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Abstract: In this paper, we investigate an aquatic ecological model of microcystis aeruginosa-filter 

feeding fish and predatory fish model with aggregation effect of microcystis aeruginosa. Fear effect of 

predatory fish on filter feeding fish and harvesting effect of big fish is considered. Mathematical 

analysis includes two parts. The first is theoretical part, which includes proving the positive and 

constraining solutions of the model. Also finding equilibrium points and studying their local stability 

is included in this part. In addition, analyzing the local bifurcation of equilibrium points and indicating 

the type of bifurcation is discussed here. On the other hand, the second part contains the numerical 

simulation of all the theoretical results, where we compare the numerical values of the conditions 

obtained in the theoretical part. 
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1. Introduction 

Ecology is the scientific study of how living organisms interact with one another and with their 
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surroundings. Interactions between species and between organisms and their physical and chemical 

environments involve all individuals of the same type. Aquatic ecology is the study of these 

interactions in all aquatic environments, such as rivers, lakes, streams, ponds, wetlands, and oceans. 

The physical properties of aquatic organisms have an impact on all types of species found there. The 

organisms in a specific ecosystem are directly impacted by environmental elements like nutrient 

content, water flow, temperature, and shelter. Only those species that can adapt to and thrive in a 

specific habitat will flourish because of the resources at hand. Predation and competition for resources 

(such as food and habitat) have an impact on species abundance and variety in aquatic ecosystems, as 

allow interactions between living organisms. In turn, living creatures in a given environment can have 

an impact on certain characteristics of that environment [1–4]. 

We are all aware of this, algal blooms are triggered by a combination of external and internal 

forces, algal population aggregation and migration are examples of the latter [5]. In the last 10 years, 

numerous scholars have examined how the growth of algae affects the reproduction of aquatic 

organisms in environmental studies and aquatic biology [6–12]. The tight gel layer of microcystis 

aggregation in particular, filter feeding fish have a hard time digesting it. Even if the filter-feeding fish 

eat them, a substantial percentage of undamaged active algal cells will remain in the fish feces. Xie 

and Liu [13] have demonstrated that aggregations of microcystis can generate more algal toxins than 

solitary cells, reducing the danger of predation. On other hand, Sommer et.al. [14] have shown the 

food web in the aquatic environment that there are fish that feed on algae and predatory fish that feed 

on small fish (prey). 

However, on the mentioned area, there has been little scientific investigation into the population 

dynamics and mathematical modeling of the dynamic impacts of algal aggregation. Furthermore, 

population dynamics and the ecological mathematical model a complete research technique combines 

coordination, organization, and purpose to create three foundations for studying biological systems. 

Analysis of dietary intake, the view from the model, and dynamic presentation are the three kinds (see 

[15,16]). The basic goal of population dynamics modeling is to gain a better knowledge of how 

populations interact and how they are affected by internal and external factors [17,18]. However, a 

thorough investigation of ecological mathematical models and population dynamics has been made in 

recent decade. In addition, a slew of additional articles has yielded key research findings in population 

dynamics and ecological mathematical models (we refer [19–23]). 

Here we remark that authors [24] represented the following system  

{

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾1
) −

𝛼1(𝑁−𝑚1)𝑃

𝑐1+𝑁−𝑚1
,

𝑑𝑃

𝑑𝑡
= 𝑑1𝑃 (1 −

𝑁

𝐾1
) + (

𝛽1𝛼1(𝑁−𝑚1)𝑃

𝑐1+𝑁−𝑚1
) − 𝛾1𝑃,

     (1) 

which has created a fresh aquatic ecological model to explain the microcytic aeruginosa aggregation 

impact and filter-feeding fish. Further, the model describes the connection between microcytic 

aeruginosa and filter feeding fish. 

By memorizing the foregoing, and depending on the investigation carried out by Sommer et.al. [14], 

we divided the aquatic environment into the following: 

Our aquatic community = 

microcystis aeruginosa (𝑁)+ filter feeding fish (𝑃)+predatory fish (𝐹) 
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Our food chain: 𝑁 → 𝑃 → 𝐹. 

According to recent studies, predators have an impact on prey populations not only by killing 

them directly, but also through instilling fear in prey animals. This significantly affects their pace of 

reproduction (see [25,26]). Predator fear may affect the behavioral patterns and physiology of some 

prey species. This is more terrible than killing someone directly [27,28]. Wang et al. [26], which has 

suggested that raising the cost of fear can help to stabilize the system by incorporating the fear effect 

into a predator-prey model. Pandey et al. [29] investigated a tri-topic food chain model with Holing 

type-II functional response by incorporating fear impact. Mentioned authors have discovered that a 

low amount of fear causes chaotic behavior, whereas a high level of fear allows the chaotic oscillations 

to be controlled. Predator fear may affect the behavioral patterns and physiology of some prey species; 

this is more terrible than killing someone directly. 

