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Abstract: In this paper, we consider stochastic approximation algorithms for least-square and logistic
regression with no strong-convexity assumption on the convex loss functions. We develop two
algorithms with varied step-size motivated by the accelerated gradient algorithm which is initiated
for convex stochastic programming. We analyse the developed algorithms that achieve a rate of
O(1/n2) where n is the number of samples, which is tighter than the best convergence rate O(1/n)
achieved so far on non-strongly-convex stochastic approximation with constant-step-size, for classic
supervised learning problems. Our analysis is based on a non-asymptotic analysis of the empirical
risk (in expectation) with less assumptions that existing analysis results. It does not require the
finite-dimensionality assumption and the Lipschitz condition. We carry out controlled experiments
on synthetic and some standard machine learning data sets. Empirical results justify our theoretical
analysis and show a faster convergence rate than existing other methods.
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1. Introduction

In the era of ‘big data’, machine learning algorithms that only need to process each observation only
once, or a few times, are desirable. Stochastic approximation algorithms such as stochastic gradient
descent (SGD) and stochastic proximal gradient descent (SPGD), have been widely studied for this
specific task and they have been successfully applied in various scenarios [2–16]. Regression and
classification are effective analysis methods in machine learning, and have been successfully applied
in practical problems. With the wide application of deep learning, these two methods are often used
to train the parameters. In this paper, we consider stochastic approximation algorithms that consider
minimizing a convex function where only the unbiased estimates of its gradients at the observations
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are assumed available.
The convex function defined on a closed convex set in Euclidean space is usually given by f (θ) =

1
2E

[
` (yi, 〈θ, xi〉)

]
, where (xi, yi) ∈ X × Y denotes the sample data which is assumed to be i.i.d., `

denotes a loss function that is convex and E represents the expectation under the second variable. This
loss function includes such as the least square and logistic regression. In the stochastic approximation
framework, the samples appear sequentially according to an unknown probability measure ρ and the
predictor defined by θ is updated after each pair is seen.

Robbins and Monro [1] were the first authors who proposed the stochastic approximation (SA)
on the gradient descent method. From then on, algorithms based on SA have been widely used in
stochastic optimisation and machine learning. Polyak [2] and Polyak and Juditsky [3] developed an
important improvement of SA by using longer step-sizes with consequent averaging of the obtained
iterates. The mirror-descent SA was developed by Nemirovski et al. [6] who showed that the mirror-
descent SA exhibited an un-improvable expected rate for solving non-strongly convex programming
problems. Shalev-Shwartz et al. [5] and Nemirovski et al. [6] studied an averaged stochastic gradient
descent method for the least-square regression.

Theoretical studies on SGD for the least-square and logistic regression have shown that the
convexity and smoothness of the loss function and the step-size policy play a critical role on the
convergence rate. It was found that under strong-convexity assumption (i.e., the loss function is twice
differentiable, the Hessians of the loss function is lower bounded by a constant c), the convergence
rate of averaged SGD with proper step-size is of O(1/cn) [5, 6], while it is only of O(1/

√
n) in

non-strongly-convex case [6]. By using the smoothness property of the loss function, it was shown
in [10] that the averaged SGD with constant-step-size can achieve a convergence rate of O(1/n)
without requiring the strong-convexity assumption.

D. P. Kingma [24] propose Adam, a method for efficient stochastic optimization that only requires
first-order gradients with little memory requirement. The method computes individual adaptive
learning rates for different parameters from estimates of first and second moments of the gradients;
the name Adam is derived from adaptive moment estimation.

Z. A. Zhu [25] introduced Katyusha, a direct, primal-only stochastic gradient method to fix this
issue. It has a provably accelerated convergence rate in convex (off-line) stochastic optimization. It can
be incorporated into a variance-reduction based algorithm and speed it up, both in terms of sequential
and parallel performance.

