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1. Introduction

Nowadays, synchronization has been widely used in various fields, such as secure
communication [1], stochastic network design [2] and information processing [3], especially network
secure communication and target control [4]. It is well known that fractional order neural network
(FNNs) has always been the research content of scholars. And synchronization is one of the central
issues in FNNs, which is an effective tool to control the chaos of FNNs. Thus, many researchers have
paid attention to the synchronization of FNNs [5,6].

As we all known that time delay is a common phenomenon, which is sometimes inevitable in
the process of building the neural network model. Recently, some related results on the dynamical
properties of delayed fractional order neural networks (DFNNs) have been put forward [7,8].
Furthermore, authors proposed the criterion for finite-time synchronization of DFNNs in view of
a new fractional order Gronwall inequality with time delay [9]. Moreover, the synchronization
analysis [10,11], pinning synchronization [12] and fixed-time synchronization [13] of DFNNs with
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impulse have been analyzed. In addition, the paper [14] investigated the fixed-time synchronization
for semi-Markovian switching complex dynamical networks with hybrid couplings and time-varying
delays. Moreover, the synchronization issue of complex-valued DFNNs has been studied [15–17].

It is particularly worth mentioning that owing to being affected by the outside world, the system
parameters in the industrial control process are often uncertain. Therefore, uncertain parameters
are always considered by scholars when establishing the mathematical model of FNNs. Based on
Lyapunov direct method, the paper [18] studied the synchronization for commensurate Riemann-
Liouville fractional order memristor-based neural networks with unknown parameters. Furthermore,
the literature [19] put forward adaptive synchronization conditions of DFNNUPs in view of the suitable
linear feedback controller. The article [20] analyzed the robust synchronization of fractional-order
Hopfield neural networks with parameter uncertainties. Besides, several sufficient conditions regarding
synchronization of fractional order complex neural networks were also proposed [21].

As mentioned above, delay and uncertain parameters are two phenomena in the fractional order
neural networks models. However, researches on fractional-order neural networks containing both
phenomena are limited. In order to pursue the more general synchronization conditions of DFNNUPs,
this paper studies the robust synchronization conditions of DFNNUPs through LMIs technique and
the changes in Lyapunov function construction. The crucial novelty of our contribution lies in
following two aspects: (1) The Lyapunov function is in the form of multiple matrix quadratic Lyapunov
function, which makes that the robust synchronization conditions has a broader scope. (2) The robust
synchronization sufficient conditions are represented in term of matrix inequality. Therefore, the
difficulties of this article can be listed as follows: (1) The first difficulty is the scaling of derivatives in
the proof process. (2) The second difficulty is the resolve of the matrix inequality to obtain the robust
synchronization conditions.

The structure of this paper is outlined as follows: Some definitions on fractional derivative, useful
lemmas, the DFNNUPs drive model and the DFNNUPs response model are given in Section 2. The
main results of robust synchronization analysis are derived in Section 3. The numerical simulation
example and conclusions are respectively presented in Sections 4 and 5.

Notation: Throughout this paper, R denotes the set of real numbers, Rn is the n-dimensional real
vector, and Rm×n represents the set of all m × n real matrices. Moreover, Z+ is the positive integer. R+

is the real number. f (t) ∈ Rn[0,∞) represents that the f(t) is an n-dimensional real vector defined from
[0,+∞). xT and AT stand for the transpose of x ∈ Rn and any matrix A ∈ Rm×n, respectively. P > 0
(P < 0) means that P is the positive definite matrix (negative definite matrix). 0n×n represents an n × n
matrix with elements 0. En×n denotes the n × n identity matrix.

2. Preliminaries

Some definitions, lemmas about fractional calculus and assumptions are introduced in this section.
Besides, the considered DFNNUPs drive system and response system are also described.