In this study, we have expanded the first system from the second dimension to the third dimension, 

where we added a very important component in the aquatic ecological model. The said target is the 

large predatory fish that has an effect on each of the first two components (the microcytic aeruginosa 

aggregation and filter feeding fish). In addition, we studied the effect of fear of predatory fish (big fish) 

on the filter feeding fish because the main source of growth for filters feeding from microcytic 

aeruginosa fish, when they were fed on microcytic aeruginosa. On other hand, the harvesting effect on 

the predatory fish is considered.  

Keeping the above discussion in mind, we add the function of fear for food filter feeding fish 

from predatory fish. Therefore, the mathematical formulation of aquatic environment models takes the 

form  

{
 
 

 
 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝑘
) −

𝛼1(𝑁−𝑚1)𝑃

𝑐1+𝑁−𝑚1

𝑑𝑃

𝑑𝑡
= (

1

1+𝛿𝐹
) (

𝛽1𝛼1(𝑁−𝑚1)𝑃

𝑐1+𝑁−𝑚1
)

𝑑𝐹

𝑑𝑡
= 𝛽2𝜀1𝑃𝐹 − 𝑐𝐸𝐹,

− 𝜀1𝑃𝐹     (2) 

where 
• 𝑟 is the rate of intrinsic growth of microcystis aeruginosa. 

• k is the maximum environmental capacity. 

• 𝛼1 is the grazing coefficient. 

• 𝑚1 is the microcystis aeruginosa aggregation parameter. 

• 𝑐1 is the half-saturation constant. 

• 𝛽1 is the absorption coefficient. 

• 𝑐 is the harvesting's capacity coefficient. 

• 𝐸 is the subject of big fish population to a combined harvesting effort. 

• 𝛿 is the level of fear which divides anti- predatory fish behaviour of the filter feeding fish. 

• 𝛽2 is efficiency of conversion of consumed filter-feeding fish into big fish.  

In the process of dynamic systems analysis, we try as much as possible to facilitate the 

calculations. Therefore, since model (2) has 11 parameters, hence, we are going to do the Non-

dimensionalization for all variables and parameters as:  

𝑁 = 𝑐1 𝑥, 𝑃 =
𝑟𝑐1
𝛼1
𝑦, 𝐹 =

1

𝛿
𝑧, 𝑇 =

1

𝑟
𝑡, 𝑘1 =

𝑘

𝑐1
,  
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 𝑘2 =
𝑚1

𝑐1
, 𝑘3 =

𝛽1𝛼1
𝑟

, 𝑘4 =
𝜀1
𝑟𝛿
 , 𝑘5 =

𝛽2𝜀1𝑐1
𝛼1

, 𝑘6 =
𝑐𝐸

𝑟
 

Hence, the dimensional system (2) corresponding the following non-dimensional system: 

{
 
 

 
 
𝑑𝑥

𝑑𝑇
= 𝑥 (1 −

𝑥

 𝑘1
) −

 (𝑥−𝑘2)𝑦

𝑥+1−𝑘2
 

𝑑𝑦

𝑑𝑇
= 

𝑘3

1+𝑧
(
 (𝑥−𝑘2)𝑦

𝑥+1−𝑘2
) − 𝑘4𝑦𝑧 

𝑑𝑧

𝑑𝑇
= 𝑘5𝑦𝑧 − 𝑘6𝑧 .

       (3) 

All parameters in model (3) are expected to be positive. The following are the initial conditions for 

system (3) 

𝑥(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0. 

2. Some fundamental outcomes 

In this part, we first demonstrate the positivity and boundedness of solutions for the system (3). 

These are quite significant in terms of the model’s validity.  

Lemma 1. For every 𝑇 > 0, all solutions (𝑥(𝑇), 𝑦(𝑇), 𝑧(𝑇)) of the system (3) with initial values 

(𝑥(0), 𝑦(0), 𝑧(0)) ∈  𝑅+
3 , are positive. 

Proof. It is simple to show that the solutions of the system (3) are nonnegative under the initial 

conditions: 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, and 𝑧(0) ≥ 0. 

In the first, second and third instances, we have gotten respectively as 

𝑥′(𝑇) ≥
 𝑥𝑦

𝑥 + 1 − 𝑘2
≥ 0 

 𝑦′(𝑇) = 𝑦(𝑇) [ 
𝑘3

1 + 𝑧(𝑇)
(
 (𝑥(𝑇) − 𝑘2)

𝑥(𝑇) + 1 − 𝑘2
) − 𝑘4𝑧]  

 𝑧′(𝑇) = 𝑧(𝑇)[ 𝑘5𝑦(𝑇) − 𝑘6].  

