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1. Introduction

Let Cn be the n-dimensional Euclidean space. For any two points z = (z1, ..., zn) and ξ = (ξ1, ..., ξn)
in Cn, we write 〈z, ξ〉 = z1ξ1 + ...+ znξn and |z| =

√
〈z, z〉. Given z ∈ Cn and r > 0, set the Euclidean ball

B(z, r) = {ξ ∈ Cn : |ξ − z| < r}. Let dV to be the ordinary Lebesgue volume measure on Cn. Suppose
ϕ : Cn → R is a C2-plurisubharmonic function and set

ω(z) = exp(−2ϕ(z)), z ∈ Cn.

We say that ω belongs to the weight classW if ϕ satisfies the following conditions:
(I) There exists c > 0 such that

inf
z∈Cn

sup
ξ∈B(z,c)

∆ϕ(ξ) > 0; (1.1)

(II) ∆ϕ satisfies the reverse-Hölder inequality

‖∆ϕ‖L∞(B(z,r)) ≤ Cr−2n
∫

B(z,r)
∆ϕ(ξ)dV(ξ), ∀z ∈ Cn, r > 0

for some 0 < C < +∞;
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(III) The eigenvalues of Hϕ are comparable, that is, there exists δ0 > 0 such that

(Hϕ(z)u, u) ≥ δ0∆ϕ(z)|u|2, ∀z, u ∈ Cn,

where

Hϕ =

(
∂2ϕ

∂z j∂zk

)
j,k

.

Suppose 0 < p < ∞, ω ∈ W. The space Lp
ω consists of all Lebesgue measurable functions f on Cn

for which

‖ f ‖p,ω =

(∫
Cn
| f (z)|pω(z)p/2dV(z)

)1/p

< ∞.

It is obvious that Lp
ω = Lp(Cn, ωp/2dV). We use Lp to stand the usual p-th Lebesgue space with the

norm ‖ · ‖Lp =
(∫
Cn | · |

pdV(z)
)1/p

.
Let H(Cn) be the family of all entire functions on Cn. The weighted Fock space F p

ω is defined as

F p
ω = Lp

ω ∩ H(Cn).

It is clear that F p
ω is a Banach space under ‖ · ‖p,ω if 1 ≤ p ≤ ∞, and F p

ω is an F-space under the
metric d( f , g) = ‖ f − g‖p

p,ω if 0 < p < 1.
Taking ϕ(z) = 1

2 |z|
2, F p

ω is the classical Fock space, which has been studied by many authors,
see [5, 7, 10, 11, 18] and the references therein. The weight function ω with the restriction that ddcϕ '

ddc|z|2 in [8] and [16] belongs toW as well. Notice that the classW also contains nonradial weights,
an example is given by

ωp, f (z) = | f (z)|pe−|z|
2/2,

where p > 0 and f is a nonvanishing analytic function in F p
ω. This class of weights have attracted many

attention in the setting of Fock spaces, see [1, 6, 14] for instance.
For ω ∈ W, the mapping f 7→ f (z) is a bounded linear functional on F2

ω for each z ∈ Cn. By the
Riesz representation theorem in functional analysis, there exists a unique function Kz ∈ F2

ω such that
f (z) = 〈 f ,Kz〉ω for all f ∈ F2

ω, where

〈 f , g〉ω =

∫
Cn

f (z)g(z)ω(z)dV(z), f , g ∈ F2
ω.

The function K(·, z) = Kz(·) is called the reproducing kernel of F2
ω. For 0 < p < ∞ and z ∈ Cn,

we let
kp,z(·) = K(·, z)/‖K(·, z)‖p,ω

denote the normalized reproducing kernel for F p
ω. Notice that the set {kp,z : z ∈ Cn} is bounded in F p

ω

and kp,z → 0 uniformly on every compact subset of Cn when |z| → ∞.
Suppose µ is a Borel measure on Cn, the Toeplitz operator Tµ induced by µ is defined as