In this paper, we develop two stochastic accelerated gradient algorithms for the consider
least-square and logistic regressions aiming to improve the convergence rate without assuming
strong-convexity. Our development is inspired by the work in the area of accelerated gradient method
for general stochastic non-linear programming (NLP) [17–23]. In the stochastic NLP setting, different
from the consider problem where the gradient can be estimated unbiased at certain points, the
gradient is noisy and available through a stochastic oracle. That is, random vectors with unknown
distribution are associated with each gradient at certain points. For such problem, recently developed
stochastic accelerated gradient method proposed by Ghadimi and Lan [22] showed that for convex
smooth function with Lipschitz continuous gradients achieves a convergence rate of O(1/n2).

In this paper, we prove that without the Lipschitz continuous gradient and strong-convexity
assumption, the developed algorithms achieve a convergence rate of O(1/n2) by using non-asymptotic
analysis. Experimental studies on synthetic data and benchmarks justify our theoretical results and
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show a faster convergence rate than classical SGD and constant-step-size averaged SGD [10].
The rest of the paper is organised as follows. In Section 2, we present the accelerated gradient

algorithm for the least square regression. In Section 3, we study the accelerated gradient algorithm
for the logistic regression. Section 4 empirically verify the obtained theoretical results. Section 5
concludes the paper.

2. Stochastic accelerated gradient algorithm for least square regression

In this section, we consider the least square regression. Let (X, d) be a compact metric space and
Y = R. Assume ρ be a probability distribution on Z = X × Y and (X,Y) be corresponding random
variable. We further assume:

(a) The training data (xk, yk), k ≥ 1 are i.i.d. sampled from ρ.
(b) E‖xk‖

2 is finite, i.e., E‖xk‖
2 ≤ M for any k ≥ 1.

(c) The global minimum of f (θ) = 1
2E[〈θ, xk〉

2 − 2yk〈θ, xk〉] is attainable at a certain point θ∗ ∈ Rd.
(d) In the following, we denote ξk =

(
yk − 〈θ

k, xk〉
)

xk as the residual. We assume that E‖ξk‖
2 ≤ M1

for every k and ξk = 1
k

∑k
i=1 ξi.

These assumptions are standard in stochastic approximation [9,10]. However, compared with the
work in [10], we do not make assumptions on the covariance operator E(xk

⊗
xk) and E[ξk

⊗
ξk].

In the following, we present the accelerated stochastic gradient algorithm for least square regression
learning in Algorithm 1. The algorithm takes a stream of data (xk, yk) as input, and an initial guess of
the parameter θ0. The other requirements include {αk} which satisfies α1 = 1 and αk > 0 for any k ≥ 2,
βk > 0, and λk > 0. The algorithm involves two intermediate quantities θag (which is initialised to be
θ0) and θmd. θmd is updated as a linear combination of θag and the current estimation of the parameter
θ when a data comes in (line 1), where αk is the coefficient. The parameter θ is estimated in line 1
taking λk as a parameter. The residue and the average residue of previous residues up to the k-th data
are computed in line 1. θag is then updated by taking βk as a parameter in line 1. The process continues
whenever a new pair of data is seen.

Algorithm 1 The accelerated stochastic gradient algorithm for least square regression.
Require: θ0 and α1 = 1, αk > 0 for k = 2, · · · , {βk > 0} and {λk > 0}

(1) Set θag
0 = θ0, ξ0 = 0 and k = 1

(2) Set θmd
k = (1 − αk)θ

ag
k−1 + αkθk−1,

(3) Set zk = ∇ f (θmd
k )/αk =

(
〈θmd

k , xk〉xk − ykxk

)
/αk,

(4) Set θk = θk−1 − λkzk,

(5) Compute ξk = (yk − 〈θk, xk〉) xk and ξk = ξk−1 + 1
k (ξk − ξk−1);

(6) Set θag
k = θmd

k − βk

(
zk + 1

kξk

)
.

(7) Set k ← k + 1, and goto step 2.

2.1. Notes on the algorithm

The unbiased estimate of the gradient, i.e.,
(
〈θmd

k , xk〉xk − ykxk

)
for each data point (xk, yk) is used

in line 1. From this perspective, it is seen that the update of θk (line 1) is actually the same as in the

AIMS Mathematics Volume 7, Issue 1, 1445–1459.