So  

𝑥(𝑇) ≥ 𝑥(0)𝑒
∫

 𝑦(𝑠)
𝑥(𝑠)+1−𝑘2

𝑇
0 𝑑𝑠

≥ 0, 

𝑦(𝑇) = 𝑦(0)𝑒
∫ [

𝑘3
1+𝑧(𝑠)

(
 (𝑥(𝑠)−𝑘2)𝑦(𝑠)
𝑥(𝑠)+1−𝑘2

)−𝑘4𝑧(𝑠)]
𝑇
0

𝑑𝑠
≥ 0 

𝑧(𝑇) = 𝑧(0)𝑒∫ (𝑘5𝑦(𝑠)− 𝑘6)
𝑇
0 𝑑𝑠 ≥ 0. 

Therefore, all solutions of the model (3) are positive. 

The system (3) exhibits continuous interaction functions and continuous partial derivatives, 

indicating that the solution exists and is unique. Furthermore, to guarantee convergence of the solution 

to an attractor, the solution of the system (3) is proven uniformly bounded, as shown in the following 

theorem. 

Lemma 2. The feasible region of system (3), where all solutions can be found is given by 
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Σ = {(𝑥, 𝑦, 𝑧) ∈  𝑅+
3 ; 𝑥 ≤ 𝑘1;  𝐿1 ≤

 𝜉2

𝑊
}.     (4) 

Proof. We have the following result from the first equation: 
𝑑𝑥

𝑑𝑇
≤ 𝑥 (1 −

𝑥

 𝑘1
), therefore, when 𝑇 →

∞, then 𝑥 ≤ 𝑘1. Now let us consider 𝐿1 = 𝑥 +
1

𝑘3
𝑦 +

𝑘4

𝑘3𝑘5
𝑧, the derivative of 𝐿1 with regard to time 

can thus be expressed as 

𝑑𝐿1
𝑑𝑇

= 𝑥 (1 −
𝑥

 𝑘1
) −

 (𝑥 − 𝑘2)𝑦

𝑥 + 1 − 𝑘2
+

1

1 + 𝑧
(
 (𝑥 − 𝑘2)𝑦

𝑥 + 1 − 𝑘2
) −

𝑘4
𝑘3
𝑦𝑧 +

𝑘4
𝑘3
𝑦𝑧 −

𝑘4𝑘6
𝑘3𝑘5

 𝑧 

≤ 2𝑥 +
1

𝑘3
𝑦 − 𝑥 −

1

𝑘3
𝑦 −

𝑘4𝑘6
𝑘3𝑘5

 𝑧 ≤ (2𝑘1 +
 𝜉

𝑘3
) −𝑊𝐿1, 

where W= min
𝑇→∞

{1, 𝑘6} ,  𝜉1 = 𝑠𝑢𝑝𝑇→∞𝑦(𝑇). Then, using direct computation, one can see that 

for 𝑇 → ∞, we obtain 

𝐿1 ≤
 𝜉2

𝑊
,          (5) 

where  𝜉2 = 2𝑘1 +
 𝜉

𝑘3
. 

Before starting with the existence of equilibrium points of (3) and its discussion, we present the 

Jacobian matrix of (3) as: 

𝐽(𝑥, 𝑦, 𝑧) =

(

 
 
1 −

2

𝑘1
𝑥 −

𝑦

(𝑥+1−𝑘2)2
−

𝑥−𝑘2

𝑥+1−𝑘2
0

𝑘3

1+𝑧
(

𝑦

(𝑥+1−𝑘2)2
)

𝑘3

1+𝑧
(
𝑥−𝑘2

𝑥+1−𝑘2
) − 𝑘4𝑧 −

𝑘3

(1+𝑧)2
(
 (𝑥−𝑘2)𝑦

𝑥+1−𝑘2
) − 𝑘4𝑦

0 𝑘5𝑧 𝑘5𝑦 − 𝑘6 )

 
 

.   (6) 

3. Existence and stability of equilibriums 

The equilibrium of the system (3) is as follows: 

• The trivial equilibrium point 𝑢0(0,0,0), which always exists. To study its local stability, the 

characteristic equation is computed from the given Jacobian matrix 

𝐽0(0,0,0) =

(

 
 
1 

𝑘2

 1−𝑘2
0

0  
−𝑘2𝑘3

1−𝑘2 
 0

0 0 −𝑘6)

 
 

,       (7) 

as 

(1 − 𝜆) (
−𝑘2𝑘3

1−𝑘2 
− 𝜆) (−𝑘6 − 𝜆) = 0.      (8) 

Clearly, (8) has three distinct roots 𝜆1 =  1, 𝜆2 = −
𝑘2𝑘3

1−𝑘2 
 and 𝜆3 = −𝑘6. The Routh–Hurwitz 

criterion states that the trivial equilibrium point is locally asymptotically stable, when its all eigenvalue 
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has negative real parts. Notice that only 𝜆3 < 0, and 𝜆1 is purely positive, so the trivial equilibrium 

point 𝑢0(0,0,0) is saddle node point. 