Definition 2.1. [22] The Riemann-Liouville fractional integral with order γ > 0 for a continuous
function f (t) ∈ Rn[0,+∞) is defined as

D−γ0,t f (t) =
1
Γ(γ)

∫ t

0
(t − µ)γ−1 f (µ)dµ,
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where t > 0, Γ(·) is the Gamma function.

Definition 2.2. [22] The Caputo fractional derivative with order γ > 0 for a continuous function
f (t) ∈ Rn[0,+∞) is defined by

Dγ
0,t f (t) = D−(n−γ)

0,t
dn

dtn f (t) =
1

Γ(n − γ)

∫ t

0
(t − µ)n−γ−1 f (n)(µ)dµ,

where t > 0, n − 1 < γ < n ∈ Z+. Particularly, when n = 1, that is 0 < γ < 1, it has

CDγ
0,t f (t) =

1
Γ(1 − γ)

∫ t

0
(t − µ)−γ f ′(µ)dµ.

Remark 2.1. [23] If continuous function f (t) ∈ Rn[0,+∞), and n − 1 < α,γ < n ∈ Z+, then,
(1) D−αD−γ f (t) = D−α−γ f (t), α, γ ≥ 0.
(2) DαD−γ f (t) = Dα−γ f (t), α, γ ≥ 0.

Especially, when α = γ, then, DαD−γ f (t) = f (t).
(3) D−γDγ f (t) = f (t) −

∑n−1
m=0

f m

m! f (m)(0), γ ≥ 0.
In particular, if 0 < γ ≤ 1 and f (t) ∈ R1[0,∞), then D−γDγ f (t) = f (t) − f (0).

(4) For any real constants k1 and k2, it has

Dγ(k1 f1(t) + k2 f2(t)) = k1Dγ f1(t) + k2Dγ f2(t), γ ≥ 0.

Lemma 2.1. [24] Let 0 < γ < 1 and f (t) ∈ Rn[0,+∞), the following inequality is satisfied.

Dγ
0,t

[
1
2

f T (t)M f (t)
]
≤ f T (t)MDγ

0,t f (t),

where M is the positive definite matrix.

Lemma 2.2. [25] For any A ∈ Rn×n, x, y ∈ Rn and real value ω > 0, the following inequality holds.

xT Ay ≤
1

2ω
xT AAT x +

ω

2
yT y.

Lemma 2.3. [26] Suppose that A ∈ Rm×n, M ∈ Rl×m and H(t) ∈ Rn×l are the real matrices. Moreover,
H(t) is satisfied with HT (t)H(t) ≤ El×l. Then, for any real value ω > 0, it has

AH(t)M + MT HT (t)AT ≤
1
ω

AAT + ωMMT .

Lemma 2.4. [27] Let V : [t0 − ρ,+∞) → R+ be bounded on [t0 − ρ,+∞) and continuous on [t0,+∞).
If there exist ϕ, νh with h = 1, 2, . . . ,m such that

Dγ
t0,tV(t) ≤ −ϕV(t) +

m∑
h=1

νh sup
−ρh≤ω≤0

V(t + ω), t ≥ t0,

where 0 < γ < 1, νh > 0, ϕ >
m∑

h=1
νh, ρ = max{ρ1, ρ2, · · · , ρm}, then, lim

t→+∞
V(t) = 0.
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Consider the following differential equation system as the DFNNUPs drive system:{
Dγx(t) = −Cx(t) + (A + △A) f (x(t)) + (B + △B)g(x(t − τ)) + I, t ∈ [0,+∞),
x(t) = ψ(t), t ∈ [−τ, 0),

(2.1)

where 0 < γ < 1, x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn stands for the state vector; C=diag{ci} ∈ Rn×n

denotes the self connection weight matrix; A = (ai j)n×n ∈ Rn×n and B = (bi j)n×n ∈ Rn×n represent the
connection of the jth neuron to the ith neuron at time t and t − τ, respectively. △A = (△ai j(t))n×n ∈

Rn and △B = (△bi j(t))n×n ∈ Rn are uncertain parameters matrices. Moreover, f (x(t)) = ( f1(x1(t)),
f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn, g(x(t − τ)) = (g1(x1(t − τ)), g2(x2(t − τ)), . . . , gn(xn(t − τ)))T ∈ Rn are the
neuron activation functions; τ represents the delay and I ∈ Rn is an external input vector.