1448

stochastic gradient descent (also called least-mean-square, LMS) algorithm if we set αk = 1.
During optimizing, the residue ξk is computed (line 1). All the residues up to now are averaged and

the averaged residue takes effect on the update of θag
k (line 1). It differs from the accelerated stochastic

gradient algorithm in [22] where no residue is computed and used in the optimizing.

2.2. Non-asymptotic analysis on convergence rate

This section we establish the convergence rate of the developed algorithm. The goal is to estimate
the bound on the expectation E[ f (θag

n ) − f (θ∗)]. It turns out that the developed algorithm is able to
achieve a convergence rate of O(1/n2) without strong convexity and Lipschitz continuous gradient
assumptions.

To establish the convergence rate of the developed gradient algorithm, we need the following
Lemma (see Lemma 1 of [22]).

Lemma 1. Let αk be a sequence of step sizes in the accelerated gradient algorithm and the sequence
{ηk} satisfies ηk ≤ (1 − αk)ηk−1 + τk, k = 1, 2, . . . , where

Γk =

{
1, k = 1,
(1 − αk)Γk−1, k ≥ 2.

(2.1)

Then we have ηk ≤ Γk
∑k

i=1
τi
Γi

for any k ≥ 1.

Proof. Noting that α1 = 1 and αk ∈ (0, 1] , we obtain

η1

Γ1
=

(1 − α1)η0

Γ1
+
τ1

Γ1
=
τ1

Γ1
,

and
ηi

Γi
≤

(1 − αi)ηi−1

Γi
+
τi

Γi
=
ηi−1

Γi−1
+
τi

Γi
,

The result then immediately follows by summing up the above inequalities and rearranging the terms.
�

Applying Lemma 1, we can obtain the convergence rate of the developed algorithm as explained in
Theorem 1.

Theorem 1. Let {θmd
k , θ

ag
k } be computed by the accelerated gradient algorithm and Γk be defined

in (2.1). Assume (a–d). If {αk}, {βk}, {λk} are chosen such that

1 −
λkαk

2βk
−
βk

αk
M ≥ 0,

α2
1

λ1Γ1
≥

α2
2

λ2Γ2
≥ · · · , 2β2

k M − βkαk = 0,

then for any n ≥ 1, we have

E
[
f
(
θag

n
)
− f (θ∗)

]
≤

Γn

2λ1
‖θ0 − θ

∗‖2 + MM1Γn

n∑
k=1

β2
k

k2Γk
.
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Proof. By Taylor expansion of the function f , Algorithm1 (line 3) and (line 6), we have:

f
(
θ

ag
k

)
= f (θmd

k ) +
〈
∇ f (θmd

k ), θag
k − θ

md
k

〉
+ (θag

k − θ
md
k )ᵀ∇2 f (θmd

k )(θag
k − θ

md
k )

≤ f (θmd
k ) − βkαk‖zk‖

2 − βkαk
1
k
〈zk, ξk〉 + β2

kE‖xk‖
2‖zk +

1
k
ξk‖

2

≤ f (θmd
k ) − βkαk‖zk‖

2 − βkαk
1
k
〈zk, ξk〉 + β2

k M1‖zk +
1
k
ξk‖

2,

where the last inequality holds due to assumption (b). Since

f (µ) − f (ν) = 〈∇ f (ν), µ − ν〉 + (µ − ν)TE(xkxT
k )(µ − ν),

we have

f (ν) − f (µ) = 〈∇ f (ν), ν − µ〉 − (µ − ν)TE(xkxT
k )(µ − ν)

≤ 〈∇ f (ν), ν − µ〉, (2.2)

where the inequality follows from the positive semi-definition of matrix E(xkxᵀk ). By Algorithm 1
(line 2) and (2.2), we have

f (θmd
k ) − [(1 − αk) f (θag

k−1) + αk f (θ)] = αk[ f (θmd
k ) − f (θ)] + (1 − αk)[ f (θmd

k ) − f (θag
k−1)]

≤ αk〈∇ f (θmd
k ), θmd

k − θ〉 + (1 − αk)〈∇ f (θmd
k ), θmd

k − θ
ag
k−1〉

= 〈∇ f (θmd
k ), αk(θmd

k − θ) + (1 − αk)(θmd
k − θ

ag
k−1)〉

= αk〈∇ f (θmd
k ), θk−1 − θ〉

= α2
k〈zk, θk−1 − θ〉.