• The x-axis equilibrium point 𝑢1(𝑘1, 0,0), which is always exists. The characteristic equation 

of the following Jacobin matric around 𝑢1 

𝐽1(𝑘1, 0,0) =

(

 
 
−1 −

𝑘1−𝑘2

𝑘1−𝑘2+1
0

0  
𝑘3(𝑘1−𝑘2)

𝑘1−𝑘2+1
 0

0 0 −𝑘6)

 
 

,     (9) 

is given by 

(−1 − 𝜆) (
𝑘3(𝑘1−𝑘2)

𝑘1−𝑘2+1
− 𝜆) (−𝑘6 − 𝜆) = 0.     (10) 

Clearly (10) has three distinct roots 𝜆1 = −1, 𝜆2 =
𝑘3(𝑘1−𝑘2)

𝑘1−𝑘2+1
 and 𝜆3 = −𝑘6. The Routh–Hurwitz 

criterion establishes that the x-axis equilibrium point is locally asymptotically stable when its all 

eigenvalue has negative real parts. Notice that 𝜆1,  𝜆3 < 0, and 𝜆2 is negative if 𝑘1 < 𝑘2 < 𝑘1 + 1. 

Hence, under this condition, the x-axis equilibrium point 𝑢1(𝑘1, 0,0) is locally asymptotically stable. 

Theorem 1. The trivial equilibrium point 𝑢0(0,0,0)  and the x-axis equilibrium point 𝑢1(𝑘1, 0,0) 

exist always and exhibit the following local behaviors: 

1. the trivial equilibrium point 𝑢0(0,0,0) is saddle point. 

2. the x-axis equilibrium point 𝑢1(𝑘1, 0,0) is locally asymptotically stable provided that: 

−1 < 𝑘1 − 𝑘2 < 0. 

In the next part, we have to discussed the existence of internal equilibrium point. If the internal 

equilibrium does not exist, the model (3) will not be durable, implying that the filter-feeding fish and 

predatory fish would become extinct. But this is not good for ecological balance. As a result, it is 

critical that we investigate the model's complicated dynamic having properties of the Model (3). We 

know the existence condition of equilibrium from the foregoing analysis. Therefore, the next step is to 

investigate stability. (Note that we only discuss equilibrium stability when it exists.)  

• The interior equilibrium point is denoted by 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗), where 

𝑦∗ =
𝑘6
𝑘5

 

𝑧∗ =

−1 + √1 − 4(
𝑘3(𝑥∗ − 𝑘2)

𝑘4(𝑘2 − 1 − 𝑥∗)
)

2
 

Hence, 𝑧∗ is positive provided that:  

𝑘2 < min{𝑥∗, 1, }        (11) 

and 𝑥∗ is a root of the following third degree polynomial  

𝑥3 + 𝑅1𝑥
2 + 𝑅2𝑥 + 𝑅3 = 0,     (12) 

where, 
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𝑅1 = 1 − 𝑘1 − 𝑘2  

𝑅2 = 𝑘1(𝑘2 + 𝑦
∗ − 1)  

𝑅3 = −𝑘1𝑘2𝑦
∗. 

Therefore, according the Descartes role, the following Lemma summarizes the existence of the 

interior equilibrium point 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗). 

Lemma 3: Under the condition (11), the model (2) has:  

1) a unique interior equilibrium point 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗) where one of the following is satisfied 

i- 1 >  𝑘1 + 𝑘2, 𝑘6 > 𝑘5(1 − 𝑘2);  

ii- 1 <  𝑘1 + 𝑘2, 𝑘6 < 𝑘5(1 − 𝑘2);  

iii- 1 >  𝑘1 + 𝑘2, 𝑘6 < 𝑘5(1 − 𝑘2). 

2) A triple interior equilibrium points 𝑢1
∗(𝑥1

∗, 𝑦∗, 𝑧∗), 𝑢2
∗(𝑥2

∗, 𝑦∗, 𝑧∗) and 𝑢3
∗(𝑥3

∗, 𝑦∗, 𝑧∗) if 

the following is satisfied 

i- 1 <  𝑘1 + 𝑘2, 𝑘6 > 𝑘5(1 − 𝑘2). 

To simplify the calculations, let's defined the following two quantities 

𝑘03
∗ =

1

1+𝑧∗
, 𝑘13

∗ =
1

𝑥∗+1−𝑘2
 . 