The corresponding response system is given by{
Dγy(t) = −Cy(t) + (A + △A) f (y(t)) + (B + △B)g(y(t − τ)) + I + U(t), t ∈ [0,+∞),
y(t) = φ(t), t ∈ [−τ, 0),

(2.2)

where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn means the state vector; U(t) is an control input vector; the γ,
τ, A, B, △A, △B, f (y(t)) g(y(t − τ)) and I are defined the same as the ones in the system (2.1).

For the neuron activation function f , g and uncertain parameters △A, △B, the following assumptions
are made:

A1: For any x, y ∈ Rn, there exist F,G ∈ Rn×n, such that

∥ f (x) − f (y) ∥≤∥ F(x − y) ∥, ∥ g(x) − g(y) ∥≤∥ G(x − y) ∥ .

A2: Uncertain parameters △A and △B are norm bound and content

[△A △B] = QH(t)[NANB],

where Q ∈ Rn×m is known diagonal constant matrices, NA ∈ Rl×n and NB ∈ Rl×n are arbitrary constant
matrices. Furthermore, H(t) ∈ Rm×l is an unknown real matrix and Lebesgue norm measurable
elements, satisfying NT

A HT (t)H(t)NA ≤ En×n and NT
B HT (t)H(t)NB ≤ En×n.

Definition 2.3. [20] The DFNNUPs systems (2.1) and (2.2) are said to achieve robust synchronization
if ||y(t) − x(t)|| → 0, when t → +∞.

3. Main results

The robust synchronization conditions are obtained between the DFNNUPs systems (2.1) and (2.2)
under the controller U(t) in this section. The U(t) = (u1(t), u2(t), · · · , un(t))T is designed as

U(t) = −K(y(t) − x(t)), (3.1)

where K = diag(ki) ∈ Rn×n.

Theorem 3.1. Suppose that the assumptions A1 and A2 hold, given real constants ω > 0, δ > ε > 0,
if there exist matrices M ∈ Rn×n (full rank matrix), P ∈ Rn×n (P > 0) and matrix K = diag(ki) ∈ Rn×n

satisfied

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
< 0, (3.2)
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whereΦ12 = Φ21 = 0n×n,Φ11 = −MT PM(C+K)−(CT+KT )MT PT M+ 2
ω

FT F+ωMT PMAAT MT PT M+
ωMT PMBBT MT PT M+2ωMT PMQQT MT PT M+ δ

2 MT PM+ δ
2 MT PT M andΦ22 =

2
ω

GTG− ε
2 MT PM−

ε
2 MT PT M. Then, the DFNNUPs systems (2.1) and (2.2) achieve robust synchronization under the
controller (3.1).

Proof. Let e(t) = y(t) − x(t), the DFNNUPs error system can be obtained through (2.1) and (2.2),
Dγe(t) = −Ce(t) + (A + △A)[ f (y(t)) − f (x(t))]

+(B + △B)[g(y(t − τ)) − g(x(t − τ))] + U(t), t ∈ [0,+∞),
e(t) = φ(t) − ψ(t), t ∈ [−τ, 0).

(3.3)

Substitute linear controller (3.1) into DFNNUPs error system (3.3), it can derive that
Dγe(t) = −(C + K)e(t) + (A + △A)[ f (y(t)) − f (x(t))]

+(B + △B)[g(y(t − τ)) − g(x(t − τ))] t ∈ [0,+∞),
e(t) = φ(t) − ψ(t), t ∈ [−τ, 0).