So we obtain

f
(
θ

ag
k

)
≤ (1 − αk) f (θag

k−1) + αk f (θ) + α2
k〈zk, θk−1 − θ〉

−βkαk‖zk‖
2 − βkαk

1
k
〈zk, ξk〉 + β2

k M‖zk +
1
k
ξk‖

2.

It follows from Algorithm 1 (line 4) that

‖θk − θ‖
2 = ‖θk−1 − λkzk − θ‖

2 (2.3)
= ‖θk−1 − θ‖

2 − 2λk 〈zk, θk−1 − θ〉 + λ2
k ‖zk‖

2 . (2.4)

Then we have

〈zk, θk−1 − θ〉 =
1

2λk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

+
λk

2
‖zk‖

2 .

While ∥∥∥∥∥zk +
1
k
ξk

∥∥∥∥∥2

= ‖zk‖
2 +

1
k2

∥∥∥ξk

∥∥∥2
+ 2

1
k

〈
zk, ξk

〉
. (2.5)
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Combining (2.4) and (2.5), we obtain

f
(
θ

ag
k

)
≤ (1 − αk) f (θag

k−1) + αk f (θ) +
α2

k

2λk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

−βkαk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Mβ2
k

1
k2

∥∥∥ξk

∥∥∥2
+

〈
ξk,

1
k

(2β2
k M − βkαk)zk

〉
.

The above inequality is equal to

f
(
θ

ag
k

)
− f (θ) ≤ (1 − αk)[ f (θag

k−1) − f (θ)] +
α2

k

2λk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

−βkαk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Mβ2
k

1
k2

∥∥∥ξk

∥∥∥2
+

〈
ξk,

1
k

(2β2
k M − βkαk)zk

〉
.

Using Lemma 1, we have

f
(
θag

n
)
− f (θ) ≤ Γn

n∑
k=1

α2
k

2λkΓk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

+ Γn

n∑
k=1

β2
k M

Γkk2

∥∥∥ξk

∥∥∥2

−Γn

n∑
k=1

βkαk

Γk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Γn

n∑
k=1

1
Γk

〈
ξk,

1
k

(2β2
k M − βkαk)zk)

〉
.

Since

α2
1

λ1Γ1
≥

α2
2

λ2Γ2
≥ · · · , α1 = Γ1 = 1,

then
n∑

k=1

α2
k

2λkΓk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]
≤

α2
1

2λ1Γ1

[
‖θ0 − θ‖

2
]

=
1

2λ1
‖θ0 − θ‖

2.

So we obtain

f
(
θag

n
)
− f (θ) ≤

Γn

2λ1
‖θ0 − θ‖

2 + Γn

n∑
k=1

β2
k M

Γkk2

∥∥∥ξk

∥∥∥2
+ Γn

n∑
k=1

1
Γk

〈
ξk,

1
k

(2β2
k M − βkαk)zk)

〉
, (2.6)

where the inequality follows from the assumption

1 −
λkαk

2βk
−
βk

αk
M ≥ 0, 2β2

k M − βkαk = 0.

Under assumption (d), we have

E
∥∥∥ξ̄k

∥∥∥2
= E

 1
k2 ‖

k∑
i=1

ξi‖
2

 ≤ E
 1

k2 k
k∑

i=1

‖ξi‖
2

 ≤ M1.

