5 (i), take

(i) A = {u1}, then

(a) apr
′I

R
(A) = {u2, u3}  {u1, u2, u3} = LOW

′I

R(A).

(b) UPP′
I

R(A) = {u4} ! φ = apr′
I

R(A).

(ii) A = {u2, u4}, then

(a) apr
′I

R
(A) = U ! {u1, u2, u3} = LOW

′I

R1
(A).
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(b) UPP′
I

R(A) = {u4}  {u1, u4} = apr′
I

R(A).

Theorem 4.33. Let (U,R,I) be an ideal approximation space such that R is a similarity relation. Then,

(i) UPP′′
I

R(A) ⊆ apr′′R(A).

(ii) apr
′′

R
(A) ⊆ LOW

′′I

R(A).

(iii) BND
′′I

R(A) ⊆ Boundary
′′

R(A).

(iv) Accuracy
′′

R(A) ≤ ACC
′′I

R(A).

(v) Roughs
′′I

R(A) ≤ Roughness
′′

R(A).

Proof.

(i) Let x ∈ UPP′′
I

R(A). Then, ∃ y ∈ U, x ∈ R̆ < y > R̆, R̆ < y > R̆ ∩ A < I. Thus, ∃ y ∈ U, x ∈< y >
R̆, < y > R̆ ∩ A < I. So, ∃ y ∈ U, x ∈< y > R̆, < y > R̆ ∩ A , φ. Hence, x ∈ apr′′R(A). Therefore,

UPP′′
I

R(A) ⊆ apr′′R(A).

(ii) Since, UPP′′
I

R(Ac) ⊆ apr′′R(Ac) by (i). So, (apr′′R(Ac))c ⊆ (UPP′′
I

R(Ac))c. Hence, apr
′′

R
(A) ⊆

LOW
′′I

R(A) by Definitions 3.34 and 2.8.

(iii)–(v) Immediately by parts (i) and (ii).

Remark 4.34. It can not be replaced the inclusion and the less than relations, in Theorem 4.33, by
an equality relation in general. To validate this note consider Example 3.12 and take A = {u1, u3, u4}.
Then

(i) UPP′′
I

R1
(A) = {u1, u2} , U = apr′′R1

(A).

(ii) apr
′′

R1
(A) = {u3, u4} , U = LOW

′′I

R1
(A).

(iii) BND
′′I

R1
(A) = φ , {u1, u2} = Boundary

′′

R1
(A).

(iv) Accuracy
′′

R1
(A) = 1

2 �
3
4 = ACC

′′I

R1
(A).

(v) Rough
′′I

R1
(A) = 1

4 �
1
2 = Roughness

′′

R1
(A).

Theorem 4.35. Let (U,R,I) be an ideal approximation space. Then

(i) UPP′′
I

R(A) ⊆ apr′′
I

R(A).

(ii) apr
′′I

R
(A) ⊆ LOW

′′I

R(A).

(iii) BND
′′I

R(A) ⊆ Boundary
′′I

R(A).

(iv) Accuracy••••IR(A) ≤ ACC
′′I

R(A).

(v) Rough
′′I

R(A) ≤ Roughness••••IR(A).
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Proof. It’s similar to Theorem 4.20.

Remark 4.36. In Example 3.5 (i), take I = {φ, {u2}}, then it shows that the inclusion and the less than
in Theorem 4.35 can not be replaced by equality relation in general. Take A = {u1, u4}, then

(i) UPP′′
I

R(A) = {u1} , U = apr′′
I

R(A).

(ii) apr
′′I

R
(A) = φ , {u1, u4} = LOW

′′I

R(A).

(iii) BND
′′I

R(A) = φ , U = Boundary
′′I

R(A).

(iv) Accuracy••••IR(A) = 0 , 1 = ACC
′′I

R(A).

(v) Rough
′′I

R(A) = 0 , 1 = Roughness••••IR(A).

One can easily prove the next result, it shows that Hosny and Al-shami’s approximations [11],
Hosny’s approximations [20] are a special case of the current approximations.

Proposition 4.37. If the binary relation R is a symmetry relation, then the approximation spaces given
herein and the approximation spaces given in [11] and [20] are identical.

5. Medical application in decision-making of the heart attacks problem

In this section, we examine the real data of heart attacks using the proposed approach and show its
good performance to analyzing the data and minimizing the boundary regions compared to some
previous approaches. The data set in Table 5 is carried out at Al-Azhar University’s cardiology
department [12] (Hospital of Sayed Glal University, Cairo, Egypt). Table 5 represents the set of
objects (patients) U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12} and reduced to
{u1, u2, u3, u4, u5, u8, u9} as the attributes in rows (objects) are identical. The study is included patients
with different symptoms (the set of attributes) = {detailed history = a1, physical examination = a2,

full labs = a3, resting ECG = a4, conventional echo assessment = a5} and Decision of heart attacks is
confirmed or ruled out = {d} as shown in Table 5.

Table 5. The information’s decisions data set.

Patients a1 a2 a3 a4 a5 d
{u1} yes yes yes yes no yes
{u2} no no no yes yes no
{u3} yes yes yes yes yes yes
{u4} no no no yes no no
{u5} yes no no yes yes no
{u8} yes yes no yes yes yes
{u9} yes no yes yes no yes
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Table 6. Similarities between symptoms of patients.