(3.4)

Select the following multiple matrix quadratic Lyapunov function V(t):

V(t) = eT (t)MT PMe(t),

where M is an full rank matrix and P > 0, namely, MT PM > 0.
Based on Lemma 2.1, it gets

DγV(t) ≤ 2eT (t)MT PMDγe(t). (3.5)

In view of (3.4) and (3.5), it yields

DγV(t) ≤2eT (t)MT PM[−(C + K)e(t) + 2(A + △A)[ f (y(t)) − f (x(t))]
+ 2(B + △B)[g(y(t − τ)) − g(x(t − τ))].

Then,

DγV(t) + δV(t) − ε sup
−τ≤ν≤0

V(t + ν)

≤2eT (t)MT PM{−(C + K)e(t) + 2(A + △A)[ f (y(t)) − f (x(t))]
+ 2(B + △B)[g(y(t − τ)) − g(x(t − τ))]} + δeT (t)MT PMe(t)
− εeT (t − τ)MT PMe(t − τ)
= − 2eT (t)MT PM(C + K)e(t) + 2eT (t)MT PMA[ f (y(t)) − f (x(t))]
+ 2eT (t)MT PM△A[ f (y(t)) − f (x(t))] + 2eT (t)MT PMB[g(y(t − τ)) − g(x(t − τ))]
+ 2eT (t)MT PM△B[g(y(t − τ)) − g(x(t − τ))] + δeT (t)MT PMe(t)
− εeT (t − τ)MT PMe(t − τ).

(3.6)

According to Lemma 2.2 and A1, it has

2eT (t)MT PMA[ f (y(t)) − f (x(t))]

≤
1
ω

[ f (y(t)) − f (x(t))]T [ f (y(t)) − f (x(t))] + ωeT (t)MT PMAAT MT PT Me(t)

≤
1
ω

eT (t)FT Fe(t) + ωeT (t)MT PMAAT MT PT Me(t)

(3.7)
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and

2eT (t)MT PMB[g(y(t − τ)) − g(x(t − τ))]

≤
1
ω

[g(y(t − τ)) − g(x(t − τ))]T [g(y(t − τ)) − g(x(t − τ))] + ωeT (t)MT PMBBT MT PT Me(t)

≤
1
ω

eT (t − τ)GTGe(t − τ) + ωeT (t)MT PMBBT MT PT Me(t).

(3.8)

By virtue of the Lemma 2.3 and A2, it gets

2eT (t)MT PM△A[ f (y(t)) − f (x(t))]
=2eT (t)MT PMQH(t)NA[ f (y(t)) − f (x(t))]

≤
1
ω

[ f (y(t)) − f (x(t))]T NT
A HT (t)H(t)NA[ f (y(t)) − f (x(t))] + ωeT (t)MT PMQQT MT PT Me(t)

≤
1
ω

eT (t)FT Fe(t) + ωeT (t)MT PMQQT MT PT Me(t)

(3.9)

and

2eT (t)MT PM△B[g(y(t − τ)) − g(x(t − τ))]
=2eT (t)MT PMQH(t)NB[g(y(t − τ)) − g(x(t − τ))]

≤
1
ω

[g(y(t − τ)) − g(x(t − τ))]T NT
B HT (t)H(t)NB[g(y(t − τ)) − g(x(t − τ))]

+ ωeT (t)MT PMQQT MT PT Me(t)

≤
1
ω

eT (t − τ)GTGe(t − τ) + ωeT (t)MT PMQQT MT PT Me(t).

