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over positive integers which can be simplified in certain circumstances. The results obtained include
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1. Introduction

Mathematical functions can be represented in various forms. These forms can be a Fourier series,
orthogonal polynomials, finite series, and finite products. Finite sums and products will be considered
as the background for the derivation and evaluation of trigonometric functions in this work. The
theory of finite series and products are used in a many areas of mathematics. These series are used
in differential equations where this topic is treated in Sections (15.10) and (15.11) of [1]. In the field
of Conformal Mappings, Section (15.17) of [1] these series are used in finding the quotient of two
solutions of which map the closed upper half-plane conformally onto a curvilinear triangle. In the
area of Group Representations, these series are used in harmonic analysis where it is more natural to
represent hypergeometric functions as a Jacobi function Section (15.9(ii)) in [1]. In Combinatorics
finite series are used wth respect to hypergeometric identities to classify single sums of products of
binomial coefficients, Section (15.17(iv)) in [1]. These series are also used in Monodromy Groups,
Section (15.17(v)) in [1] where the three singular points in Riemann’s differential equation lead to an
interesting Riemann sheet structure.
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Finite sums of special functions was studied in the work of Apostol [2] where the analytic
continuation of the Zeta and Dirichlet functions proved. In the work of Nakamura [3] consideration of
the universality for linear combinations of Lerch zeta functions was studied.

In the book of Prudnikov et al. [4], one will find an elaborate list of indefinite and definite integrals,
finite and infinite sums and products of elementary and special functions. Multidimensional forms of
the latter are also listed in this volume which is used in almost all areas of mathematics. In the work
of Khan et al. [5] two types of splitting algorithms were proposed for approximation of Cauchy type
singular integrals having high frequency Fourier kernel.

In this present work we look to expand upon previous work featuring the finite sum of Special
functions. We proceed by using the contour integral method [6] applied to Eq (4.4.6.18) in [4] to yield
the contour integral representation given by:

1
2πi

∫
C

n−1∑
p=0

(
2−p−1aww−k−1 csc

(
2−p(m + w)

)
−2−p−1aww−k−1 cos

(
2−p−1(m + w)

)
csc

(
2−p(m + w)

))
dw

=
1

2πi

∫
C

(
1
2

aww−k−1 csc(m + w) − 2−n−1aww−k−1 csc
(
2−n(m + w)

))
dw (1.1)

where a,m, k ∈ C,Re(m+w) > 0, n ∈ Z+. Using Eq (1.1) the main Theorem to be derived and evaluated
is given by

n−1∑
p=0

2−1 (
i2−p)k+1 eim2−p−1

(
Φ

(
ei21−pm,−k,

1
4
− i2p−1 log(a)

)
+eim2−p

Φ

(
ei21−pm,−k,

3
4
− i2p−1 log(a)

)
−2eim2−p−1

Φ

(
ei21−pm,−k,

1
2

(
1 − i2p log(a)

)))

=
(
i2−n)k+1 eim2−n

Φ

(
ei21−nm,−k,

1
2

(
1 − i2n log(a)

))
− ie

1
2 i(πk+2m)Φ

(
e2im,−k,

1
2
−

1
2

i log(a)
)

(1.2)

where the variables k, a,m are general complex numbers and n is any positive integer. This new
expression is then used to derive special cases in terms of trigonometric functions. The derivations
follow the method used by us in [6]. This method involves using a form of the generalized Cauchy’s
integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw, (1.3)

where y,w ∈ C and C is in general an open contour in the complex plane where the bilinear
concomitant [6] has the same value at the end points of the contour. This method involves using a

AIMS Mathematics Volume 7, Issue 10, 18576–18586.



18578

form of Eq (1.3) then multiplies both sides by a function, then takes the definite integral of both sides.
This yields a definite integral in terms of a contour integral. Then we multiply both sides of Eq (1.3) by
another function and take the infinite sum of both sides such that the contour integral of both equations
are the same.

2. The Hurwitz-Lerch Zeta function

We use Eq (1.11.3) in [7] where Φ(z, s, v) is the Lerch function which is a generalization of the
Hurwitz zeta ζ(s, v) and Polylogarithm function Lin(z). The Lerch function has a series representation
given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (2.1)

where |z| < 1, v , 0,−1,−2,−3, .., and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1 − ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (2.2)

where Re(v) > 0, and either |z| ≤ 1, z , 1,Re(s) > 0, or z = 1,Re(s) > 1.