The Jacobin matrix (6) around 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗) is given by 

𝐽3(𝑥
∗, 𝑦∗, 𝑧∗) =

(

1 −
2

𝑘1
𝑥∗ − 𝑘13

∗2𝑦∗ −𝑘13
∗ (𝑥∗ − 𝑘2) 0

𝑘03
∗ 𝑘13

∗2𝑘3𝑦
∗ 𝑘03

∗ 𝑘13
∗2𝑘3(𝑥

∗ − 𝑘2) − 𝑘4𝑧
∗ −[𝑘3𝑘03

∗ 2𝑘13
∗ (𝑥∗ − 𝑘2)  − 𝑘4]𝑦

∗

0 𝑘5𝑧
∗ 0

).   (13) 

The characteristic equations of (13) is,  

𝜆3 + 𝐴∗𝜆2 + 𝐵∗𝜆 + 𝐶∗ = 0,       (14) 

where, 

𝐴∗ = −1 +
2

𝑘1
𝑥∗ + 𝑘13

∗2𝑦∗ + 𝑘4(𝑧
∗(1 + 𝑘13

∗ )), 

𝐵∗ = 𝑘4 (
2

𝑘1
𝑥∗ − 1 ) (2𝑧∗) + 𝑘5[𝑘3𝑘03

∗ 2𝑘13
∗ (𝑥∗ − 𝑘2) + 𝑘4]𝑦

∗ 𝑧∗ 

+ 𝑘13
∗ 2[𝑘3𝑘03

∗ 2𝑘13
∗ (𝑥∗ − 𝑘2) + 𝑘4]𝑦

∗𝑧∗ + 𝑘03
∗ 𝑘3𝑘13

∗ 3(1 − 𝑘2)(1 − 𝑘13
∗ ) 

𝐶∗ = (
2

𝑘1
𝑥∗ + 𝑘13

∗2𝑦∗ − 1) (𝑘03
∗ 𝑘3𝑘13

∗ (𝑥∗ − 𝑘2)𝑦
∗ + 𝑘4 𝑦

∗). 

Given the coefficient 𝐴∗, which according to Routh-Hwartze Criteria must be both it and coefficient 

𝐶∗ with a positive sign, then 𝐴∗ is positive using the condition  

𝑥∗ >
𝑘1

2
.           (15) 
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It is quite easy to verify that the same condition (15), leads to 𝐶∗ being positive as well. According to 

Ruth-Hwartz, the characteristic equation (14) represents eigenvalues with negative real parts in order 

for us to achieve the stability property of the positive point, if 𝐴∗, 𝐶∗ and 𝐴∗𝐵∗ − 𝐶∗ > 0. Therefore, 

by forward calculations its easy to verify that 𝐴∗𝐵∗ − 𝐶∗ > 0 provided the conditions (11) and (15). 

Hence, the positive equilibrium point 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗) is locally asymptotically stable. 

Theorem 3. Suppose that the conditions of existence for the positive equilibrium point 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗), 

the point 𝑢∗ is locally asymptotically stable if the condition (15) is met. 

Remark 1. The situation of extinction of all species is continually in flux. Other equilibrium states, on 

the other hand, are conditionally stable. Even if there is no microcystis aeruginosa in the environment, 

this might be taken as implying that both filter-feeding and predatory fish cannot go extinct at the same 

time. Because of maximum environmental capacity and microcystis aeruginosa aggregation, this 

occurrence may be explained by the model (3). 

4. Local bifurcation analysis 

In this part, the system (3) is rebuilt in a vector form to explore the local bifurcation that may 

occur around each equilibrium point. 

𝑑Ρ

𝑑𝑡
= 𝑔(Ρ), Ρ = (𝑥, 𝑦, 𝑧)𝑇 , 𝑔 = (𝑔1, 𝑔2, 𝑔3)

𝑇, 

where 𝑔𝑖, 𝑖 = 1,2,3 are functions which given in the right hand side of dimensionless the system (3). 

The general second derivative of the vector  𝑔  can now be represented as follows using simple 

computations: 

𝐷2𝑔(Ρ, 𝛽)(𝐻, 𝐻) = 

(

 
 

[−
2

𝑘1
+

2𝑦

(𝑥+1−𝑘2)
3] ℎ1

2 − [
2

(𝑥+1−𝑘2)
2] ℎ1ℎ2

[−
𝑘3

1+𝑧

2𝑦

(𝑥+1−𝑘2)
3] ℎ1

2 + 2 [
𝑘3

1+𝑧

2

(𝑥+1−𝑘2)
2] ℎ1ℎ2 − 2 [

𝑘3

(1+𝑧)2

𝑦

(𝑥+1−𝑘2)
2] ℎ1ℎ3 − 2 [

𝑘3

(1+𝑧)2

𝑥−𝑘2

𝑥+1−𝑘2
+ 𝑘4] ℎ2ℎ3 − [

𝑘3

(1+𝑧)2

𝑦{𝑘2−𝑥}

(𝑥+1−𝑘2)
] ℎ3

2

2𝑘5ℎ3ℎ2 )

 
 
,

(16) 

here 𝑈 = (ℎ1, ℎ2, ℎ3)
𝑇 be any eigenvector and 𝑘1 be a bifurcation parameter. 

