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1. Introduction

Nonlinear partial differential equations (NPDEs) are generally applied to model nonlinear processes
in many domains of physics, mathematical biology, and chemistry [1-5]. For example, the
(1+1)-dimensional Korteweg—de Vries (KdV) equation [6, 7] and the (1+1)-dimensional modified
Korteweg—de Vries (mKdV) equation [8-10] define the evolution of small amplitude dispersive
waves that occur in the shallow water. The (1+1)-dimensional complex modified Korteweg-de Vries
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(cmKdV) equation is completely integrable and has been suggested as a model for the nonlinear
evolution of plasma waves [11-16]. The nonlinear Schrodinger (NLS) equation is a universal model,
that describes the evolution of quasi-monochromatic and weakly nonlinear wave trains in media with
cubic nonlinearities. In optics, the NLS equation is the main model that characterises the propagation
of optical waves in Kerr media [17].

Due to the interest in these problems, various analytical solution methods as the Exp-function
method [18, 19], the Darboux transformation [20, 21], the Hirota method [22-25], the variational
approach [26-28], the sine-cosine method [29-31], the tanh method [32-34], and so on were
developed.

The great interest in physics and mathematics is the study of the nonlinear excitations of the spin
models [35-39]. In this motivation, Myrzakulov et.al had been presented various integrable spin
systems in (2 + 1) dimensions by proposing the interaction of the spin field with vector potential
or scalar potential in Ref. [39]. Researchers obtained Lax pairs and various interesting reductions in
(1+1) and (2+1) dimensions.

In the current work, we mainly study the (2+1)-dimensional cmKdV system of equations that is
given by [39]

qr + Grxy +iqv + (qw), = 0,
Vi +2i6(q°qxy — 41,9) = 0, (1.1)
Wy — 26(|Q|2)y =0,

where ¢(x,y,t) is a complex function, g*(x,y,?) is a complex conjugate function, v(x,y, ), w(x,y, )
are real functions, 6 = %1, and subscripts denote the partial derivatives with respect to the variables
x,y,t. This model is a generalization of the cmKdV equation in the (2+1)-dimension and has great
importance for applied ferromagnetism and nanomagnetism [39]. In several articles Eqs (1.1) are
studied by Darboux transformation (DT). The one-soliton and two-soliton solutions are obtained from
DT starting from the zero seed in Ref. [40]. The deformed solitons are obtained by n-fold DT in [41].
Periodic line wave solutions and breather solutions are obtained by starting with a plane wave seed
in [42]. The order-n breather solutions are derived in Ref. [43]. Nonlocal (2+1)-dimensional cmKdV
equations are presented in [44]. However, traveling wave solutions for Eqs (1.1) have not been found
in other studies, which will be our main focus of this paper.

We investigate the (2+1)-dimensional cmKdV equations (1.1) using the sine-cosine method, the
tanh-coth method and the Kudryashov method. These methods have been widely applied to nonlinear
dispersive and dissipative equations to obtain different types of solutions. For example, the sine-
cosine method was used for the Camassa—Holm—KP equation [45], the fifth-order KdV equation [46],
the two-dimensional nonlinear Schrodinger equation [47], the coupled Maccari’s system [48], and
other. The authors found solutions in the form solitary waves, periodic solutions. As for the tanh-
coth method, it leads to a broader class traveling wave solutions such as bright and dark solitons,
kink and anti-kink type solitons, traveling wave, periodic solitary wave, trigonometric functions
solutions. The researchers were applied the tanh-coth method to the fifth-order KdV equation [49],
the coupled Konno-Oono equation [50], the system of ion sound and Langmuir waves [51], the
generalized nonlinear Schrodinger equations [52] and so on. The Kudryashov method was applied
for the generalized Kuramoto—Sivashinsky equation, the Burgers-Korteweg-de Vries equation, the
Bretherton equation, the Kawahara equation, and others in Refs. [53-56].
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The paper is organized as follows. Lax pair for the (241)-dimensional cmKdV equations are given
in Sect. 2. Then the three methods are used to construct the exact solutions in Sect. 3—Sect. 5. The
physical interpretation is presented in Sect. 6. Finally, we present concluding remarks in Sect. 7.