Patients u1 u2 u3 u4 u5 u8 u9

{u1} 1 0.2 0.8 0.4 0.4 0.6 0.8
{u2} 0.2 1 0.4 0.8 0.8 0.6 0.4
{u3} 0.8 0.4 1 0.2 0.6 0.8 0.6
{u4} 0.4 0.8 0.2 1 0.6 0.4 0.6
{u5} 0.4 0.8 0.6 0.6 1 0.8 0.6
{u8} 0.6 0.6 0.8 0.4 0.8 1 0.4
{u9} 0.8 0.4 0.6 0.6 0.6 0.4 1

It is illustrated, in Table 6, the similarities between symptoms patients, where the similarity degree
ν(ui, u j) between any two patients ui, u j is given by

ν(ui, u j) =

∑s
k=1 ak(ui) = ak(u j)

s
, i, j ∈ {1, 2, 3, 4, 5, 8, 9}, (5.1)

where s is the number of conditions attributes. Now, we define the following similarity relations,
let uiR1u j ⇔ ν(ui, u j) > 0.6, and uiR2u j ⇔ ν(ui, u j) > 0.4, Then, we computed the lower, upper
approximations, boundary and the accuracy measure of A

(i) if I = {φ, {u9}} and A = {u2, u9}. Thus, the lower, upper approximations, boundary and the
accuracy measure of A using R1 in Kandil et al.’s methods [23] are
R1F(A) = {u2},R1

F(A) = {u2, u4}, BFR1
(A) = {u4}, AccFR1

(A) = 1
2 , while these computations using

R2 are R2F(A) = {u9},R2
F(A) = {u2}, BFR2

(A) = {u2}, AccFR2
(A) = 1. Therefore,

(a) R1F(A) = {u2} + {u9}= R2F(A).

(b) R1
F(A) = {u2, u4} * {u2} = R2

F(A).

(c) BFR1
(A) = {u4} * {u2} = BFR2

(A).

(d) AccFR1
(A) = 1

2 < 1 = AccFR2
(A).

Consequently, the computations show that Kandil et al.’s methods [23] are not monotonic, so it
cannot be used to evaluate the uncertainty in the data. Meantime, the current methods are
monotonic which overcome the defect of Kandil et al.’s methods [23] and can be used to evaluate
the uncertainty of the given data. On the other hand, in the lower, upper approximations,
boundary and the accuracy measure of A generated from our first approach with respect to R1 are
LOWI

R1
(A) = φ,UPP

I

R1
(A) = {u2, u4, u5, u8}, BNDIR1

(A) = {u2, u4, u5, u8}, ACCIR1
(A) = 0 while

these computations using R2 are LOWI

R2
(A) = φ,UPP

I

R2
(A) =

{u1, u2, u3, u4, u5, u8, u9}, BNDIR2
(A) = {u1, u2, u3, u4, u5, u8, u9}, ACCIR2

(A) = 0. Therefore, it is
elucidated that the corresponding lower and upper approximations, boundary regions and
accuracy measures are monotonic.

(ii) if I = {φ, {u1}, {u2}, {u3}, {u9}, {u1, u2}, {u1, u3}, {u1, u9}, {u2, u3}, {u2, u9}, {u3, u9}, {u1, u2, u3}, {u1, u2,
u9},{u1,u3,u9}, {u2, u3, u9}, {u1, u2, u3, u9}} and A = {u2, u3, u4, u5, u8}. Thus, we computed the
lower, upper approximations, boundary and the accuracy measure of A using R1 in the first kind
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of Dai et al.’s approach [14] are LOWR1
(A) = {u2, u4, u5},UPPR1(A) = {u1, u2, u3, u4, u5, u8, u9},

BoundaryR1(A) = {u1, u3, u8, u9}, AccuracyR1(A) = 3
7 . Whereas the lower, upper approximations,

boundary and the accuracy measure of A generated from our first approach with respect to R1 are
LOWI

R1
(A) = {u1, u2, u3, u4, u5, u8, u9},UPP

I

R1
(A) = {u2, u3, u4, u5, u8}, BNDIR1

(A) = {u1}, ACCIR1

(A) = 1. So, the current techniques are successful and powerful techniques to reduce the
boundary region and improve the accuracy measure. Therefore, this helps the medical staff to
make an accurate decision about the diagnosis of patients.

6. Conclusions

In recent years, many researchers interested in the rough set theory. As, it is a new efficacious tool
to get rid of vagueness; it pursue to minimize the boundary region for the sake of maximizing the
accuracy measure. To this end, many approximation spaces (or rough set models) inspired by different
types of neighborhoods have been proposed and discussed.

In line with this trend, we have dedicated this manuscript to form new approximation spaces with a
view to remove the uncertainty in data and improve the accuracy measure. These approximation spaces
have been constructed utilizing the concepts of “intersection of maximal right and left neighborhoods”
and “ideals”. The main properties and characterizations of these approximation spaces have been
investigated. With the help of counterexamples, it was elucidated the relationships between the present
approximation spaces and the previous ones introduced in [8, 11, 14, 20, 23]. According to the given
comparisons, the present techniques “ maximal right and left neighborhoods with ideal structure” were
the largest achievement and contribution that made the accuracy measures are greater than the prior
studies. As evidence of the promising domain of the followed approaches, a medical application has
been presented to elucidate the significance of applying the new methods in decision-making problems.

In upcoming papers, the following goals will be achieved.

(i) New types of approximation spaces induced from neighborhoods and bi-ideals which helps to solve
more real-life applications in decision-making problems.

(ii) Extensions of the current approximation spaces in rough multisets via multisets ideals.

(iii) Investigation the current approximation spaces with respect to the other types of maximal
neighborhoods.
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