Tµ f (·) =

∫
Cn

f (ξ)K(·, ξ)ω(ξ)dµ(ξ)

if it is well (densely) defined.
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During the past few decades much effort has been devoted to the study of Toeplitz operators on
Fock spaces. In the case n = 1, when dµ = gdA for some restricted function g, for example g is
bounded or g ∈ BMO, the induced Toeplitz operator Tµ has been studied in [2–5, 8, 17]. For µ ≥ 0,
Isralowitz and Zhu in [11] characterized the mapping properties of Tµ on F2

|z|2/2. In [7], Hu an Lv
obtained sufficient and necessary conditions on µ for which Tµ is bounded (or compact) from F p

|z|2/2

to Fq
|z|2/2 for 1 < p, q < ∞. Denote d = ∂ + ∂ and dc =

√
−1
4

(
∂ − ∂

)
. With the restriction that

ddcϕ ' ddc|z|2 on the weight ϕ in Cn, Schuster and Varolin in [16] studied the boundedness and
compactness of Toeplitz operators in terms of averaging functions and Berezin transforms. Later on,
the corresponding problems were discussed from F p

ϕ to Fq
ϕ for 0 < p, q < ∞ in [8], between F p

ϕ and
F∞ϕ for 0 < p ≤ ∞ in [12]. In 2015, Oliver and Pascuas in [15] characterized the boundedness and
compactness of positive Toeplitz operators on doubling Fock space F p

φ for 1 ≤ p < ∞. In [9], the
authors discussed the corresponding problems from F p

φ to Fq
φ for 0 < p, q < ∞.

The purpose of this work is to extend some results of [7–9,11,12,15] concerning Toeplitz operators
to large Fock spaces. In Section 2, we will give some lemmas would be used in the following sections.
Section 3 is devoted to characterize those µ ≥ 0 for which the induced operators Tµ are bounded (or
compact) from F p

ω to Fq
ω for 0 < p, q < ∞. Our approach depends on whether 0 < p ≤ q < ∞ or

0 < q < p < ∞. We summarize the main results of the paper as below:

Theorem 1.1. Suppose 0 < p ≤ q < ∞, µ ≥ 0. Let α be as defined in (2.6) below. Suppose also
ω ∈ W. Then the following statements are equivalent:

(A) Tµ : F p
ω → Fq

ω is bounded;

(B) µ̃t(·)τ
2n(p−q)

pq (·) ∈ L∞ for some (equivalent: any) t > 0;

(C) µ̂δ(·)τ
2n(p−q)

pq (·) ∈ L∞ for some (equivalent: any) 0 < δ ≤ α;

(D) The sequence
{̂
µr(ak)τ(ak)

2n(p−q)
pq

}
k

is bounded for some (equivalent: any) (τ, r)-lattice {ak}k with

0 < r ≤ α.
Furthermore,

‖Tµ‖F p
ω→Fq

ω
'

∥∥∥∥µ̃tτ
2n(p−q)

pq

∥∥∥∥
L∞
'

∥∥∥∥̂µδτ 2n(p−q)
pq

∥∥∥∥
L∞
'

∥∥∥∥∥{̂µr(ak)τ(ak)
2n(p−q)

pq

}
k

∥∥∥∥∥
l∞
. (1.2)

Theorem 1.2. Suppose 0 < p ≤ q < ∞, µ ≥ 0. Let α be as defined in (2.6) below. Suppose also
ω ∈ W. Then the following statements are equivalent:

(A) Tµ : F p
ω → Fq

ω is compact;

(B) µ̃t(z)τ
2n(p−q)

pq (z)→ 0 as z→ ∞ for some (equivalent: any) t > 0;

(C) µ̂δ(z)τ
2n(p−q)

pq (z)→ 0 as z→ ∞ for some (equivalent: any) 0 < δ ≤ α;

(D) µ̂r(ak)τ(ak)
2n(p−q)

pq → 0 as k → ∞ for some (equivalent: any) (τ, r)-lattice {ak}k with 0 < r ≤ α.

Theorem 1.3. Suppose 0 < q < p < ∞, µ ≥ 0. Let α be as defined in (2.6) below. Suppose also
ω ∈ W. Then the following statements are equivalent:

(A) Tµ : F p
ω → Fq

ω is bounded;

(B) Tµ : F p
ω → Fq

ω is compact;

(C) µ̃t ∈ L
pq

p−q for some (equivalent: any) t > 0;
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(D) µ̂s ∈ L
pq

p−q for some (equivalent: any) 0 < s ≤ α;

(E)
{̂
µδ(ak)τ(ak)

2n(p−q)
pq

}
k
∈ l

pq
p−q for some (equivalent: any) (τ, δ)-lattice {ak}k with 0 < δ ≤ α.

Furthermore,

‖Tµ‖F p
ω→Fq

ω
' ‖µ̃t‖L

pq
p−q
'

∥∥∥̂µs

∥∥∥
L

pq
p−q
'

∥∥∥∥∥{̂µδ(ak)τ(ak)
2n(p−q)

pq

}
k

∥∥∥∥∥
l

pq
p−q
. (1.3)

In what follows, we use the notation A . B to indicate that there is a constant C > 0 with A ≤ CB.
A and B are called equivalent, denoted by ”A ' B”, if there exists some C such that A . B . A.