3. Contour integral representation for the finite sum of the Hurwitz-Lerch Zeta functions

3.1. Derivation of the first finite sum of the contour integral

We use the method in [6]. The cut and contour are in the first quadrant of the complex w-plane with
0 < Re(w + m). The cut approaches the origin from the interior of the first quadrant and goes to infinity
vertically and the contour goes round the origin with zero radius and is on opposite sides of the cut.
Using a generalization of Cauchy’s integral formula (1.3) we first replace y by ix+y then multiply both
sides by eimx then form a second equation by replacing x by −x and adding both equations to get

e−imx
(
e2imx(y + ix)k + (y − ix)k

)
Γ(k + 1)

=
1

2πi

∫
C

2w−k−1ewy cos(x(m + w))dw (3.1)

Next we replace y by 2−pi(2y + 1) + log(a), x by 2−p and multiply both sides by eim2−p(2y+1) and take the
infinite and finite sums over y ∈ [0,∞) and p ∈ [0, n − 1], respectively and simplify in terms of the
Hurwitz-Lerch zeta function to get

n−1∑
p=0

1
Γ(k + 1)

i2k−p−1 (
i2−p)k eim(2−p−2−p−1) (

Φ
(
ei21−pm,−k, 2p−1

(
−i log(a) − 2−p−1 + 2−p

))
+eim2−p

Φ
(
ei21−pm,−k, 2p−1

(
−i log(a) + 2−p−1 + 2−p

)))

=
1

2πi

∞∑
y=0

n−1∑
p=0

∫
C

2aww−k−1ei2−p(2y+1)(m+w) cos
(
2−p−1(m + w)

)
dw
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=
1

2πi

∫
C

n−1∑
p=0

∞∑
y=0

2aww−k−1ei2−p(2y+1)(m+w) cos
(
2−p−1(m + w)

)
dw

= −
1

2πi

∫
C

n−1∑
p=0

2−p−1aww−k−1 cos
(
2−p−1(m + w)

)
csc

(
2−p(m + w)

)
dw (3.2)

from Eq (1.232.3) in [8] where Re(w + m) > 0 and Im (m + w) > 0 in order for the sums to converge.
We apply Tonelli’s theorem for multiple sums, see page 177 in [9] as the summands are of bounded
measure over the space C × [0, n − 1] × [0,∞).

3.2. Derivation of the second finite sum of the contour integral

We use the method in [6]. Using Eq (1.3) we first replace log(a) + i2−p(2y + 1) and multiply both
sides by i2−neim2−n(2y+1) then take the finite and infinite sums over p ∈ [0, n − 1] and y ∈ [0,∞) and
simplify in terms of the Hurwitz-Lerch Zeta function to get

−

n−1∑
p=0

2k (i2−p)k+1 eim2−p
Φ

(
ei21−pm,−k, 1

2

(
1 − i2p log(a)

))
Γ(k + 1)

= −
1

2πi

∞∑
y=0

n−1∑
p=0

∫
C

i2−paww−k−1ei2−p(2y+1)(m+w)dw

= −
1

2πi

∫
C

n−1∑
p=0

∞∑
y=0

i2−paww−k−1ei2−p(2y+1)(m+w)dw

=
1

2πi

∫
C

n−1∑
p=0

2−p−1aww−k−1 csc
(
2−p(m + w)

)
dw (3.3)

from Eq (1.232.3) in [8] where Re(w + m) > 0 and Im (m + w) > 0 in order for the sums to converge.
We apply Tonelli’s theorem for multiple sums, see page 177 in [9] as the summands are of bounded
measure over the space C × [0, n − 1] × [0,∞).

3.3. Derivation of the finite sum of the contour integral

Here we formulate the finite sum of the Hurwitz-Lerch Zeta function in terms of the contour integral.

n−1∑
p=0

1
Γ(k + 1)

2k−1 (
i2−p)k+1 eim2−p−1

(
Φ

(
ei21−pm,−k,

1
4
− i2p−1 log(a)

)
+eim2−p

Φ

(
ei21−pm,−k,

3
4
− i2p−1 log(a)

)
− 2eim2−p−1

Φ

(
ei21−pm,−k,

1
2

(
1 − i2p log(a)

)))
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= −
1

2πi

∫
C

n−1∑
p=0

2−p−1aww−k−1
(
cos

(
2−p−1(m + w)

)
− 1

)
csc

(
2−p(m + w)

)
dw (3.4)

from the addition of Eqs (3.3) and (3.2) and Eq (4.4.6.18) in [4] where Re(m + w) > 0, Im(m + w) > 0.