Theorem 4: Assume that the condition (15) is not satisfied. Then, system (3) near the positive 

equilibrium point 𝑢∗(𝑥∗, 𝑦∗, 𝑧∗) has a saddle-node bifurcation. 

Proof. According to (3) and condition (15), a simple calculations reveals that the Jacobian matrix of 

system (1), stated by (7), at 𝐸0 with 𝑘1 ≡ 𝑘1
∗ =

2𝑥∗

1−𝑘13
∗2𝑦∗

 has zero eigenvalue 𝜆02(𝑘1
∗) = 0 and can 

be written as follows: 

𝐽3(𝑥
∗, 𝑦∗, 𝑧∗) = (

1 −
2

𝑘1
𝑥∗ − 𝑘13

∗2𝑦∗ −𝑘13
∗ (𝑥∗ − 𝑘2) 0

𝑘03
∗ 𝑘13

∗2𝑘3𝑦
∗ 𝑘03

∗ 𝑘13
∗2𝑘3(𝑥

∗ − 𝑘2) − 𝑘4𝑧
∗ −[𝑘3𝑘03

∗ 2𝑘13
∗ (𝑥∗ − 𝑘2)  − 𝑘4]𝑦

∗

0 𝑘5𝑧
∗ 0

).  (17) 

Assume that 𝑉 = (𝑣1, 𝑣2, 𝑣3)
𝑇 is the eigenvector to 𝜆∗ = 0, then 𝐽

3
∗𝑉 = 𝟎 yields: 
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𝑉 = [ 

[𝑘3𝑘03
∗ 2

𝑘13
∗ (𝑥∗−𝑘2) −𝑘4]

𝑘03
∗ 𝑘13

∗2𝑘3
𝑣3

0
𝑣3

],      (18) 

here 𝑣3 be any real, non-zero number.  

Similarly, if 𝑊 = (𝑤1, 𝑤2, 𝑤3)
𝑇 is the eigenvector to, 𝜆∗ = 0 of the matrix (𝐽3

∗)𝑇, then (𝐽3
∗)𝑇𝑊 =

𝟎 results in  

𝑊 = [ 

 −𝑘5𝑧
∗

𝑘13
∗ (𝑥∗−𝑘2)

𝑤3

0
𝑤3

],        (19) 

where 𝑤3 be any real number, not zero. Moreover, it is easy to verify that  

𝑑𝑔

𝑑𝑘1
= 𝑔𝑘1∗ = (

 2𝑥

 𝑘1
2 , 0,0)

𝑇

 and 𝑔𝑘1∗(𝑢
∗, 𝑘1

∗) = ((
𝑥∗

𝑘1
∗)
2

, 0,0)
𝑇

. 

Then 

𝑊𝑇𝑔𝑘1(𝑢
∗, 𝑘1

∗) = −(1 − 𝑘13
∗2𝑦∗)2

 𝑘5𝑧
∗

𝑘13
∗ (𝑥∗−𝑘2)

≠ 0.    (20) 

System (3) near u* features saddle – node bifurcation, according to Sotomayer's theorem. 

Now by substitute 𝑢∗ and 𝑘1
∗
 in (16) with 𝑉 instead of 𝐻 it’s observed that 

𝐷2𝑔(𝑢∗, 𝑘1
∗)(𝑉, 𝑉) =

(

  

[−
2

𝑘1
∗ +

2𝑦∗

(𝑥∗+1−𝑘2)3
] 𝑣1

2 

[−
𝑘3

1+𝑧∗
2𝑦∗

(𝑥∗+1−𝑘2)3
] 𝑣1

2  − 2 [
𝑘3

(1+𝑧∗)2
2𝑦∗

(𝑥∗+1−𝑘2)2
] 𝑣1𝑣3 + 2 [

𝑘3

(1+𝑧∗)2
𝑦∗{𝑘2−𝑥

∗}

(𝑥∗+1−𝑘2)3
] 𝑣3

2 

0 )

     (21) 

Accordingly, we obtain that: 

𝑊𝑇 ( 𝐷2𝑓(𝑢∗, 𝑘1
∗)(𝑉, 𝑉)) = [−

2

𝑘1
∗ +

2𝑦∗

(𝑥∗+1−𝑘2)3
] 𝑣1

2𝑤1  ≠ 0. 

Hence due to Sotomayer’s theorem a saddle–node bifurcation is occur. 

5. Numerical simulation 

Some numerical simulations are offered in this part to back up our analytical and mathematical 

findings. These simulations also reveal the fascinating complicated of the system's behavior. In the 

following section, we will show several examples to back up our earlier findings. For a hypothetical 

collection of data, numerical simulations are run using the matlab 7.0.1 software suite.  