2. Preliminaries

In this section, we will give some basic estimates which would be used in the following sections.
For z ∈ Cn, set

τϕ(z) = sup{r > 0 : sup
ξ∈B(z,r)

∆ϕ(ξ) ≤ r−2}.

Throughout this paper, we simply write τ(z) instead of τϕ(z). Let ϕ be as in (1.1), then there exist
A, B > 0 such that

|z|−A . τ(z) . |z|B, for |z| > 1. (2.1)

See [1], given δ > 0, write Bδ(z) = B(z, δτ(z)), and B(z) = B1(z) for short. By [14], there exists
some C > 0 such that for z ∈ C,

C−1τ(ξ) ≤ τ(z) ≤ Cτ(ξ) (2.2)

for ξ ∈ Bδ(z).
From (2.2) and the triangle inequality, for δ > 0 we have m1 = m1(δ), m2 = m2(δ) that

Bδ(z) ⊆ Bm1δ(ξ) and Bδ(ξ) ⊆ Bm2δ(z) whenever ξ ∈ Bδ(z). (2.3)

Clearly, m j > 1 for j = 1, 2. Furthermore,

ρ = sup
0<δ≤1

[m1(δ) + m2(δ)] < ∞. (2.4)

Given δ > 0, we call a sequence {ak}
∞
k=1 in Cn is a (τ, δ)-lattice if

{
Bδ(ak)

}
k

covers Cn and the balls{
Bδ/5(ak)

}
k

are pairwise disjoint. For δ > 0, the existence of some δ-lattice comes from a standard
covering lemma, see Proposition 7 in [6] for details. Given a (τ, δ)-lattice {ak}k and m > 0, there exists
some integer N such that each z ∈ Cn can be in at most N disks of

{
Bmδ(ak)

}
k
. Equivalently,

∞∑
k=1

χBmδ(ak)(z) ≤ N (2.5)

for z ∈ Cn, see [6].
Arroussi and Tong in [1] obtained the pointwise and the Lp

ω-norm estimates of the reproducing
kernel K(·, ·) as follows:
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Lemma 2.1. Let Kz be the reproducing kernel of F2
ω. Then

(a) For ω ∈ W, there exists α ∈ (0, 1] such that

|Kz(ζ)| ' ‖Kz‖2,ω · ‖Kζ‖2,ω, ζ ∈ Bα(z). (2.6)

(b) For ω ∈ W and 0 < p < ∞, one has

‖Kz‖p,ω ' ω(z)−1/2τ(z)2n(1−p)/p, z ∈ Cn. (2.7)

The following result gives the boundedness of the point evaluation functional on F p
ω, which can be

seen in [1].

Lemma 2.2. Let ω ∈ W, µ ≥ 0 and 0 < p < ∞. Then for any f ∈ H(Cn):
(a) For any δ ∈ (0, 1], there exists C > 0 such that

| f (z)|pω(z)p/2 ≤
C

δ2nτ(z)2n

∫
Bδ(z)
| f (ζ)|pω(ζ)p/2dV(ζ), z ∈ Cn.

(b) For any δ > 0, there exists C depending only on n, p and δ such that∫
Cn
| f (z)|pω(z)p/2dµ(z) ≤ C

∫
Cn
| f (z)|pω(z)p/2µ̂δ(z)dV(z).

For our later use, we need the concepts of averaging functions and Berezin transforms. The average
of µ is defined as

µ̂δ(z) = µ(Bδ(z)) · τ(z)−2n, z ∈ Cn.

Given t > 0, we set the general Berezin transform of µ to be

µ̃t(z) =

∫
Cn

∣∣∣kt,z(ζ)
∣∣∣t ω(ζ)t/2dµ(ζ), z ∈ Cn.

Lemma 2.3. Let α be as defined in (2.6). Suppose 0 < p < ∞, µ ≥ 0. Then the following statements
are equivalent:

(A) µ̃t(·) ∈ Lp for any t > 0;

(B) µ̂δ(·) ∈ Lp for any 0 < δ ≤ α;

(C) The sequence
{
τ(ak)2n/pµ̂r(ak)

}
k
∈ lp for any (τ, r)-lattice {ak}k with 0 < r ≤ α.