(3.10)

Applying the inequalities (3.7)–(3.10) into (3.6), it can be obtained that

DγV(t) + δV(t) − ε sup
−τ≤ν≤0

V(t + ν)

≤ − 2eT (t)MT PM(C + K)e(t) +
2
ω

eT (t)FT Fe(t) +
2
ω

eT (t − τ)GTGe(t − τ)

+ ωeT (t)MT PMAAT MT PT Me(t) + ωeT (t)MT PMBBT MT PT Me(t)
+ 2ωeT (t)MT PMQQT MT PT Me(t) + δeT (t)MT PMe(t)
− εeT (t − τ)MT PMe(t − τ),

then,

DγV(t) + δV(t) − ε sup
−τ≤ν≤0

V(t + ν) ≤ (eT (t) eT (t − τ))Φ
(
e(t)e(t − τ)

)
,

where

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
∈ R2n×2n,

with Φ12 = Φ21 = 0n×n, Φ11 = −MT PM(C+K)− (CT +KT )MT PT M+ 2
ω

FT F+ωMT PMAAT MT PT M+
ωMT PMBBT MT PT M+2ωMT PMQQT MT PT M+ δ

2 MT PM+ δ
2 MT PT M andΦ22 =

2
ω

GTG− ε
2 MT PM−

ε
2 MT PT M.

In line with Theorem 3.1 and Lemma 2.4, it can deduce that lim
t→+∞

V(t) = 0, implying lim
t→+∞

e(t) = 0.
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Remark 3.1. Fractional order neural networks model established in this paper contains both time
delay and uncertain parameters, which is more in line with the performance in actual problems
compared with literature [28,29].

Remark 3.2. Aim to the synchronization issue, the Lyapunov function is usually designed as
V(t) = eT (t)Pe(t) [25,30]. However, the Lyapunov function in this paper is constructed as V(t) =
eT (t)MT PMe(t), which makes the conditions in Theorem 3.1 have a broader scope.

Corollary 3.1. When △A = △B = 0n×n, the synchronization conditions in Theorem 3.1 can be
modified as

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
∈ R2n×2n, (3.11)

with Φ12 = Φ21 = 0n×n, Φ11 = −MT PM(C+K)− (CT +KT )MT PT M+ 2
ω

FT F+ωMT PMAAT MT PT M+
ωMT PMBBT MT PT MPT M + δ

2 MT PM + δ
2 MT PT M and Φ22 =

2
ω

GTG− ε
2 MT PM − ε

2 MT PT M. Suppose
that the assumptions A1 and A2 are satisfied, if there exist real constants ω > 0, δ > ε > 0, matrices
M ∈ Rn×n (full rank matrix), P ∈ Rn×n (P > 0), matrix K = diag(ki) ∈ Rn×n meet (3.11), then, the two
DFNNs systems (2.1) and (2.2) with △A = △B = 0n×n are synchronized under the controller (3.1).

4. Illustrative example

In order to illustrate the validity of the proposed results, a numerical example is performed in
this section.
Example 4.1. The three-state DFNNUPs drive system is designed as

Dγx(t) = −Cx(t) + (A + △A) f (x(t)) + (B + △B)g(x(t − τ)) + I, (4.1)

where x(t) = (x1(t), x2(t), x3(t))T , τ = 1 and the activation function is selected as f j(x j(t)) = sin(x j(t)),
g j(x j(t)) = tanh(x j(t)), j = 1, 2, 3.

In addition, the matrices C, A and B are defined as

C =


0.90 0 0

0 0.90 0
0 0 0.90

 , A =


−0.22 0.08 0.19
0.28 −0.21 0.12
−0.19 0.15 −0.06

 , B =


−0.09 0.07 0.10
0.18 0.17 0.13
−0.25 −0.09 −0.08

 ,
and I = (0.1, 0.1, 0.1)T . Furthermore, the other parameters Q, H(t), NA and NB are given as

Q =


0.5 0 0
0 0.5 0
0 0 0.5

 , H(t) =


1.5cos(t) 0 cos(t)

0 1.8sin(t) 0
0 0 1.2cos(t)

 ,
NA =


−0.25 0.32 0.24
0.45 0.36 0.28
0.39 0.18 −0.22

 , NB =


0.41 0.35 −0.25
0.38 0.32 0.16
0.09 0.27 0.15

 .
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The matrices mentioned above satisfied the A2: NT
A HT (t)H(t)NA ≤ E3×3 and NT