2. Lax pair

The corresponding Lax pair for Eqs (1.1) is
¥, =UY, Y, =427, + VY, 2.1)
where
U=A+U,, V=A4AVi+V,, (2.2)

with

(=i 0 (0 ¢ [ iw  2ig,
J_(O i)’ UO_(—r O)’ Vl_(2iry —iw)’

VO — ( _% _CIxy__ WCI) , \I’ — (lr//] (/1’ -xa y, t)) )

Ty +wr Z l/’Z(/la XY, t)

2
The compatibility condition

U -V, +UV-VU-42U, =0 (2.3)
infers the following (2+1)-dimensional coupled cmKdV equations:

di + Gxxy + Vg + (Wg)x =0,

i+ Fogy — v+ (wr), =0,
Ve +2i(rqyy — rygq) =0, 2.4)

wy—2(gr)y =0,

where ¢, r are complex functions, v, w are real functions. By setting r = 6" Eqs (2.4) reduce to the
(2+1)-dimensional cmKdV equations (1.1).

3. The sine-cosine method
We use the sine-cosine method to obtain sine and cosine solutions for the (2+1)-dimensional
cmKdV system of equations (1.1). The description of the method used in the following subsection

is given in [4].

3.1. Description of method
According to method the partial differential equation (PDE)

F(Q1, Oxxs Qrars ) = 0, (3.1
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can be transformed to ordinary differential equation (ODE)

G(cQ',Q",0",..)=0, (3.2)

by applying a wave variable

Ox,y,t) = Q(), where £ =x+y+ct.

As long as all terms contain derivatives Eq (3.2) is integrated. The solutions of ODE (3.2) can be
presented in the form

O(x,v,t) = a cosP(ué), (3.3)

or

O(x,y,1) = asin’(ué), (3.4)

where & = x + y + ct and the parameters S, u and « will be defined, ¢, u are constants. The derivatives
of Eq (3.3) are

(Q"Y = —npua’” cos™" (ué) sin(ué), (3.5)
QY = —n* B cos™ (ué) + i a"B(nP — 1) cos™ 2 (ué), (3.6)

and the derivatives of Eq (3.4) become

(Q") = nBua’” sin""" (u€) cos(u), (3.7)
Q") = —n*’BPa” sin (u€) + mca f(nfp — 1) sin" (ué), (3.8)

and so on for the other derivatives.
Applying (3.3)—(3.8) into the reduced ODE (3.2) yields a trigonometric equation of cosX(u&) or
sin® (ué) terms. Thereafter, we define the parameters by first balancing exponents of each pair of sine
or cosine to determine K. Further, all coefficients of the identical power in cos‘(u&) or sin*(ué) are

collected, where these coefficients have to vanish. Then, a system of algebraic equations with the
unknown a, u, 8 will be obtained and from that coefficients can be determined.

3.2. Implementation

For applying the sine-cosine method, we have to reduce Egs. (1.1) to ODE. By taking
transformation

q(x,y,1) = "D O(x, y, 1), (3.9)

where a, b, d are real constants and Q(x,y, ?) is the real valued function, Eqs (1.1) are reduced to the
following system

Q; —2abQ, — a*Qy + Qryy + QW + Ow, + (3.10)
+i((d = a’b)Q + 2aQ,, + bQ,, + aQw + Qv) = 0,
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vy —40(bQQO; +aQQ,) =0, (3.11)
w, —26(0%), = 0. (3.12)
Substituting the wave transformation
O(x,y,1) = Q&) = Q(x +y +ct), (3.13)
v(x,y,t) = v(€) =v(x +y+ct), (3.14)
w(x,y,1) = w(€) = w(x +y+ ct), (3.15)

into system of Eqs (3.10)—(3.12), we obtain that

(c—=2ab—-a®)Q + Q" + Q'w+ Ow' + (3.16)
+i((d — a*b)Q + 2a + b)Q” + aQOw + Qv) = 0,

vV —48(b +a)QQ’ =0, (3.17)
w =25(0% =0. (3.18)

Integrating Eqs (3.17)—(3.18) once, with respect to ¢ and taking constants of integration is zero, we
obtain

v=260b+a)Q?, w=200% (3.19)
Substituting Eq (3.19) into Eq (3.16), we derive the following ODE
(c—2ab-a*)Q + Q" +26(Q°) +i((d - a*b)Q + Ra+b)Q" +26Ra+b)Q*) =0,  (3.20)

where prime denotes the derivation with respect to £. By separating real and imaginary parts in Eq
(3.20), we get the ordinary differential equations:

(c—2ab-a*)Q + Q" +25(Q°) =0, (3.21)
(d - aZb) 7 3
—_— 200" =0. 3.22
(2a+b)Q+Q+ 0 (3.22)
Integrating Eq (3.21) once, with respect to &, gives
(c—2ab-a>)Q+ Q" +260° =L, (3.23)

where L is a constant of integration. As the same function Q(¢) satisfies both Eqgs (3.22) and (3.23), we
have the next constraint condition:

d — a*b

—2ab—a* = , L=0. 3.24
T Ta = at D) (3.24)

By using condition (3.24), we have

d— a*b
c=2ab+d + 2afb. (3.25)
We rewrite Eq (3.22) as

"+ ——20+260° =0. 3.26
0"+ Gy @+ 200 (3.26)

In the next subsection, we solve Eq (3.26) by the sine-cosine method.
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3.2.1. The sine solutions

According to method the solution of Eq (3.26) can be found by transformation

O(x,y, 1) = asinf(ué). (3.27)
To find the sine solution we use Eq (3.27) and its second order derivative
Q" = ~p’*Brasin’ (u) + PaB(B — 1) sinf 7 (ué). (3.28)
Substitute (3.27) and (3.28) into (3.26) we get
— 2B asin’ (ug) + 1PaBB — 1) si 2 (ué) + (3.29)
,d-ab), sif(ug) + 260° sin®(ug) = 0
(2a + b) '

Applying the balance method, by equating the exponents of sin(ué), from (3.29) we determine S:
B-1+#0, 3p=B-2 —> pB=-1. (3.30)

Substituting Eq (3.30) into Eq (3.29) to get

)
sin~(ue) (24 + 260°] + sin”! (ue)[ L LD

- Ty = 2 —
2a+b) a—pual=0. (3.31)

We equate exponents and coeflicients of each pair of the sin(ué) functions and obtain a system of
algebraic equations

sinT?(ué) : 2ula + 26a° = 0, (3.32)
. d=d’h)
sin” (ué) : —(2a D) a—pua=0. (3.33)

By solving the system (3.32)—(3.33) , we obtain:

3 1 (d — a?b) 3 (d — ab)
CCE\N T @arn M\ @y (334

By substituting Eq (3.34) into Eq (3.27) and then obtained result in Eq (3.19) and Eq (3.9) we derive
the exact solutions for the (2+1)-dimensional cmKdV equations (1.1)

. , / 1(d - a%*b)
i(ax+by+dt) |_ —
e 6—(2a D) X (3.35)

QH(X,)’J): +
(d — a’b) N d=a)
X oese\ gy Ky my > O
1(d - a®b
vy, ) = + 25(b+a)(,/—5%x (3.36)
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(d - (d — a*b)
X csc( (x +y+ 1)), —(2a D) >
B 1(d- azb)
wll(x7ya t) = = 25( 5 (2 + b)
/( - azb) (d — a®b)
X (x +y+ Cl))) m >0
, 1 (d — a?b)
_ i(ax+by+dt) |_ ~
qu(-xaya t) = x e Y 5 (Za N b) X

f( —a%b) (d — a*b)
X CSCh( (.X' +y+ Ct)) m <0

B 1(d - a?b)
via(x, y, 1) = + 26(b + a)( "5 2ath) X
(d — a*b) (d — a*b)
X CSC]’Z( W(X +y+ Ct))) m <0
3 1(d- azb)
W]Z(X, Y, t) = = 26( 5 (2 + b)

(d - a°b)

X csch( (x+ +c1)))?,

il

2
Wherec:2ab+a2+%

3.2.2. The cosine solutions

The cosine solution of (3.26) can be found by transformation
O(x, y, 1) = a cos’(ué).
To find the cosine solution we use Eq (3.41) and its second order derivative
Q" = ~’Bra cos’(u) + wPaB(B ~ 1) cos” > (uf).
Substitute (3.41) and (3.42) into (3.26) we get
—*Bracos’(ué) + praP(B — 1) cos”(ué) +

(d — a*b) s 3 3p 3
+—(2a D) a cos”(ué) + 20a” cos™(ué) =0

—— <
(2a + D)

b

2

)

b

b

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Applying the balance method, by equating the exponents of cos(ué), from Eq (3.43) we determine :

B-1#0, 38=-2 — p=-1.