Furthermore,

‖µ̃t‖Lp '
∥∥∥̂µδ∥∥∥Lp '

∥∥∥∥{τ(ak)2n/pµ̂r(ak)
}

k

∥∥∥∥
lp
. (2.8)

Proof. The equivalence between (A) and (B) follows from Lemma 6.1 in [1]. The proof of the
equivalence between (B) and (C) is similar to that of Lemma 2.5 in [9] and we omit the details.
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3. Results

In this section, we are going to characterize those µ ≥ 0 for which the induced Toeplitz operator Tµ

is bounded (or compact) from one large Fock space F p
ω to another Fq

ω. To this purpose, we need the
relatively compact subsets in F p

ω. With the same proof as that of Lemma 3.2 in [8], we know a bounded
subset E ⊂ F p

ω is relatively compact if and only if for each ε > 0 there is some S > 0 such that

sup
f∈E

∫
|z|≥S
| f (z)|pω(z)p/2dV(z) < ε. (3.1)

This observation on the compact subsets in Fock spaces is crucial to our study on the compactness
of Tµ from F p

ω to Fq
ω. Because the inclusion between any two spaces F p

ω and Fq
ω is no longer valid

while p , q, and also F p
ω is not a Banach space with 0 < p < 1, the approach in [7, 8, 11, 12, 15, 16]

does not work here.

Proof of Theorem 1.1. We show (C) ⇒ (D) first. Similar to the proof of (2.13) in [9], for given
0 < p < ∞, s ∈ R and (τ, r)-lattice {a j} j, (τ, δ)-lattice {b j} j, we get∥∥∥∥{̂µr(a j)τ(a j)s+2n/p

}
j

∥∥∥∥
lp
'

∥∥∥∥{̂µδ(b j)τ(b j)s+2n/p
}

j

∥∥∥∥
lp
.

Then (D) follows from (C) immediately, moreover∥∥∥∥∥{̂µr(ak)τ(ak)
2n(p−q)

pq

}
k

∥∥∥∥∥
l∞
≤

∥∥∥∥̂µδτ 2n(p−q)
pq

∥∥∥∥
L∞
. (3.2)

Next we prove (B)⇒ (C). Taking 0 < r0 ≤ α as α in (2.6), then

µ̂r0(z) . µ̃2(z).

This tells us (B) implies (C) for r0. By Lemma 2.3, for fixed δ, r > 0 we obtain

‖̂µδ‖Lp ' ‖̂µr‖Lp .

Notice that this formula is still true for p = ∞. These imply∥∥∥∥̂µδτ 2n(p−q)
pq

∥∥∥∥
L∞
'

∥∥∥∥̂µr0τ
2n(p−q)

pq

∥∥∥∥
L∞
.

∥∥∥∥µ̃tτ
2n(p−q)

pq

∥∥∥∥
L∞

(3.3)

for all δ > 0.
Now we prove that (D) implies (B). By (2.3), we have some m > 0 such that Br(z) ⊂ Bmr(a) for

z ∈ Br(a) and a ∈ Cn. For any t > 0, set s =
tpq

pq−p+q . Lemma 2.2 tells us, for f ∈ F s
ω,

sup
z∈Br(a)

| f (z)|s ω(z)s/2 ≤
C

τ(a)2n

∫
Bmr(a)

| f (ζ)|s ω(ζ)s/2dV(ζ). (3.4)

By Lemma 2.1, we know
|kt,z(ζ)|tτ(z)

2n(p−q)
pq ' |ks,z(ζ)|t.
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Then from (3.4) and (2.5) we obtain

µ̃t(z)τ(z)
2n(p−q)

pq

'

∫
Cn

∣∣∣ks,z(ζ)
∣∣∣t ω(ζ)t/2dµ(ζ)

≤

∞∑
k=1

∫
Br(ak)

∣∣∣ks,z(ζ)
∣∣∣t ω(ζ)t/2dµ(ζ)

≤

∞∑
k=1

µ(Br(ak))
(

sup
ζ∈Br(ak)

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2

)t/s

.
∞∑

k=1

µ̂r(ak)τ(ak)
2n(p−q)

pq

(∫
Bmr(ak)

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2dV(ζ)

)t/s

. sup
k
µ̂r(ak)τ(ak)

2n(p−q)
pq

 ∞∑
k=1

∫
Bmr(ak))

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2dV(ζ)

t/s

. N t/s sup
k
µ̂r(ak)τ(ak)

2n(p−q)
pq

∥∥∥ks,z

∥∥∥t

s,ω
.