4. Contour integral representations for the Hurwitz-Lerch Zeta function

4.1. Derivation of the first contour integral

We use the method in [6]. Using Eq (1.3) we first replace log(a) + i(2y + 1) and multiply both sides
by −ieim(2y+1) then take the infinite sum over y ∈ [0,∞) and simplify in terms of the Hurwitz-Lerch Zeta
function to get

−
i2ke

1
2 i(πk+2m)Φ

(
e2im,−k, 1

2 −
1
2 i log(a)

)
Γ(k + 1)

= −
1

2πi

∞∑
y=0

∫
C

iaww−k−1ei(2y+1)(m+w)dw

= −
1

2πi

∫
C

∞∑
y=0

iaww−k−1ei(2y+1)(m+w)dw

=
1

2πi

∫
C

1
2

aww−k−1 csc(m + w)dw (4.1)

from Eq (1.232.3) in [8] where Im(w + m) > 0 in order for the sum to converge. We apply Fubini’s
theorem for integrals and sums, see page 178 in [9] as the summand is of bounded measure over the
space C × [0,∞).

4.2. Derivation of the second contour integral

We use the method in [6]. Using Eq (1.3) we first replace log(a)+i2−n(2y+1) and multiply both sides
by i2−neim2−n(2y+1) then take the infinite sum over y ∈ [0,∞) and simplify in terms of the Hurwitz-Lerch
Zeta function to get

2k (i2−n)k+1 eim2−n
Φ

(
ei21−nm,−k, 1

2

(
1 − i2n log(a)

))
Γ(k + 1)

=
1

2πi

∞∑
y=0

∫
C

i2−naww−k−1ei2−n(2y+1)(m+w)dw
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=
1

2πi

∫
C

∞∑
y=0

i2−naww−k−1ei2−n(2y+1)(m+w)dw

= −
1

2πi

∫
C

2−n−1aww−k−1 csc
(
2−n(m + w)

)
dw (4.2)

from Eq (1.232.3) in [8] where Im(w + m) > 0 in order for the sum to converge. We apply Fubini’s
theorem for integrals and sums, see page 178 in [9] as the summand is of bounded measure over the
space C × [0,∞).

5. The finite sum of Hurwitz-Lerch Zeta functions in terms of Hurwitz-Lerch Zeta functions

In this section we will derive the finite sum of Hurwitz-Lerch Zeta functions in terms of the Hurwitz-
Lerch Zeta function.

Theorem 5.1. For all k, a,m ∈ C, n ∈ Z+ then,

n−1∑
p=0

(
i2−p)k+1 eim2−p−1

(
Φ

(
ei21−pm,−k,

1
4
− i2p−1 log(a)

)
+eim2−p

Φ

(
ei21−pm,−k,

3
4
− i2p−1 log(a)

)
−2eim2−p−1

Φ

(
ei21−pm,−k,

1
2

(
1 − i2p log(a)

)))

= 2
(
i2−n)k+1 eim2−n

Φ

(
ei21−nm,−k,

1
2

(
1 − i2n log(a)

))
− i2e

1
2 i(πk+2m)Φ

(
e2im,−k,

1
2
−

1
2

i log(a)
)

(5.1)

Proof. With respect to Eq (1.1) and observing the addition of the right-hand sides of relations (3.2)
and (3.3), and the addition of relations (4.1) and (4.2) are identical; hence, the left-hand sides of the
same are identical too. Simplifying with the Gamma function yields the desired conclusion. �

6. Special cases and finite sums and products involving trigonometric functions

In this section we will evaluate Eq (5.1) for various values of the parameters involved to derive
special cases in terms of mathematical constants, trigonometric and special functions. We will also
look at plots of finite sums and products functions involving mathematical constants.