(3.44)
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Substituting Eq (3.44) into Eq (3.43) to get

-3 2 3 -1 (d - a’b) 201 —
cos (UE[2u a + 20a”] + cos™ (ué)[ 2a+D) a—ual=0. (3.45)

We equate exponents and coefficients of each pair of the cos(ué) functions and obtain a system of
algebraic equations

cos(ué) 1 2ula +26a° =0, (3.46)
cos™ ! (ué) : (é;‘flf))a -2 = 0. (3.47)

Next, by solving the system (3.46)—(3.47) , we get:

_ 1(d- ab) B (d — ab)
CCE\N T @arn M\ @ (3.48)

By substituting Eq (3.48) into Eq (3.41) and then obtained expression in Eq (3.19) and Eq (3.9) we
derive the exact solutions for the (2+1)-dimensional cmKdV equations (1.1)

1(d - a*b)
— t(ax+b)+dt) 4
QZI(X,)’, t) + 5 (2a + b) X (3 9)

/(d ab) (d — a*b)
X (x +y+ ct)), (261—+b) > 0,

1(d - a2b
vy, 1) = £ 28(b + a) 6((2—wa (3.50)

/(d — a2b) , (d-a*b)
X sec W(X +y+ Ct))) , m > 0,

1(d - a?b
Wor (G, y, 1) =+ 26( 5% (3.51)

_ _ 2
(d (x+ yenyt, GZaD g

X sec( 2a+b)

i

. , 1(d - a?b)
N= =+ i(ax+by+dt) | _ 52
gn(x,y,1) +t e 5—(261 +b) X (3.52)

/(d — a’b) (d — a*b)
X sech( m(x +y+ ct)), m <0,

1(d - a2b
25(b + a)( 5ﬁx (3.53)

I+

vo(x,y, 1) =

AIMS Mathematics Volume 7, Issue 10, 18948-18970.
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(d — a*b) ,  (d-a’b)
X S€Ch( m(x +y+ ct)))”, m <V,
1(d—-a?b
Wiy, )= * 26(4 /‘Sﬁ X (3.54)
(d — a’b) , (d-a’b)
X sech( W(X +y+ ct))), m <0,

2
where ¢ = 2ab + a* + £4L.
a+b

The solutions (3.35)—(3.40) and (3.49)—(3.54) are depicted in Figures 1-5.

Figure 1. Propagation of the solution ¢,; with the parametersa = 1,b=1,d =2,6 = —1.

t:—2 ) t=0 ] t=2

Figure 2. Propagation of the solution v,; with the parametersa = 1,b = 1,d = 2,6 = —1.
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t=—2 t=0 t=2

-10 -5 0 5 10 -10 =h U] 5 10 -10 -5 0 5 10

Figure 5. Propagation of the solutions ¢, (blue line); vy, (green line); w; (red line) with the
parametersa = 1,b=1,d =-2,6 = -1,y =0.

4. The tanh-coth method

We apply the tanh-coth method to derive traveling wave solutions for the (2+1)-dimensional cmKdV
system of equations. The first, the tanh method was presented by Malfliet [26-28] and then was
expanded by Wazwaz [4,29] In the next subsection, the description of the method is given by [4].

AIMS Mathematics Volume 7, Issue 10, 18948-18970.
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4.1. Description of method
Partial differential equation (PDE)

F(Q1, Oxxs Qrars ) = 0, 4.1)

can be transformed to an ordinary differential equation (ODE)
G(cQ,Q",0",..)=0, 4.2)
by applying a wave variable
O(x,y,1) = Q(&), where & =x+y+ct,

where c is a constant. As long as all terms contain derivatives Eq (4.2) is integrated. Applying a new
independent variable

Y =tanh(ué), &€=x+y+ct, 4.3)

where p is the wave number, we have the next change of derivatives:

d d
— =u(l - Y>)—,
u( )dY

dé

&> d &
= = 2PY(1 - Y)— + 421 - V) —.
a2 uY( )dY H( )de

The tanh-coth method allows the application of the finite expansion in the next form:

M M
QO = ) a"+ > by, (4.4)
n=0 n=1

where ag, ay, ay, ...,ay, by, by, ...,by are unknown coefficients. Parameter M is defined by balancing
nonlinear terms and the highest order derivative term in Eq (4.2). By substituting the value of Q(€) from
(4.4) in Eq (4.2), and comparing the coefficient of Y” we can derive the coefficients ay, a;, ay, ..., ay,
by, by, ..., by.