Taking expectation on both sides of the inequality (2.6) with respect to (xi, yi), we obtain for θ ∈ Rd,

E
[
f
(
θag

n
)
− f (θ)

]
≤

Γn

2λ1
‖θ0 − θ‖

2 + MM1Γn

n∑
k=1

β2
k

k2Γk
.
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Now, fixing θ = θ∗, we have

E
[
f
(
θag

n
)
− f (θ∗)

]
≤

Γn

2λ1
‖θ0 − θ

∗‖2 + MM1Γn

n∑
k=1

β2
k

k2Γk
.

This finishes the proof of the theorem. �

In the following, we apply the results of Theorem 1 to some particular selections of {αk}, {βk} and
{λk}. We obtain the following Corollary 1.

Corollary 1. Suppose that αk and βk in the accelerated gradient algorithm for regression learning are
set to

αk =
2

k + 1
, βk =

1
M(k + 1)

and λk =
k

2M(k + 1)
∀k ≥ 1, (2.7)

then for any n ≥ 1, we have

E
[
f
(
θag

n
)
− f (θ∗)

]
≤

4M
n(n + 1)

‖θ0 − θ
∗‖2 +

M1

Mn(n + 1)
.

Proof. In the view (2.1) and (2.7), we have for k ≥ 2

Γk = (1 − αk)Γk−1 =
k − 1
k + 1

×
k − 2

k
×

k − 3
k − 1

× · · · ×
2
4
×

1
3
× Γ1 =

2
k(k + 1)

.

It is easy to check

1 −
λkαk

2βk
−
βk

αk
M ≥ 0,

α2
1

λ1Γ1
=

α2
2

λ2Γ2
= · · · = 4M, 2β2

k M − βkαk = 0.

Then we obtain

MΓnM1

n∑
k=1

β2
k

k2Γk
=

2M1

n(n + 1)

n∑
k=1

M
M2(k+1)2

2k2

k(k+1)

=
M1

Mn(n + 1)

n∑
k=1

1
k(k + 1)

≤
M1

Mn(n + 1)
.

From the result of Theorem 1, we have

E
[
f
(
θag

n
)
− f (θ∗)

]
≤

4M
n(n + 1)

‖θ0 − θ
∗‖2 +

M1

Mn(n + 1)
.

This finishes the proof of the Collorary. �

3. The accelerated stochastic gradient algorithm for logistic regression learning

In this section, we develop the accelerated gradient algorithm for logistic regression. For the
logistic regression, we consider the logistic loss function: l(θ) = E[log(1 + exp(−y〈x, θ〉))]. Assume
the observations (xi, yi) ∈ F × {−1, 1} are independent and identically distributed from unknown
distribution ρ where F is a d−dimension Euclidean space, with d ≥ 1. Further, we denote by θ∗ ∈ Rd

a global minimiser of l and assume its existence. Let ξi =
(
yi − 〈θ

k, xi〉
)

xi denote the residual. We
denote ξ̄k = 1

k

∑k
i=1 ξi the average residue up until k input data. To analyse the algorithm, we make the

following assumptions:
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(B1) E‖xi‖
2 is finite, i.e., E‖xi‖

2 ≤ M for any i ≥ 1.
(B2) E‖ξi‖

2 ≤ M1 for every i.

Again, unlike the algorithm by Bach et al. [10], we make no assumption on the Hessian operator at
the global optimum θ∗.

The developed accelerated stochastic gradient algorithm for the logistic regression is presented in
Algorithm 2. In the algorithm, θ0 ∈ F is an initial guess, and

∇l(θk) =
−yk exp{−yk〈xk, θk〉}xk

1 + exp{−yk〈xk, θk〉}
.

It can be seen that the basic framework of Algorithm 2 is the same as Algorithm 1 except that the
unbiased estimation to the gradient is different due to the loss functions.