This gives ∥∥∥∥µ̃tτ
2n(p−q)

pq

∥∥∥∥
L∞
.

∥∥∥∥∥{̂µr(ak)τ(ak)
2n(p−q)

pq

}
k

∥∥∥∥∥
l∞
. (3.5)

That is, (D) indicates (B).
Now we prove that (A)⇒ (B). We suppose the statement (A) is valid. Since ‖kp,z‖p,ω = 1, we have

‖Tµ‖F p
ω→Fq

ω
≥ ‖Tµkp,z‖q,ω =

(∫
Cn
|Tµkp,z(ζ)|qω(ζ)q/2dV(ζ)

)1/q

&

(∫
B(z)
|Tµkp,z(ζ)|qω(ζ)q/2dV(ζ)

)1/q

& τ(z)2n/q|Tµkp,z(z)|ω(z)1/2.

The last inequality above follows from Lemma 2.2(a). Meanwhile, by Lemma 2.1 we obtain

|Tµkp,z(z)| ≥
∫
Cn

kp,z(ζ)K(z, ζ)ω(ζ)dµ(ζ)

=
1

‖K(·, z)‖p,ω

∫
Cn
|K(z, ζ)|2ω(ζ)dµ(ζ)

=
‖K(·, z)‖22,ω
‖K(·, z)‖p,ω

∫
Cn
|k2,z(ζ)|2ω(ζ)dµ(ζ)

' τ(z)−2n/pω(z)−1/2µ̃2(z).

Therefore,
µ̃2(z)τ(z)

2n(p−q)
pq . ‖Tµ‖F p

ω→Fq
ω
. (3.6)

This and the equivalence between (B) and (C) shows the estimate (3.6) remains true when µ̃2 is
replaced by µ̃t for any t > 0. That is, (A) implies (B).

AIMS Mathematics Volume 7, Issue 1, 1293–1306.



1300

Now we are going to prove the implication (C)⇒ (A). Given δ > 0, we claim there is some positive
constant C such that

‖Tµ f ‖qq,ω ≤ C
∫
Cn
| f (ζ)|qω(ζ)q/2µ̂δ(ζ)qdV(ζ) (3.7)

for f ∈ F p
ω. In fact, when q > 1, by applying Lemma 2.2(a) with δ = 1 to the weight ω2 and the

holomorphic function K(·, z) f (·) to get

|Tµ f (z)| .
∫
Cn
|K(ζ, z)|| f (ζ)|ω(ζ )̂µδ(ζ)dV(ζ).

This and Hölder’s inequality tell us∣∣∣Tµ f (z)
∣∣∣q ω(z)q/2

.

(∫
Cn
µ̂δ(ζ)| f (ζ)||K(ζ, z)|ω(ζ)ω(z)1/2dV(ζ)

)q

.

∫
Cn
| f (ζ)|qω(ζ)q/2µ̂δ(ζ)q

∣∣∣K(ζ, z)ω(ζ)1/2ω(z)1/2
∣∣∣ dV(ζ)

×

(∫
Cn

∣∣∣K(ζ, z)ω(ζ)1/2ω(z)1/2
∣∣∣ dV(ζ)

) q
q′

.

∫
Cn
| f (ζ)|qω(ζ)q/2µ̂δ(ζ)q

∣∣∣K(ζ, z)ω(ζ)1/2ω(z)1/2
∣∣∣ dV(ζ).

Integrating both sides above, applying Fubini’s theorem and (2.7) to get (3.7). When q ≤ 1, for
given δ > 0 we pick some r > 0 so that ρ2r ≤ min{δ, 1} with ρ as in (2.4), and let {ak}k be some
(τ, r)-lattice. Then for f ∈ F p

ω,

∣∣∣Tµ f (z)
∣∣∣q ≤  ∞∑

k=1

∫
Br(ak)
| f (ζ)K(ζ, z)|ω(ζ)dµ(ζ)

q

≤

∞∑
k=1

(∫
Br(ak)
| f (ζ)K(ζ, z)|ω(ζ)dµ(ζ)

)q

≤

∞∑
k=1

µ̂r(ak)qτ(ak)2nq

(
sup

ζ∈Br(ak)
| f (ζ)K(ζ, z)|ω(ζ)

)q

.

Apply Lemma 2.2(a), there is some constant C > 0 such that
∣∣∣Tµ f (z)

∣∣∣q is not more than C times

∞∑
k=1

µ̂r(ak)qτ(ak)2nq−2n
∫

Bρr(ak)
| f (ζ)K(ζ, z)|qω(ζ)qdV(ζ).