4.2. Implementation

Let’s study ODE (3.26)

"+ ——=0+26Q0° =0, 4.5
0"+ sy 2+ 200 (4.5)
where prime denotes the derivation with respect to £. To find the value of M we balance the highest
order derivative Q”, which has the exponent M +2, with the nonlinear term Q°, which has the exponent
3M in Eq (4.5). It gives 3M = M + 2 that yields M = 1. Then, the tanh-coth method let to apply the
substitution

Q(é:) =qag+ aY + b—Yl (46)

AIMS Mathematics Volume 7, Issue 10, 18948-18970.
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We substitute Eq (4.6) into Eq (4.5) and collect the coefficients of Y”, then we have a system of
algebraic equations for u, ag, a;, by. By solving the obtained system with the aid of Maple, we get
the next results:

Result 1:
d — a2b V2 |d-a?b
=0, b =0, | =+ . 4.7
%o ! @ +\/ 262a+b)y YT T2 N 2a+b .7
Result 2:
d—a*b V2 |d-a%b
=0 =0, b=d4|-— =+ . 4.8
@%=5 @=L b +\/ 262a+by YT T2 N 2a+b (4.8)
Result 3:
1 d-a*b 1 d-a*b
=0, = Fo | ——— b=ty ———, 4.9
o @M=y \/ 52a+b) ' 2\ 6Qa+b) 4.9)
1 d - a*b
= 4— /- 4.1
H=*3N " 20+ b (4.10)
Result 4.
d - a*b d - a*b
=0, =t4-———, b =t4]-—, 4.11
o @ 82a+b) 85(2a + b) @11
V2 |d-a2b
=+ 4.12
H=*7TN2a+b (4.12)
By substituting Eq (4.6) into Eq (3.19) and Eq (3.9) we have solutions as
q(x,y, 1) = (g0 1+ ay tanh(ug) + by coth(uf)), (4.13)
v(x,y,1) = 26(b + a)(ay + a; tanh(ué) + by coth(ué))?, 4.14)
w(x, y, 1) = 26(ag + a; tanh(ué) + by coth(ug))?, (4.15)

— ; — 2, d-d’b
where § = x +y + ct with ¢ = 2ab + a” + .

Finally, applying the coefficients (4.7)—(4.12) into Eqs (4.13)—(4.15), we derive exact solutions for the
(2+1)-dimensional cmKdV equations (1.1) in the next forms

Result 1:
i =z LD (L2 [ (4.16)
v31(x,y, 1) = £28(b + a)( + /—221(2_7‘% tanh(g ‘;;f: o)>, 4.17)
Wai(x,y, 1) = £26( 4 /—% tanh(g dz;lefg))z, (4.18)
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Result 2:
. / d — a’b V2 |d-a%b
— i(ax+by+dt) _
q32(-x7 y7 t) *e ( 2(5(2a N b) ( 2a + b f))a
d - a2b V2 |d-a2b
v, 1) = +26(b ,/—— = 2,
v32(x,y,1) = £26(b + a)( 550a+b) ( 0+ b £))
d — a2b V2 |d-a2b
= 426(+ |- ———— coth(— 2
W32(~x5ya t) * 5( 26(261 + ) ( 261 + b ‘f)) 5
Result 3:
2b 1 | d—a2b
V1 — L(ax+b)+dt) —da - _ +
953(% 3 1) S 2 5(2 50a +p) MEI VT 9
1 2 2
. 1 —a*b th(_ —a b
2 5(2a b) AN 2 + b
a’b —a?*b
vi3(x,y,1) = —26(b+ a)(+— \/5(2 A anh(_ \/ 2 "y &)+
d azb
+ oth(+
* \/ 5(2 j coth(=3 \ =7, +b§))
d-a*b d a2b
= 26(F= |———— tanh(+
W33(-x’ Yy, t) 6("' (5(2a b) an ( 2a + b
1 d— a2b
+ - th(+
) \/5(2a b) coth(3 2a+b§))
Result 4:
‘ d — a’b V2 |d-a%b
— i(ax+by+dt) _ h -
guxy, D=+ e ( \ 86a+b)" TVt
d - a2b V2 —a2b
+ —— (— &),
86(2a + b) 2 +b
d — a’b V2 |d-a*b
= 4+ 26(b —
V34(.x, y7 t) * 5( + Cl)( 86(2a + ) ( 2 + b f) +
d — a2b V2 |d-a?b
+ —— h(— )%,
85(2a + b) 2a+b

d—a’b V2 [d—a?b
Wiy = % 20\ gre o (G N 5 ) ¢

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

AIMS Mathematics Volume 7, Issue 10, 18948-18970.