Example 6.1. The degenerate case.
n−1∑
p=0

2−p sin2
(
m2−p−2

)
csc

(
m2−p) =

1
2

(
csc(m) − 2−n csc

(
m2−n)) (6.1)
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Proof. Use Eq (5.1) and set k = 0 and simplify using entry (2) in Table below (64:12:7) in [10]. �

Example 6.2. A finite product involving quotient of cosine functions.

n−1∏
p=0

cos4
(
2−p−4x

)
cos5

(
2−p−2x

)
sec8

(
2−p−3x

)
sec

(
2−p−1x

)

= cos4
( x
4

)
sec4

( x
8

)
sec

( x
2

)
cos4

(
2−n−3x

)
cos

(
2−n−1x

)
sec4

(
2−n−2x

)
(6.2)

Proof. Use Eq (5.1) and set k = 1, a = 1,m = x and simplify using the method in Section (8.1)
in [11]. �

Example 6.3. A finite product involving the exponential of trigonometric functions.

n−1∏
p=0

cos3
(
2−p−2x

)
sec2

(
2−p−3x

)
sec

(
2−p−1x

)
exp

− i2−p
(
4 sin2

(
2−p−2x

)
csc (2−px) − tan

(
2−p−3x

)
sec

(
2−p−2x

))
π


= tan

( x
2

)
cot

( x
4

)
tan

(
2−n−2x

)
cot

(
2−n−1x

)
exp

 i21−n
(
2n

(
csc

(
x
2

)
− csc(x)

)
− csc

(
2−n−1x

)
+ csc (2−nx)

)
π

 (6.3)

Proof. Use Eq (5.1) and set k = 1, a = i,m = x and simplify using the method in Section (8.1)
in [11]. �

Example 6.4. The finite sum of the difference of the secant function squared.

n−1∑
p=0

4−p
(
sec2

(
m2−p−2

)
− 2 sec2

(
m2−p−1

))
= 8

(
cot(m) csc(m) − 4−n cot

(
m2−n) csc

(
m2−n)) (6.4)

Proof. Use Eq (5.1) and set k = 1, a = 1 and simplify using the method in Section (8.1) in [11]. �

Example 6.5. The finite product of quotient tangent functions.

n−1∑
p=0

cos (2−pm) cos2
(
2−1−pr

)
cos2 (

2−1−pm
)

cos (2−pr)
=

tan (2−nm) tan(r)
tan(m) tan (2−nr)

(6.5)

Proof. Use Eq (5.1) and form a second equation by replacing m → r take the difference of both these
equations then set k = −1, a = 1 and simplify using entry (3) of Section (64:12) in [10]. �
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Example 6.6. Recurrence identity with consecutive neighbours.

Φ(z, s, a) =
1

2z1/4

(
21−sz1/4

(
Φ

(
z2, s,

a
2

)
+ zΦ

(
z2, s,

a + 1
2

))
−2sΦ

(
z1/2, s, 2a −

1
2

)
+ Φ

(
z, s, a −

1
4

)
+ z1/2Φ

(
z, s, a +

1
4

))
(6.6)

Proof. Use Eq (5.1) and set n = 2,m = log(z)/i, k = −s, a = e(a−1/2)i and simplify. �

Example 6.7. The derivative of the Hurwitz-Lerch Zeta function.

Φ′(i, 0, u) = log

 Γ
(

u
4

)
2Γ

(
u+2

4

) + i log

 Γ
(

u+1
4

)
2Γ

(
u+3

4

) (6.7)

Proof. Use Eq (6.6) and set z = −1, a = u and simplify in terms of the Hurwitz Zeta function using
entry (4) in Table below (64:12:7) in [10]. Next take the first partial derivative with respect to s and set
s = 0 and simplify using Eq (64:10:2) in [10]. �

Example 6.8. The derivative of the Hurwitz-Lerch Zeta function in terms of the Stieltjes constant γ1.

