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Abstract: Here a scheme for solving the nonlinear integral equation of Volterra-Hammerstein type is
given. We combine the related theories of homotopy perturbation method (HPM) with the simplified
reproducing kernel method (SRKM). The nonlinear system can be transformed into linear equations
by utilizing HPM. Based on the SRKM, we can solve these linear equations. Furthermore, we discuss
convergence and error analysis of the HPM-SRKM. Finally, the feasibility of this method is verified
by numerical examples.
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1. Introduction

As a classical model of nonlinear integral equation, the nonlinear Volterra-Hammerstein type
equations [1–3] can be used in biological models, fluid mechanics, communication theory, etc. In this
article, we primarily concentrate on numerical solutions for Volterra-Hammerstein. Generally, these
systems can be characterized by:

G(u(x)) + λ

∫ x

a
K(x, t)F(u(t))dt = f (x), x, t ∈ [a, b], (1.1)

where nonlinear function F is known. λ is a constant, G : Cn[a, b] → C[a, b] is a linear operator with
boundedness. The choice of constraints H are satisfied that G(u(x)) = f have a unique solution.
Several numerical methods of the nonlinear Volterra-Hammerstein type equations have been
proffered, for instance, continuous interpolation method [1], iteration method [2], Galerkin
method [4], and other methods [5–7]. Mirzaee [8] approximated the nonlinear Hammerstein integral
equation by utilizing the least square method based on the Legendre-Bernstein. In [9], Ordokhani
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proposed a configuration method based on a Walsh function that converts the Hammerstein equations
into algebraic equations. Normally, in applying these methods, we have to calculate substantially
integrals or employ the iterative method, which is computationally complicated. To address these
problems, in [4], Mandal proposed Galerkin methods and acquired the superconvergence results in the
uniform norm. Recently, reproducing kernel space theory has commonly applied to solve the
nonlinear boundary value problems [10, 11], heat conduction equation [12], interfacial issues [13, 14],
the Allen-Cahn equation [15], fractional-order Boussinesq equation [16], and other functional
equation models [17–21]. Several methods [22–24] are also proposed for different kinds of integral
equations. It is worth mentioning that many scholars improved the RKMs to study various kind of
equations which is the case of [25–30]. However, the traditional reproducing kernel method [31]
requires orthogonalization in the solution process, and the calculation process is complex and
time-consuming. In this work, we apply HPM to do away with the integral term conveniently. We
utilize SRKM to effectively avoid the Smith orthogonalization process and economizes the calculation
time.

The outline of the work is as follows: We introduce the reproducing kernel theory and the homotopy
perturbation theory in section 2. In section 3, we display the HPM-SRKM. Then in section 4, some
numerical experiments are presented. Finaly, a conclusion is generalized in the final section.

2. Preliminaries

2.1. Reproducing kernel Hilbert space

The inner product and the norm of two reproducing kernel spaces related to this model are
introduced.

Definition 1. ( [32]) Let H be the Hilbert space, and the elements in H be complex-valued functions
on X. If there is a unique function Ks(t) for ∀s ∈ X that satisfies

〈 f ,Ks〉 = f (s), f ∈ H.

Then H is defined as a reproducing kernel space, K(s, t) = Ks(t) is defined as a reproducing
kernel function.

Definition 2. ( [32])

W1
2 [a, b] = {u(x) | u(x) is an absolutely continuous real value f unction, u′(x) ∈ L2[a, b]}.

〈u, v〉W1
2

= u(a)v(a) +

∫ b

a
u′v′dx, u, v ∈ W1

2 [a, b].

‖u‖W1
2

=
√
〈u(x), u(x)〉W1

2
.

Definition 3. ( [32])

W2
2 [a, b] = {u(x) | u′(x) is an absolutely continuous real value f unction, u′′(x) ∈ L2[a, b]}.

〈u, v〉W2
2

= u(a)v(a) + u′(a)v′(a) +

∫ b

a
u′′v′′dx, u, v ∈ W2

2 [a, b].

‖u‖W2
2

=
√
〈u(x), u(x)〉W2

2
.
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Theorem 1. ( [32]) The reproducing kernel function rs(t) of W1
2 [a, b] is defined as

rs(t) =

1 − a + s, t ≤ s,

1 − a + t, s ≤ t.

Theorem 2. ( [32]) The reproducing kernel function Rs(t) of W2
2 [a, b] is defined as

Rs(t) =

st + st2
2 −

t3
6 , t ≤ s,

st + ts2

2 −
s3

6 , s ≤ t.

2.2. Introduction to Homotopy perturbation method (HPM)

The HPM ( [33]) is implemented by embedding a small perturbation operator p(p ∈ [0, 1]) and a
homotopy path is constructed:

G(u(x)) + pλ
∫ x

a
K(x, t)F(u(t))dt = f (x), x, t ∈ [a, b]. (2.1)

When the operator p = 0, the Eq (2.1) is equivalent to the subsequent initial value problem:

G(u(x)) = f (x). (2.2)

The Eq (2.1) is the original problem when p = 1. The Eqs (2.1) and (2.2) are also subject to condition
H. When the operator p changes from 0 to 1, the solution u(x) of Eq (1.1) follows the homotopy path
from the initial value Eq (2.2) to the original problem. From the perturbation parameter theory [34],
the solution satisfying the homotopy path can be extended into the form of Maclaurin series of p:

u(x, p) =

∞∑
n=0

pnun(x). (2.3)

Therefore, when p→ 1, the approximate solution of the homotopy equation is

u(x) = lim
p→1

u(x, p) =

∞∑
n=0

un(x).