18961

d — a2b V2 |d-a2b
__ATAP oth(E LT E P gy
g5a+ b T Vo)

— ; — 2, d-db
where § = x +y + ct, with ¢ = 2ab + a” + 5.

The solutions (4.16)—(4.27) are presented in Figures 6-14.

t=-3

Y A e

Figure 6. The time evolutions of the solutions g3, (red dashed line); v3; (black dotted line);
ws; (green line). The parameters are: a = 1;b = 1;d = 2;6 = —1.

Figure 8. Dynamics of the solution v3, with the parametersa = 1,b = 1,d =2,6 = —1.
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Figure 9. Dynamics of the solution ¢33 with the parametersa = 1,b = 1,d = 2,6 = —1.

Figure 10. Dynamics of the solution v33 with the parametersa = 1,b = 1,d = 2,6 = —1.

Figure 11. Dynamics of the solution g3; with the parametersa = 1,b =1,d = -2,6 = —1.
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Figure 14. Dynamics of the solution v33 with the parametersa = 1,b = 1,d = -2,6 = —1.

5. Kudryashov method

5.1. Description of method
Partial differential equation (PDE)

F(Qh Qxx, Qxxx’ ) =0, (51)
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can be transformed to an ordinary differential equation (ODE)

G(cQ',Q",0",..) =0, (5.2)

by applying a wave variable

O(x,y,1) = Q(&), where & =x+y +ct,

where c is a constant. As long as all terms contain derivatives Eq (5.2) is integrated. To find dominant
terms we substitute

Q=¢", (5.3)

into all terms of equation (5.2). Then we ought to compare degrees of all terms of equations and choose
two or more with the highest degree. The maximum value of p is called the pole of the equation (5.2)
and we denote it as N. The method can be applied when N is integer. The exact solution of equation
(5.2) is looked in the form

Q = ay + a1R(E) + aR(E)* + ... + ayR(E&), (5.4)

where R(¢) is the following function

1
R() = . .
== (5.5)
We can calculate number of derivatives by
N
Q: = Y anmR'(R-1), (5.6)
n=0
N
Qi = ) amR'(R-1Di(n+DR-nl, (5.7)
n=0
N
Qe = ). amR'(R=DI(n* +3n+2)R* = 2n* +3n+ DR + n?]. (5.8)
n=0
5.2. Implementation
Let’s study ODE (3.26)
(d — a*b) 3
T 260° =0,
Ot arp 210

where prime denotes the derivation with respect to £&. From Eq (3.26) we find N = 1 then we look for
the solution of Eq (3.26) in the form

0 =ap+ aiR(). (5.9

The second derivative of Eq (5.9) is
Oee = a0 -3a10" +2a,0’. (5.10)
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Substituting (5.9)—(5.10) into (3.26) we obtain the system of algebraic equations. By solving it we find

coefficients as
1 1 1
:iw/—ﬁ, a ::24—5, d:a2b+a+§b. (5.11)

Substituting (5.11) in (5.9) and then obtained expressions in Eq (3.19) and Eq (3.9) we have solutions
for Egs (1.1) by the following form

i(ax+by+dt 1 - 1 1
qai(x,y,1) = )(i\/—5+2\/—51+e§), (5.12)
[1 _[1 1
var(x,y,1) = 20(b + a)(x —5+2 —51+e§), (5.13)
[T [ 1 1
war(x, y, 1) = 26(% _E“LZ _4_51+es“)’ (5.14)

d—a‘b a*b
2a+b °

where & = x + y + ct, with ¢ = 2ab + a®> + £%£°
6. Physical interpretation

In this section, we will give the physical explanation of the obtained exact solutions in Sect. 3—Sect.
4. In general, Eqs (1.1) have the parameter 6 = *1, in our research we take case when 6 = —1. In
order to analyze solutions (3.35)—(3.40) and (3.49)—(3.54), we consider two cases that can yield various
solutions.