Suppose that the following hypothetical collection of data; 

𝑘1 = 0.5, 𝑘2 = 0.35, 𝑘3 = 0.6, 𝑘4 = 0.55, 𝑘5 = 1.1, 𝑘6 = 0.7.  (22) 

Looking at the scalar hypothetical set (22), we notice that, it's given the coefficients of the 

polynomial 𝑅1 = 0.15 > 0  and 𝑅2 = −0.0068 < 0 . By solving model (3) we have, 𝑢∗ =
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(0.4402, 0.6364, 0.0833). Since, 𝑘2 < min{0.4402    ,1}, so the positive condition 𝑘2 < min{𝑥
∗, 1} 

for 𝑧∗  is satisfied. Therefore, according the condition (11) and point (1-i) of lemma 3 all the 

conditions of existence for the positive point are fulfilled. On other hand, the local stability condition 

(15) is satisfied. Hence, Figure 1(a) and Figure 1(b) show us the positive equilibrium point 

𝑢∗(𝑥∗, 𝑦∗, 𝑧∗), which appears to be locally asymptotically stable. 

 

Figure 1 (a). Time series graph of system (3), for the data (22). System (3) approaches 

asymptotically to the xyz-axis equilibrium point 𝑢∗ = (0.4402, 0.6364, 0.0833). 

 
Figure 1 (b). The solution approaches asymptotically to (point) in a 3D phase plot of the 

system (3) for the data given by (22) starting from (0.1, 0.1, 0.1). 

Suppose that the following hypothetical collection of data; 

𝑘1 = 7, 𝑘2 = 1, 𝑘3 = 0.17, 𝑘4 = 0.72, 𝑘5 = 0.35, 𝑘6 = 0.52.   (23) 

Looking at the scalar hypothetical values given in (23), we notice that at the coefficients of the 

polynomial 𝑅1 = −7 < 0  and 𝑅2 = 10.4 > 0 . By solving model (3), we have, 𝑢∗ = (5.4396,
1.4857, 0.1654 ) . Since, 𝑘2 ≤ min{5.4396  ,1} , so the positive condition 𝑘2 < min{𝑥∗, 1},  for 𝑧∗ 
is satisfied. Therefore, according to the condition (11) and point (1-ii) of Lemma 3, all the conditions 
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of existence for the positive point are fulfilled. On other hand, the local stability condition (15), at 
𝑘2

2
= 3.5 < 5.4396 is satisfied. Hence, Figure 2 (a) and (b) shows us the positive equilibrium point 

𝑢∗(𝑥∗, 𝑦∗, 𝑧∗), which appears to be locally asymptotically stable. 

  

Figure 2 (a). Time series graph of system (3), for the data (23). System (3) approaches 

asymptotically to the xyz-axis equilibrium point; 𝑢∗ = (5.4396, 1.4857, 0.1654).

 

Figure 2 (b). The solution approaches asymptotically to (point) in a 3D phase plot of the 

system (3) for the data given by (23) starting from (1, 1, 1). 

Suppose that the following hypothetical collection of data 

𝑘1 = 15, 𝑘2 = 15.5, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17.   (24) 

The reader can notice that the imposed set (24) that contains 𝑘1 < 𝑘2 < 𝑘1 + 1  makes the 

second root of the polynomial (10) with a negative sign. Therefore, the point u1, where the solution 

went is a stable point (see Figure 3). 
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Figure 3. Time series and phase portrait graphs of system (3), for the data (24). System (3) 

approaches asymptotically to the x -axis equilibrium point; 𝑢1 = (15, 0, 0 ) start with 

(𝑥0, 𝑦0, 𝑧0) = (16,5,2). 

Suppose that the following hypothetical collection of data; 

𝑘1 = 15, 𝑘2 = 17, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17.   (25) 

When we chose the hypothesis data set (25), one can notice that 𝑘1 < 𝑘2  but 𝑘2 − 𝑘1 > 1 

which makes the sign of the second eigenvalue of the characteristic equation (10) negative. So, 

according to Roth-Hwartize criteria, the point 𝑢1 will be completely unstable equilibrium point (see 

Figure 4 (a). On other hand, This data set gives values for the parameters 𝑅1 = −31.5 and 𝑅2 =
17.0484 which are represent the coefficients of a polynomial (12) whose number of roots determines 

the existence of the positive equilibrium point 𝑢∗. As 𝑅1 = −31.5 < 0 and 𝑅2 = 17.0484 > 0, so, 

according to Lemma 3, the model (3) admit a unique positive equilibrium point. The local stability of 

positive point is investigate since the condition (15) which gives a sufficient condition for routh 

howartize theorem is satisfied as 14.1606= 𝑥∗ >
𝑘1

2
= 7.5 (see Figure 4 (b)). 