Algorithm 2 The accelerated stochastic gradient approximation algorithm for logistic regression.
Require: θ0 and α1 = 1, αk > 0 for k = 2, · · · , {βk > 0} and {λk > 0}

(1) Set θag
0 = θ0,ξ0 = 0 and k = 1

(2) Set θmd
k = (1 − αk)θ

ag
k−1 + αkθk−1,

(3) Compute zk = 1
αk
∇l(θmd

k ),
(4) Set θk = θk−1 − λkzk,

(5) Compute ξk = (yk − 〈θk, xk〉) xk and ξk = ξk−1 + 1
k (ξk − ξk−1);

(6) Set θag
k = θmd

k − βk

(
zk + 1

k ξ̄k

)
.

(7) Set k ← k + 1, and goto step 2.

3.1. Non-asymptotic analysis on convergence rate

In this section, we also provide the non-asymptotic analysis on the convergence rate of the developed
algorithm in expectation. Theorem 2 describes the convergence rate.

Theorem 2. Let {θmd
k , θ

ag
k } be computed by the accelerated gradient algorithm and Γk be defined in

(2.1). Assume (B1 and B2). If {αk}, {βk}, {λk} are chosen such that

1 −
λkαk

2βk
−
βk

αk
M ≥ 0, 2β2

k M − βkαk = 0,
α2

1

λ1Γ1
≥

α2
2

λ2Γ2
≥ · · · ,

then for any n ≥ 1, we have

E
[
f
(
θag

n
)
− f (θ∗)

]
≤

Γn

2λ1
‖θ0 − θ

∗‖2 + Mσ2Γn

n∑
k=1

β2
k

k2Γk
.

Proof. By Taylor expansion of the function l, there exists a ϑ such that

l
(
θ

ag
k

)
= l(θmd

k ) +
〈
∇l(θmd

k ), θag
k − θ

md
k

〉
+ (θag

k − θ
md
k )T∇2l(ϑ)(θag

k − θ
md
k )

= l(θmd
k ) − βkαk‖zk‖

2 − βkαk〈zk,
1
k
ξ̄k〉
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+(θag
k − θ

md
k )TE

[
exp{−yk〈xk, ϑ〉}xkxT

k

1 + exp{−yk〈xk, ϑ〉}

]
(θag

k − θ
md
k ) (3.1)

In the equation, we know

exp{−yk〈xk, ϑ〉}

1 + exp{−yk〈xk, ϑ〉}
≤ 1, λmax(xkxT

k ) ≤ ‖xk‖
2.

It is easy to verify the matrix

E

[
exp{−yk〈xk, ϑ〉}xkxT

k

1 + exp{−yk〈xk, ϑ〉}

]
is positive semidefinite and its largest eigenvalue satisfies

λmax

(
E

[
exp{−yk〈xk, ϑ〉}xkxT

k

1 + exp{−yk〈xk, ϑ〉}

])
≤ E‖xk‖

2 ≤ M.

Combining with Algorithm 2 (line 6) and (3.1), we have

l
(
θ

ag
k

)
≤ l(θmd

k ) − βkαk‖zk‖
2 − βkαk〈zk,

1
k
ξ̄k〉 + β2

k M‖zk +
1
k
ξ̄k‖

2.

Similar to (3.1), there exists a ζ ∈ Rd satisfying

l(µ) − l(ν) = 〈∇l(ν), µ − ν〉 + (µ − ν)TE

[
exp{−yk〈xk, ζ〉}xkxT

k

1 + exp{−yk〈xk, ζ〉}

]
(µ − ν), µ, ν ∈ Rd

we have

l(ν) − l(µ) = 〈∇l(ν), ν − µ〉 − (µ − ν)TE

[
exp{−yk〈xk, ζ〉}xkxT

k

1 + exp{−yk〈xk, ζ〉}

]
(µ − ν)

≤ 〈∇l(ν), ν − µ〉,

where the inequality follows from the positive semi-definition of matrix. Similar to (2.2), we have

l(θmd
k ) − [(1 − αk)l(θ

ag
k−1) + αkl(θ)] ≤ α2

k〈zk, θk−1 − θ〉.

So we obtain

l
(
θ

ag
k

)
≤ (1 − αk)l(θ

ag
k−1) + αkl(θ) + α2

k〈zk, θk−1 − θ〉

−βkαk‖zk‖
2 − βkαk〈zk,

1
k
ξ̄k〉 + β2

k M‖zk +
1
k
ξ̄k‖

2.