Φ′
(
i, 1,

3
2

)
=

1
4

(
γ1

(
7
8

)
+ i

(
γ1

(
1
8

)
+ iγ1

(
3
8

)
− γ1

(
5
8

)
+ log(256)

)
+4

(
1 + i
√

2

)
log(2)

(
2 coth−1

(√
2
)

+ iπ
))

(6.8)

Proof. Use Eq (6.6) and set a = ei,m = π/2 and simplify in terms of the Zeta and Hurwitz Zeta
functions using entry (4) of Section (64:12) and entry (2) of Section (64:7) in [10]. Next take the first
partial derivative with respect to s and apply l’Hopital’s rule as s → 0 and simplify using Eq (3:6:8)
in [10]. �

Example 6.9. A finite sum involving the cosecant function.

n−1∑
p=0

2−p sin (m2−p)(
cos

(
m2−p−2) + cos

(
3m2−p−2))2 = 2

(
csc(m) − 2−n csc

(
m2−n)) (6.9)

Proof. Use Eq (5.1) and set a = e, k = 1 and simplify using entry (3) of Section (64:12) in [10].
Next we form a second equation by replacing m → −m and taking their difference. In this example
m ∈ C. �

Example 6.10. A finite sum involving Catalan’s constant K.

n−1∑
p=0

2π log
(
sec

(
π2−p−2

)
+ 1

)
− i2p+2

(
4Li2

(
−ei2−p−2π

)
− Li2

(
−ei2−p−1π

))

= 8K + i2n
(
−4Li2

(
e−i2−n−1π

)
+ 4Li2

(
ei2−n−1π

)
+ Li2

(
e−i2−nπ

)
− Li2

(
ei2−nπ

)
+ π2

)
+ π log

(
cot2

(
π2−n−2

))
− iπ2 (6.10)
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Proof. Use Eq (6.9) and multiply both sides by m and take the definite integral over m ∈ [−π/2, π/2]
and simplify using Eq (3.521.2) in [8]. �

1 2 3 4 5
n

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1. Real part of rhs of Eq (6.10).

1 2 3 4 5
n

50

100

150

200

250

300

Figure 2. Imaginary part of rhs of Eq (6.10).

Example 6.11. A finite product involving Catalan’s constant K.

n−1∏
p=0

exp
(
−i22+p

(
4Li2

(
−ei2−2−pπ

)
− Li2

(
−ei2−1−pπ

))) (
1 + sec

(
2−2−pπ

))2π

= exp
(
8K − iπ2 + i2n

(
π2 − 4Li2

(
e−i2−1−nπ

)))
exp

(
i2n

(
4Li2

(
ei2−1−nπ

)
+ Li2

(
e−i2−nπ

)
− Li2

(
ei2−nπ

)))
cot2

(
2−2−nπ

)π
(6.11)

Proof. Use Eq (6.10) and take the exponential function of both sides and simplify using Theorem 1 on
page 133 in [12]. �

AIMS Mathematics Volume 7, Issue 10, 18576–18586.



18585

1 2 3 4 5
n

-3

-2

-1

1

2

3

Figure 3. Real part of rhs of Eq (6.11) for n=5.

1 2 3 4 5
n

-3

-2

-1

1

2

3

Figure 4. Imaginary part of rhs of Eq (6.11) for n=5.

Example 6.12. A finite sum involving quotient trigonometric functions.

n−1∑
p=0

23+2pa28−p tan
(
2−2−pm

) (
cos

(
2−2−pm

)
+ cos

(
3 2−2−pm

))2

cos2 (
2−2−pm

)
cos3 (

2−1−pm
)

+
8−p tan

(
2−2−pm

) (
cos

(
3 2−1−pm

)
− 13 cos

(
2−1−pm

))
cos2 (

2−2−pm
)

cos3 (
2−1−pm

)
−

4 8−p tan
(
2−2−pm

)
(3 + cos (2−pm))

cos2 (
2−2−pm

)
cos3 (

2−1−pm
) 

= 32
(
2
(
1 + a2

)
csc(m) − 4 csc3(m) − 21−3n csc

(
2−nm

) (
1 + 4na2 − 2 csc2 (

2−nm
)))

(6.12)

Proof. Use Eq (5.1) and set a = eai, k = 2 and simplify using entry (4) of Section (64:12) in [10]. Next
we form a second equation by replacing m→ −m and taking their difference. �

7. Conclusions

In this paper, we used a contour integration method to derive a new finite summation formula
involving the Hurwitz-Lerch Zeta function along with some interesting special cases in terms of
mathematical constants and plots, see Figures 1–4. A new derivative of the Hurwitz-Lerch Zeta
function involving an imaginary parameter expressed in terms of the Log-gamma function was
produced. We will be applying this contour integral method to other trigonometric functions to derive
other finite and infinite sums and products for future work.
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