Suppose that the following hypothetical collection of data; 

𝑘1 = 0.5, 𝑘2 = 0.45, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17.  (26) 

This data set gives values for the parameters 𝑅1 = −31.5  and 𝑅2 = 17.0484  which are 

represent the coefficients of a polynomial (12) whose number of roots determines the existence of the 

positive equilibrium point 𝑢∗ . As 𝑅1 = 0.1000 > 0  and 𝑅2 = −0.0516 < 0 , so, according to 

Lemma 3-ii of the model (3) admit a unique positive equilibrium point. The local stability of positive 

point is investigate since the condition (15) which gives a sufficient condition for routh howartize 

theorem is satisfied as 0.4640 =  x∗  >  
𝑘1

2
= 0.25 (see Figure 5). 
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Figure 4 (a). The System (3) approaches to the x -axis unstable equilibrium point; 𝑢1 =

(15, 0, 0) start with(𝑥0, 𝑦0, 𝑧0) = (16,5,2) for the data (25). 

 

Figure 4 (b). The System (3) approaches asymptotically to the xyz -axis equilibrium 

point; 𝑢∗ = (14.1606, 0.5598, 0.7366) start with(𝑥0, 𝑦0, 𝑧0) = (16,5,2) for the data (25). 
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Figure 5. Time series and phase portrait graphs of system (3), for the data set (26). System 

(3) +asymptotically to the xyz-axis equilibrium point; 𝑢∗ = (0.4640, 0.5546, 0.0522) 

start with(𝑥0, 𝑦0, 𝑧0) = (0.1, 0.1, 0.1). 

 

Figure 6 (a). The System (3) approaches asymptotically to the xyz-axis equilibrium 

point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5) with different values of 𝑘1 for the data 

set 𝑘2 = 0.35, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.165, 𝑘6 = 0.35. 
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Figure 6 (b). The System (3), start with (𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5) , asymptotically 

approaches to the xyz-axis equilibrium point 𝑢∗ for various values of 𝑘1, with the data 

set 𝑘2 = 0.35, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.165, 𝑘6 = 0.35. 

 

Figure 7 (a). The System (3), start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5) , asymptotically 

approaches to the xyz-axis equilibrium point 𝑢∗ for various values of 𝑘2 with the data set 

𝑘1 = 5.9535, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.165, 𝑘6 = 0.35. 
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Figure 7 (b). The System (3) approaches asymptotically to the xyz axis equilibrium 

point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5) for various values of 𝑘2 with the data 

set 𝑘1 = 5.9535, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.165, 𝑘6 = 0.35. 

 

Figure 8. Time series graphs of system (3) with different values of 𝑘6 for the data set 𝑘1 =

15, 𝑘2 = 17.5, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31 . System (3) approaches asymptotically 

to the xyz-axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5).  
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Figure 9. Time series graphs of system (3) with different values of 𝑘5 for the data set 𝑘1 =

15, 𝑘2 = 17.5, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘6 = 0.17 . System (3) approaches asymptotically 

to the xyz-axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5). 

 

Figure. 10. Time series graphs of system (3) with different values of 𝑘4 for the data set 

𝑘1 = 15, 𝑘2 = 17.5, 𝑘3 = 0.501, 𝑘5 = 0.31, 𝑘6 = 0.17 . System (3) approaches 

asymptotically to the xyz-axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5). 
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Figure. 11. Time series graphs of system (3) with different values of 𝑘2  for the data 

set  𝑘1 = 15, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17 . System (3) approaches 

asymptotically to the xyz -axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5). 

 

Figure. 12. Time series graphs of system (3) with different values of 𝑘1  for the data 

set  𝑘2 = 17.5, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17 . System (3) approaches 

asymptotically to the xyz -axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5). 
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Figure 13. Phase portrait graphs of system (3) with different values of 𝑘1 for the data set 

𝑘2 = 0.4, 𝑘3 = 0.501, 𝑘4 = 0.55, 𝑘5 = 0.31, 𝑘6 = 0.17 . System (3) approaches 

asymptotically to the xyz-axis equilibrium point 𝑢∗ start with(𝑥0, 𝑦0, 𝑧0) = (0.5, 0.5, 0.5). 

6. Conclusions 

In this article, we investigated the fear effect on filter feeding fish from predatory fish and 

harvesting effect of predatory fish of an aquatic ecological model of kind microcytic aeruginosa-filter 

feeding fish-predatory fish model with aggregation effect of microcytic aeruginosa. In the begging, to 

reduce the number of parameters of the model (2), we use non dimensionlization. The positivity and 

feasible region for the solution of the model (3) have been derived. In addition, we have proved some 

qualitative analysis by using Routh-Hurwitz stability criterion. In the numerical section, we have 

presented the approximate solution and their graphical presentation in various Figures including Figure 

6 (a), Figure 6 (b), Figure 7 (a), Figure 7 (b) and Figure 8 to Figure 13 respectively. Some graphs of 

time series and phase portrait are given in this section also. As, we explained the outcomes one at a 

time by figuring out the solution and displaying the figures, this section demonstrated the validity of 

the theoretical conclusions obtained by this study. In future, the proposed study will be updated by 

using the concept of fractional calculus. 
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