Bring Eq (2.3) back Eq (2.1), and taking the k derivatives of function F, the Eq (2.1) is equaled to
∞∑

n=0

pnG(un(x)) + λ

∫ x

a
K(x, t)

∞∑
k=0

Bk pk+1dt = f (x), (2.4)

where
∞∑

k=0

Bk pk = F(
∞∑

n=0

pnun(t)) =

∞∑
k=0

1
k!

dk

dpk F(
k∑

n=0

pnun(t)) |p=0 (2.5)

and Bk is depended on u0(t), u1(t), · · · , uk(t). By comparing the coefficients of pk, the solution of
Eq (2.1) is equivalent to the following system:

G(u0(x)) = f (x),

G(uk+1(x)) = −λ

∫ x

a
K(x, t)Bkdt.

(2.6)

Through the above calculations, we can get the approximate solution of the Eq (1.1) by adding up the
solutions of the Eq (2.6).
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3. HPM-SRKM for solving equation

3.1. Presenting the HPM-SRKM to solve the Eq (2.6)

Since the system Eq (2.6) are two linear equations, we can equate them to the following problem

G(v(x)) = g(x), (3.1)

in which v(x) = u0(x) + uk+1(x), g(x) = f (x) − λ
∫ x

a
K(x, t)Bkdt. The constraint H1 satisfies v0(x) =

α, v1(x) = 0, v2(x) = 0, · · · , vn(x) = 0. The linear operator G : W2
2 [a, b] → W1

2 [a, b], and G∗ is the
adjoint operator of G. Let φi(x) = G∗rxi(t), i = 1, 2, · · · , where G∗rxi(t) =

〈
G∗rxi ,Rt

〉
W2

2
=

〈
rxi ,GRt

〉
W1

2
=

GRxi(t), {xi} ∈ [a, b].

Theorem 3. If {xi}
∞
i=1 is dense point set on [a, b], then {φi(x)}∞i=1 is linearly independent system

completely in W2
2 [a, b].

Proof. Let
∞∑

i=1

ciφi(x) = 0.

For the reversibility of G, we have

∞∑
i=1

ciφi(x) =

∞∑
i=1

ciGRxi(t) = G(
∞∑

i=1

ciRxi(t)) = 0.

For any v(x) ∈ W2
2 [a, b], if 〈v(x), φi〉W2

2
= v(xi) = 0, i = 1, 2, . . ., then v(x) ≡ 0. This proof is

completed. �

Let S n = Span{φ1(x), φ2(x), . . . , φn(x)}. Define the orthogonal projection operator Pn : W2
2 [a, b] →

S n, vn = Pnv. The approximate solution vn ∈ S n of Eq (3.1) can be expressed as

vn(x) =

n∑
k=1

qkφk(x), (3.2)

where qk is the undetermined coefficient.

Theorem 4. If v(x) is the solution of Eq (3.1), then it is determined by Eq (3.2). The vn(x) exists and is
unique. Meanwhile vn(x) satisfies

Ab = F, (3.3)

where b = (q1, q2, · · · , qn)T, F = (g(x1, v(x1)), g(x2, v(x2)), · · · g(xn, v(xn)))T,

A =


〈φ1, φ1〉 〈φ2, φ1〉 . . . 〈φn, φ1〉

〈φ1, φ2〉 〈φ2, φ2〉 . . . 〈φn, φ2〉
...

...
...

...

〈φ1, φn〉 〈φ2, φn〉 . . . 〈φn, φn〉
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Proof. (Existence) The matrix A is a Gram matrix, symmetric and positive definite matrix, so that the
Eq (3.3) has solutions, then

〈Pnv, φk〉W2
2

= 〈v, φk〉W2
2

=
〈
v,G∗rxk

〉
W2

2
=

〈
Gv, rxk

〉
W1

2
= Gv(xk)

= g(xk, v(xk)), k = 1, 2, . . . , n.

(Uniqueness) For each identified j( j = 1, · · · , n), the solution v(x) of Eq (3.1) satisfies

〈v, φk〉W2
2

= Gv(x j) = g(xk, v(x j)).

For vn(x) = Pnv(x), we have
〈Pnv, φk〉W2

2
= g(xk, v(x j)),

then 〈vn(x) − v(x), φk(x)〉 = 0. Therefore, vn(x) can be determined by solving the coefficient matrix b
in Eq (3.3). �

3.2. Convergence and error estimation

In this subsection, we will argue the convergence of the HPM-SRKM.

Theorem 5. (Convergence) The approximate solution vn(x) of Eq (3.2) uniformly convergence to v(x).