B HT (t)H(t)NB ≤

E3×3. From [△A △B] = QH(t)[NA NB], it can be calculated that

△A =


0.0075cos(t) 0.3300cos(t) 0.0700cos(t)
0.4050sin(t) 0.3240sin(t) 0.2520sin(t)
0.2340cos(t) 0.1080cos(t) −0.1320cos(t)

 ,
△B =


0.7561cos(t) 0.8510cos(t) 0.5287cos(t)
0.7032sin(t) 0.8684sin(t) 0.4770sin(t)
0.2581cos(t) 0.3180cos(t) 0.2473cos(t)

 .
The three-state response system is given as follow:

Dγy(t) = −Cy(t) + (A + △A) f (y(t)) + (B + △B) f (y(t − τ)) + I + U(t), (4.2)

where y(t) = (y1(t), y2(t), y3(t))T ; the activation function is described as f j(x j(t)) = sin(x j(t)), g j(x j(t)) =
tanh(x j(t)), j = 1, 2, 3. The delay τ, order γ and matrices C, A, △A, B, △B are defined as the same with
the system (4.1).

Let ω = 1.1 and positive values δ = 6.1, ε = 6 which satisfies ω > 0 and δ > ε > 0. Given matrices

M =


−0.03 −0.102 0.036
0.039 −0.141 0.240
0.120 −0.060 −0.100

 , P =


223.56 −36.288 15.552
−36.288 173.696 15.034
15.552 15.034 414.936

 ,
where MT PM > 0. Then, solving (3.2) in Theorem 3.1 by MATLAB linear matrix toolbox, it can
obtain that the controller gain K is

K =


35.370 0 0

0 16.308 0
0 0 13.338

 .
Set γ = 0.66. Figure 1 shows that the three-state DFNNUPs drive system (4.1) is not stable.

In addition, the robust synchronization of drive system (4.1) and response system (4.2) with the
controller (3.1) has been exhibited in Figures 2 and 3.

Remark 4.1. When △A = △B = 03×3, the other values in the systems (4.1) and (4.2) content the
Corollary 3.1. Given γ = 0.99, Figure 4 shows the instability of the three-state Given DFNNUPs
drive system (4.1). Figure 5 shows the synchronization behaviour of the (4.1) and (4.2) in the same
figure, and Figure 6 illustrates the error system state trajectories between the (4.1) and (4.2), which
demonstrates the effectiveness of the conditions (3.11).
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Figure 1. The state trajectory of the drive system (4.1) with initial value x0 = (1, 0, 0.5)T .
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Figure 2. The state trajectories of the systems (4.1) and (4.2) under control with initial values
x0 = (1, 0, 0.5)T and y0 = (0.4, 1.5, 1.7)T .
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Figure 3. The trajectory of the synchronization error e(t)
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Figure 4. The state trajectory of the drive system (4.1) with △A = △B = 03×3.
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Figure 5. The state trajectories of the system (4.1) and system (4.2) under control with
△A = △B = 03×3.
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Figure 6. The trajectory of the synchronization error e(t) with △A = △B = 03×3.
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5. Conclusions

In this paper, the robust synchronization analysis of the DFNNUPs is investigated. Due to the
multiple matrix quadratic Lyapunov function approach, the sufficient conditions have been obtained
in line with matrix inequality. Furthermore, a numerical simulation is presented to demonstrate the
validity of the obtained results.

This paper will be applicable to the construction of DFNNUPs model. Moreover, The methods in
this paper are suitable for the study of robust synchronization of DFNNUPs, which can be applied to
the field of secure communication.

The uncertain parameters of the drive system and response system are the same in this paper. The
response system without uncertain parameters or with different uncertain parameters will be included in
our future research. Moreover, Because complex signals also exist in applications of neural networks,
the further work is to study the robust synchronization of delayed fractional-order complex-valued
neural networks with uncertain parameters.
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