From (2.3) and (2.4), we have Br(ak) ⊆ Bρ2r(ζ) if ζ ∈ Bρr(ak). This, together with (2.2) and (2.5),
implies
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∣∣∣Tµ f (z)
∣∣∣q ≤ C

∞∑
k=1

∫
Bρr(ak)

µ̂ρ2r(ζ)qτ(ζ)2nq−2n| f (ζ)|q|K(ζ, z)|qω(ζ)qdV(ζ)

≤ CN
∫
Cn
µ̂ρ2r(ζ)qτ(ζ)2nq−2n| f (ζ)|q|K(ζ, z)|qω(ζ)qdV(ζ)

≤ C
∫
Cn
µ̂δ(ζ)qτ(ζ)2nq−2n| f (ζ)|q|K(ζ, z)|qω(ζ)qdV(ζ).

Similarly, integrating both sides of the above with respect to ω(z)q/2dV(z) and applying Fubini’s
theorem to get (3.7).

Now we suppose (C) is true, by p ≤ q, (3.7) and the fact that

| f (z)|ω(z)1/2 . τ(z)−2n/p‖ f ‖p,ω for f ∈ F p
ω,

we obtain

‖Tµ f ‖qq,ω .
∫
Cn
| f (ζ)|pω(ζ)p/2µ̂δ(ζ)q

(
τ(ζ)−2n/p‖ f ‖p,ω

)q−p
dV(ζ)

.
∥∥∥∥̂µδτ 2n(p−q)

pq

∥∥∥∥q

L∞
‖ f ‖qp,ω

for f ∈ F p
ω. Therefore, Tµ is bounded from F p

ω to Fq
ω and

‖Tµ‖F p
ω→Fq

ω
.

∥∥∥∥̂µδτ 2n(p−q)
pq

∥∥∥∥
L∞
. (3.8)

The estimates of (1.2) come from (3.2), (3.3), (3.5), (3.6) and (3.8). The proof is finished.

Proof of Theorem 1.2. The proof of the implications (B) ⇒ (C) and (C) ⇒ (D) can be carried out as
the same part of Theorem 1.1.

Now we assume µ satisfies condition (D) for some (τ, r)-lattice {ak}k. Then, for ε > 0 there exists

some integer K > 0 such that µ̂r(ak)τ(ak)
2n(p−q)

pq < ε whenever k > K. Notice that,
K⋃

k=1
Bmr(ak) is a

compact subset of Cn, and
{
ks,z : z ∈ Cn} ⊆ F s

ω uniformly converges to 0 on
K⋃

k=1
Bmr(ak) as z → ∞,

where s =
tpq

pq−p+q . From Lemma 2.1, (2.5) and (3.4), when |z| is sufficiently large, we have

µ̃t(z)τ(z)
2n(p−q)

pq

'

∫
Cn

∣∣∣ks,z(ζ)
∣∣∣t ω(ζ)t/2dµ(ζ)

≤

∫
K⋃

k=1
Bmr(ak)

∣∣∣ks,z(ζ)
∣∣∣t ω(ζ)t/2dµ(ζ)

+

∞∑
k=K+1

µ(Br(ak))
(

sup
ζ∈Br(ak)

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2dµ(ζ)

)t/s
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< ε + C
∞∑

k=K+1

µ̂r(ak)τ(ak)
2n(p−q)

pq

(∫
Bmr(ak)

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2dV(ζ)

)t/s

< ε + C sup
k≥K+1

µ̂r(ak)τ(ak)
2n(p−q)

pq

 ∞∑
k=K+1

∫
Bmr(ak))

∣∣∣ks,z(ζ)
∣∣∣s ω(ζ)s/2dV(ζ)

t/s

< ε + CN
pq−p+q

pq
∥∥∥ks,z

∥∥∥t

s,ω
ε = Cε,

where C is independent of ε. This yields that µ̃t(z)τ(z)
2n(p−q)

pq → 0 as z → ∞. So, µ satisfies (B) for any
t > 0.

To prove (A) ⇒ (B), we suppose Tµ is compact from F p
ω to Fq

ω. Since {kp,z : z ∈ Cn} is bounded
in F p

ω,
{
Tµkp,z : z ∈ Cn

}
is relatively compact in Fq

ω. By (3.1), for any ε > 0 there exists some S > 0
such that

sup
z∈Cn

∫
|ζ |>S

∣∣∣Tµkp,z(ζ)
∣∣∣q ω(ζ)q/2dV(ζ) < εq.