It follows from Algorithm 2 (line 4) that

‖θk − θ‖
2 = ‖θk−1 − λkzk − θ‖

2

= ‖θk−1 − θ‖
2 − 2λk 〈zk, θk−1 − θ〉 + ‖zk‖

2 .
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Combining the above two inequalities, we obtain

l
(
θ

ag
k

)
≤ (1 − αk)l(θ

ag
k−1) + αkl(θ) +

α2
k

2λk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

−βkαk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Mβ2
k

1
k2

∥∥∥ξk

∥∥∥2
+

〈
ξk,

1
k

(2β2
k M − βkαk)zk)

〉
.

The above inequality is equal to

l
(
θ

ag
k

)
− l(θ) ≤ (1 − αk)[l(θ

ag
k−1) − l(θ)] +

α2
k

2λk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

−βkαk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Mβ2
k

1
k2

∥∥∥ξk

∥∥∥2
+

〈
ξk,

1
k

(2β2
k M − βkαk)zk

〉
.

Using Lemma 1, we have

l
(
θag

n
)
− l(θ) ≤ Γn

n∑
k=1

α2
k

2λkΓk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]

+ Γn

n∑
k=1

β2
k M

Γkk2

∥∥∥ξk

∥∥∥2

−Γn

n∑
k=1

βkαk

Γk

(
1 −

λkαk

2βk
−
βk

αk
M

)
‖zk‖

2 + Γn

n∑
k=1

1
Γk

〈
ξk,

1
k

(2β2
k M − βkαk)zk)

〉
.

Since

α2
1

λ1Γ1
≥

α2
2

λ2Γ2
≥ · · · , α1 = Γ1 = 1,

then
n∑

k=1

α2
k

2λkΓk

[
‖θk−1 − θ‖

2 − ‖θk − θ‖
2
]
≤

α2
1

2λ1Γ1

[
‖θ0 − θ‖

2
]

=
1

2λ1
‖θ0 − θ‖

2.

So we obtain

l
(
θag

n
)
− l(θ) ≤

Γn

2λ1
‖θ0 − θ‖

2 + Γn

n∑
k=1

β2
k M

Γkk2

∥∥∥ξk

∥∥∥2
, (3.2)

where the inequality follows from the assumption

1 −
λkαk

2βk
−
βk

αk
M ≥ 0, 2β2

k M − βkαk = 0.

Under the assumption (B4), we have

E
∥∥∥ξ̄k

∥∥∥2
= E

 1
k2 ‖

k∑
i=1

ξi‖
2

 ≤ E
 1

k2 k
k∑

i=1

‖ξi‖
2

 ≤ M1.

Taking expectation on both sides of the inequality (3.2) with respect to (xi, yi), we obtain for θ ∈ Rd,

E
[
l
(
θag

n
)
− l(θ)

]
≤

Γn

2λ1
‖θ0 − θ‖

2 + MM1Γn

n∑
k=1

β2
k

k2Γk
.
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Now, fixing θ = θ∗, we have

E
[
l
(
θag

n
)
− l(θ∗)

]
≤

Γn

2λ1
‖θ0 − θ

∗‖2 + MM1Γn

n∑
k=1

β2
k

k2Γk
.

This finishes the proof of the theorem. �

Similar to Corollary 1, we specialise the result of Theorem 2 for some particular selections of
{αk}, {βk} and {λk}.

Corollary 2. Suppose that αk and βk in the accelerated gradient algorithm for regression learning are
set to

αk =
2

k + 1
, βk =

1
M(k + 1)

and λk =
k

2M(k + 1)
, ∀k ≥ 1,

then for any n ≥ 1, we have

E
[
l
(
θag

n
)
− l(θ∗)

]
≤

4M
n(n + 1)

‖θ0 − θ
∗‖2 +

M1

Mn(n + 1)
.

4. Experiment results

In this section, we empirically investigate the performance of our algorithms on synthetic data and
some benchmarks widely used by the machine learning community.