Proof. From ‖vn − v‖ → 0(n→ ∞) on W2
2 [a, b], we deduce

| vn(x) − v(x) |=| 〈vn − v,Rx(y)〉W2
2
|≤ ‖vn − v‖W2

2
‖Rx(y)‖W2

2
.

From the continuity of the reproducing kernel function Rx, we obtain

| vn(x) − v(x) |≤ M ‖vn − v‖W2
2
→ 0,

where M is a nonnegative constant. This proof is completed. �

Theorem 6. If K(x, t) ∈ C2 ([a, b] × [a, b]) with respect to x, then

‖vn(x) − v(x)‖W2
2

= O(h2).

Proof. Since K(x, t) ∈ C2 ([a, b] × [a, b]) and g(x) = f (x) − λ
∫ x

a
K(x, t)Bkdt, k = 1, 2, . . ., we can

obtain g(x) ∈ C2[a, b]. And Gv(x) = g(x) is continuously. Put

rn(x) = G[vn(x) − v(x)].

On each subinterval σi = [xi, xi+1] for i = 1, 2, . . . , n, one gets rn(x) ∈ C2[xi, xi+1],

rn(xi) = 0.

Let L1(x) be the linear interpolation polynomial of rn(x) on [xi, xi+1]. For the error in this interpolation,
we can show

|rn(x)| = |rn(x) − L1(x)| = O(h2).

The boundness of G−1 implies that

‖vn(x) − v(x)‖W2
2

= O(h2),

This proof is completed. �
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4. Numerical examples

The theoretical part of the solution is proved in the previous sections. Some numerical examples
are given to illustrate its effectiveness. We operate our programs in MATHMATICA 7.0. Meanwhile,
the red lines represent the approximate solutions and the blue dots represent the exact solutions in the
figure. The absolute errors ei, the exact and the approximate solutions are listed in the tables. We also
use the following formulas to calculate the convergence rate r.

r = log2
‖en‖

‖e2n‖
.

Example 1. For the following nonlinear HIE:

u(x) = f (x) +

∫ x

0
[sin(x − t)(1 + u2(t))]dt, x ∈ [0, 1]

where f (x) = 1
6 (−3 + 8cosx + cos2x), the exact solution is u(x) = cosx. The numerical results are

illustrated in Figure 1. The comparison of the numerical results and the absolute error ei are listed
in Table 1. We get an exact solution with higher precision than the method of traditional reproducing
kernel method [20] for n = 25.

Example 2. Consider the nonlinear HIE:

u(x) −
∫ x

0
(x + t)[u(t)]3dt = f (x), x ∈ [0, 1]

where f (x) = −15
56 x8 + 13

14 x7 − 11
10 x6 + 9

20 x5 + x2 − x. The exact solution is u(x) = x2 − x. The numerical
results are illustrated in Figure 2. Table 2 is illustrated the numerical results and the absolute error ei.
From the results of Table 2, we can see that our method approximates the exact solution more closely
than the Legendre spectral Galerkin and multi-Galerkin methods [4] for n = 10.

Table 1. Numerical result and absolute error for Example 1.

x u(x) SRKM-HPM [31] ei

0.08 0.996802 0.996801 0.9968 8.52969E-7
0.16 0.987227 0.987224 0.98722 3.40638E-6
0.24 0.971338 0.971330 0.971323 7.64359E-6
0.32 0.949235 0.949222 0.949208 1.35363E-5
0.40 0.921061 0.921040 0.921019 2.10437E-5
0.48 0.886996 0.886965 0.886935 3.01124E-5
0.56 0.847255 0.847214 0.847172 4.06798E-5
0.64 0.802096 0.802043 0.801991 5.2694E-5
0.72 0.751806 0.751740 0.751674 6.61846E-5
0.80 0.696707 0.696625 0.696546 8.14622E-5
0.88 0.637151 0.637052 0.636959 9.95908E-5
0.96 0.547352 0.573397 0.573306 1.23361E-4

r r = 2.859
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Figure 1. Comparison solutions of Example 1.

Table 2. Numerical result and absolute error for Example 2.

x u(x) SRKM-HPM ei ei in [4]
0.3 -0.21 -0.20998 1.3784E-5 3.2649E-2
0.4 -0.24 -0.23996 3.5960E-5 2.0340E-2
0.5 -0.25 -0.24993 7.0917E-5 1.6981E-2
0.6 -0.24 -0.23988 1.1636E-5 8.2878E-3
0.7 -0.21 -0.20983 1.6496E-5 3.1082E-3
0.8 -0.16 -0.15979 2.0913E-5 1.9572E-3
r r = 1.99

0.2 0.4 0.6 0.8 1.0

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

x

u(
x)

Figure 2. Comparison solutions of Example 2.

5. Conclusions

In this article, the SRKM-HPM was smoothly applied to figure out the nonlinear HIE by getting the
approximate uniform solution. Besides, compared with the method of traditional reproducing kernel
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method [31], Legendre spectral Galerkin, and multi-Galerkin methods [4], the convergence speed and
accuracy of solution were better.
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