When |z| is sufficiently large and ζ ∈ B(z),

|ζ | ≥ |z| − |ζ − z| ≥ |z| − τ(z) & |z| − |z|B ≥ |z|B > S ,

where B ∈ (0, 1) as in (2.1). Hence, B(z) ⊆ {ζ : |ζ | > S }. By the proof of (A) ⇒ (B) in Theorem 1.1,
we obtain

µ̃2(z)τ(z)
2n(p−q)

pq .

(∫
B(z)

∣∣∣Tµkp,z(ζ)
∣∣∣q ω(ζ)q/2dV(ζ)

)1/q

< ε

when |z| is sufficiently large. Hence,

lim
z→∞

µ̃2(z)τ(z)
2n(p−q)

pq = 0.

The equivalence between (B) and (C) shows the above limit is still valid if µ2 is replaced by µt for
any t > 0.

Finally, we suppose the statement (C) is true. For R > 0, set µR to be µR(V) = µ
(
V ∩ B(0,R)

)
for

V ⊆ Cn measurable. Then a similar way to that of Lemma 3.1 in [9] shows TµR is compact from F p
ω to

Fq
ω. And also, µ − µR ≥ 0. By (C) and (1.2), for δ > 0 fixed, we have

‖Tµ − TµR‖F p
ω→Fq

ω
'

∥∥∥∥ ̂(µ − µR)δτ
2n(p−q)

pq

∥∥∥∥
L∞
→ 0

as R→ ∞. Therefore, Tµ is compact from F p
ω to Fq

ω. The proof is finished.

Now we are in the position to prove Theorem 1.3. For our purpose, we recall Khinchine’s inequality.
Let rs be the Rademacher function defined by

r0(t) =

{
1, i f 0 ≤ t − [t] < 1

2
−1, i f 1

2 ≤ t − [t] < 1

and rs(t) = r0(2st) for s = 1, 2, . . . , where [t] denotes the largest integer less than or equal to t. For
0 < l < ∞, there exists some positive constants C1 and C2 depending only on l such that

C1

 m∑
s=1

|bs|
2


l
2

≤

∫ 1

0

∣∣∣∣∣∣∣
m∑

s=1

bsrs(t)

∣∣∣∣∣∣∣
l

dt ≤ C2

 m∑
s=1

|bs|
2


l
2
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for all m ≥ 1 and complex numbers b1, b2, . . . , bm. More details can be found in [13].

Proof of Theorem 1.3. The equivalence among the statements (C), (D) and (E) follows from
Lemma 2.4. It is trivial that (B) ⇒ (A). To finish our proof, we are going to prove the implications
(A)⇒ (E), (D)⇒ (A) and (D)⇒ (B).

To get (A) ⇒ (E), fix δ = δ0 with δ0 in for any (τ, δ0)-lattice {as}s and sequence {λs}s ∈ lp,
we consider

f (z) =

∞∑
n=0

λnkp,as .

By Proposition 2.3 in [1] we know f ∈ F p
ω with ‖ f ‖p,ω . ‖{λs}s‖lp . Since Tµ : F p

ω → Fq
ω is bounded,

we obtain

Tµ( f ) =

∞∑
s=0

λsTµkp,as ∈ Fq
ω.

By Khinchine’s inequality we have ∞∑
s=1

∣∣∣λsTµkp,as(z)
∣∣∣2q/2

.

∫ 1

0

∣∣∣∣∣∣∣
∞∑

s=1

λsrs(t)Tµkp,as(z)

∣∣∣∣∣∣∣
q

dt.

This and Fubini’s theorem give

∫
Cn

 ∞∑
s=1

∣∣∣λsTµkp,as(z)
∣∣∣2q/2

ω(z)q/2dV(z)

.

∫ 1

0
dt

∫
Cn

∣∣∣∣∣∣∣
∞∑

s=1

λsrs(t)Tµkp,as(z)

∣∣∣∣∣∣∣
q

ω(z)q/2dV(z)

=

∫ 1

0

∥∥∥∥∥∥∥Tµ

 ∞∑
s=1

λsrs(t)kp,as


∥∥∥∥∥∥∥

q

q,ω

dt

. ‖Tµ‖
q
F p
ω→Fq

ω
‖{λs}s‖

q
lp .