4.1. Least square regression

We consider normally distributed inputs, with covariance matrix H that has random eigenvectors
and eigenvalues 1/k, k = 1, . . . , d. The outputs are generated from a linear function with homoscedastic
noise with various signal to noise-ratio σ. We consider d = 20 and 100000 samples using mini-batch
size of 100.

We compare SGD, stochastic approximation (SA) with averaging [10], ADAM [24], Katyusha [25]
and ASGA on synthetic noisy datasets with different noise levels: σ = 0, 0.1 and 0.01. For SGD and
SA we choose the step size ρ = 1/2R2 and γn = 1/2R2√n) where R2 = trace(H), respectively. The
loss function is defined as log10[ f (θ) − f (θ∗)]. The average loss function value over 100 runs on the
training data is shown in Figure 1 (a)–(c). It can be seen that ASGA converges much faster than SGD,
SA and ADAM. The results also verify our theoretical improvement on the convergence rate of ASGA.

4.2. Logistic regression

For logistic regression, we consider the same input data as for the least-squares, but outputs are
generated from the logistic probabilistic model. Comparison results are shown in Figure 1 (d). A step
size γn = 1/(2R2√n) is chosen for SA with averaging for an optimal performance. For ADAM, its step
size α is adjusted by 1/

√
n decay as suggested in [24]. From Figure 1 (d), it is clearly seen that ASGA

converges significantly faster than all the compared algorithms.
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(b) σ = 0.01
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(c) σ = 0.1
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(d) logistic regression

Figure 1. (a)–(c): Least square regression training log-likelihood on synthetic data sets
with different noise levels (0, 0.01 and 0.1 clockwise in turn); and (d) logistic regression on
synthetic data set.
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Figure 2. The training procedure of ASGA on Wine, MNIST and News averaged over 50
runs.

4.3. Benchmarks

We evaluate ASGA on the MNIST, Wine dataset and News dataset. In our experiments, the raw
features of the datasets are used directly as the input to the classifier. For MNIST, 9000/1000 data
points are used as training/test dataset, the numbers are 4000/898 for Wine, while the numbers are
18000/846 for News. We compare SGD, stochastic approximation (SA) with averaging [10],
ADAM [24], Katyusha [25] and ASGA using mini-batch size of 90 in MINST, using mini-batch size
of 100 in Wine and News. Figure 2 shows the training procedure of ASGA on these three datasets by
averaging 50 runs. From Figure 2, it is seen that ASGA obtains better the loss values with faster
convergence rate. This clearly demonstrates the effectiveness of ASGA. Table 1 summarizes the
prediction accuracies of the obtained optimal parameters of the logistic regression model on the test
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datasets by the compared algorithms. The p-values obtained by t-test at 5% significance level are also
given in the subscripts of the compared algorithms. From the table, it is seen that ASGA achieves
significantly better accuracies that the other algorithms (p < 0.05).

Table 1. The prediction accuracy of the compared algorithms on test datasets of MNIST
and Wine, where the subscript values are the p-values obtained by the t-test between the
corresponding algorithm with ASGA.

Method MNIST Wine News
ASGA 0.9056 0.8863 0.9236
ADAM 0.88121.5×10−6 0.85202.6×10−8 0.91203.5×10−6

SA 0.89134.2×10−5 0.86122.7×10−7 0.88754.7×10−5

Katyusha 0.88451.7×10−4 0.86243.8×10−3 0.89436.3×10−4

SGD 0.86153.7×10−10 0.85234.7×10−8 0.88312.4×10−6

5. Conclusions

In this paper, we proposed two accelerated stochastic gradient algorithms (ASGA) for least-square
and logistic regression in which the averaged residue is used to adjust the parameter estimation. An
asymptotic analysis proved that ASGA can achieve a convergence rate of O(1/n2) which is much
tighter than the state-of-the-art rate under non-strongly convexity assumptions. Experimental results
on synthetic data and benchmark datasets justified our theoretical results.
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