In case ((‘12 ‘_::)) > 0, 6 = —1 by taking the values asa = 1,b = 1,d = 2,6 = —1 in Egs (3.34) and
(3.48) we obtain that ¢ = %, a = %, u = \%, ((dz;—fbb)) = % With the above parameters in Figures 1-2
we present 3D plots of solutions g5, vy; (3.49)—(3.50) on the x — y plane at t = =2,¢ = 0,7 = 2. We

notice that solutions are obtained with the sine-cosine method gives the periodic solutions. To consider

the case ((dz ‘jrbb)) < 0,0 = —1 we take the parameters asa = 1,b = 1,d = -2,6 = —1 in Egs (3.34) and
(3.48) and then obtain ¢ = 2, = i,u = i, (é;‘flz) = —1.The graphical representations of the solutions

with complex @ and pu are given in Figures 3—4. As we see, the solutions gj», vz (3.38)-(3.39) can
be soliton solutions. It can be seen that the bright one-soliton ¢, and dark one-soliton v;, keep their
directions, widths, and amplitudes invariant during the propagation on the x—y plane. Figure 5 displays
propagation of the bright soliton solutions gy, Vo, way in 2D plot aty = 0,1 = =2, = 0, = 2. It 1is
well known that bright soliton is a pulse on a zero-intensity background. However, the dark soliton is
featured as a localized intensity dip below a continuous-wave background.

Figure 6 displays the time evolutions of the solutions (4.16)—(4.18) with the valuesa = 1,b=1,d =
2,6 =-1l,c=%,a)=0,a = \/La,bl =0,u = \Lfe’ ((dz:f]f)) = 1,y = 0. As we notice from 2D plots the
solution g3, is dark soliton, v3;, w3, are bright solitons. The evolution of the bright soliton g3, and dark
solitons v3; in 3D at r = =3, = 0,7 = 3 are displayed in Figures 7-8. It can be seen that the bright
solitons and the dark solitons keep their directions invariant during the propagation on the x—y plane.
Moreover, periodic type solutions ¢33, vz att = —3,¢ = 0, and ¢ = 3 are presented in Figures 9-10. The
shape of solutions g4, V34, w34 are almost same as gs», V3, Wa. It gives the soliton solutions. In case

((dzaibh)) < 0,0 = —1 we take the parameters asa = 1,b = 1,d = -2,6 = —1 in Eqgs (4.16)—(4.18), then
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the solutions g3, v3; give the periodic solutions that are displayed in Figures 11-12. But for ¢33, va3
the bright and dark soliton solutions can be derived that is Figures 13—14. In case ¢33, v33 the values

d-a*b
are taken as a = 1,b = 1,d = 2,6 = —l,c = 2,ap = 0,a; = —3,b; = §,u = =3, G52 = —1
within the interval -5 < x,y < 5 for ¢t = -3,¢ = 0,7 = 3. The periodic solutions are obtained also for

432, V32, W32, {34, V34, W34.

Thus, the considered above cases show that the different choices of the parameters a, b, d, c yield a
number of waveforms such as periodic solutions, bright soliton, and dark soliton. Moreover, the tanh-
coth method yields more solutions compared to solutions by the sine-cosine method, the Kudryashov
method.

7. Conclusions

In the paper, the (2+1)-dimensional cmKdV system of equations is studied using the sine-cosine
method, the tanh-coth method, and the Kudryashov method. As a result, various types of exact
solutions such as bright solitons, dark solitons, and periodic wave solutions are obtained. In addition,
we have shown the graphical structures of some derived results in Figures 1-14 and then interpreted
the nature of the profiles shown. The main advantage of the sine-cosine, tanh-coth and Kudryashov
methods is that, unlike existing methods such as Hirota’s bilinear method or the inverse scattering
method, tedious algebra and guesswork can be avoided. By varying the choice of parameters, different
waveforms can be generated, such as the bell shape, the anti-bell shape, and other forms of the
solutions. The results obtained are new, as solutions for traveling waves have not been found before.
Moreover, this work extends the work on the (2+1)-dimensional cmKdV equations [39-44] by deriving
a variety of exact solutions. It is expected that the methods used in this work will open new horizons for
the study of NPDEs arising in physics. Moreover, it will also be interesting to study the integrability
properties such as the infinite number of conservation laws and geometry properties for Eqs (1.1).
Related work is underway and results will be reported separately.
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