Meanwhile, there is ∫
Cn

 ∞∑
s=1

∣∣∣λsTµkp,as(z)
∣∣∣2q/2

ω(z)q/2dV(z)

&
∞∑
j=1

∫
Bδ0 (a j)

 ∞∑
s=1

∣∣∣λsTµkp,as(z)
∣∣∣2q/2

ω(z)q/2dV(z)

&
∞∑
j=1

|λ j|
q
∫

Bδ0 (a j)
|Tµkp,a j(z)|qω(z)q/2dV(z)

&
∞∑
j=1

|λ j|
qτ(a j)2n|Tµkp,a j(a j)|qω(a j)q/2
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&
∞∑
j=1

|λ j|
qτ(a j)2n+2nq−2nq/p

∣∣∣∣∣∣
∫

Bδ0 (a j)
|K(a j, ζ)|2ω(ζ)dµ(ζ)

∣∣∣∣∣∣q ω(a j)q

&
∞∑
j=1

|λ j|
qτ(a j)2n−2nq/pµ̂δ0(a j)q,

therefore,

∞∑
j=1

|λ j|
qτ(a j)2n−2nq/pµ̂δ0(a j)q . ‖Tµ‖

q
F p
ω→Fq

ω
‖{λ j} j‖

q
lp

= ‖Tµ‖
q
F p
ω→Fq

ω
‖{|λ j|

q} j‖lp/q .

Since p > q, the conjugate exponent of p
q is p

p−q , the duality argument shows{
τ(a j)2n−2nq/pµ̂δ0(a j)q

}∞
j=1
∈ l

p
p−q ,

and ∥∥∥∥{τ(a j)2n−2nq/pµ̂δ0(a j)q
}

j

∥∥∥∥
l

p
p−q
. ‖Tµ‖

q
F p
ω→Fq

ω
.

This and Lemma 2.4 imply ∥∥∥∥∥{τ(a j)
2n(p−q)

pq µ̂δ(a j)
}

j

∥∥∥∥∥
l

pq
p−q
. ‖Tµ‖F p

ω→Fq
ω

(3.9)

for any (τ, δ)-lattice {a j}. From this, the conclusion (E) follows.
Now we prove (D)⇒ (A). Suppose µ̂s ∈ L

pq
p−q for some s > 0. Similar to that in Theorem 4.4 of [11],

we know
{̂
µs(ak)τ(ak)

2n(p−q)
pq

}
k
∈ l∞ for some (τ, s)-lattice {ak}k. Theorem 1.1 gives µ̂sτ

2n(p−q)
pq ∈ L∞, which

shows that Tµ is well-defined on F p
ω. Notice that p/q > 1. By (3.7), Hölder’s inequality and (2.7), we

obtain

‖Tµ f ‖qq,ω .
{∫
Cn

(
| f (ζ)|qω(ζ)q/2

)p/q
dV(ζ)

}q/p {∫
Cn
µ̂s(ζ)

pq
p−q dV(ζ)

} p−q
p

. ‖̂µs‖
q

L
pq

p−q
‖ f ‖qp,ω

for f ∈ F p
ω. Hence, Tµ is bounded from F p

ω to Fq
ω with

‖Tµ‖F p
ω→Fq

ω
. ‖̂µs‖L

pq
p−q
. (3.10)

To prove (D)⇒ (B), we take µR as µR(V) = µ
(
V ∩ B(0,R)

)
for V ⊆ Cn measurable. Then µ−µR ≥ 0,

and for s > 0 we have
∥∥∥ ̂(µ − µR)s

∥∥∥
L

pq
p−q
→ 0 as R→ ∞. By (3.10),

‖Tµ − TµR‖F p
ω→Fq

ω
= ‖T(µ−µR)‖F p

ω→Fq
ω
.

∥∥∥ ̂(µ − µR)s

∥∥∥
L

pq
p−q
→ 0

whenever R→ ∞. Since TµR is compact from F p
ω to Fq

ω, the operator Tµ : F p
ω → Fq

ω is compact as well.
The norm equivalence (1.3) comes from Lemma 2.3, (3.9) and (3.10). The proof is finished.
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4. Conclusions

In this paper, we study those µ ≥ 0 for which the induced Toeplitz operators Tµ are bounded (or
compact) between two large Fock spaces F p

ω and Fq
ω for all possible 0 < p, q < ∞. Our approach

depends on whether 0 < p ≤ q < ∞ or 0 < q < p < ∞. The boundedness (or compactness) of
Tµ : F p

ω → Fq
ω is characterized in terms of the average or the general Berezin transforms of µ.
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