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1. Introduction

In this paper, we are concerned with the following generalized quasilinear Schrödinger equations

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), x ∈ RN , (1.1)

where N ≥ 3, g ∈ C1(R,R+) is an even function with g′(t) ≥ 0 for all t ≥ 0 and g(0) = 1, h ∈
C(RN × R,R) and V(x) is 1-periodic or asymptotically periodic potential.

The equations are related to the solitary wave solutions for quasilinear Schrödinger equations

izt = −4z + W(x)z − h(x, z) − 4(l(|z|2))l′(|z|2)z, x ∈ RN , (1.2)

where W : RN → R is a given potential, z : R × RN → C, h and l can be used to model
physical phenomenon. The form of (1.2) has many applications in physics. For instance, the case
l(s) = s models the time evolution of the condensate wave function in superfluid film [13, 21]. In the
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case of l(s) =
√

1 + s, problem (1.2) models the self-channeling of a high-power ultrashort laser in
matter [1, 30]. For more physical background, we can refer to [2, 5, 20, 29] and references therein.

Putting z(t, x) = exp(−iEt)u(x) in (1.2), where E ∈ R and u is a real function, we obtain the
following elliptic equation

− 4u + V(x)u − 4(l(u2))l′(u2)u = h(x, u), x ∈ RN . (1.3)

When l(s) = s, Eq (1.3) is the superfluid film equation in plasma physics

− 4u + V(x)u − 4(u2)u = h(x, u), x ∈ RN . (1.4)

Note that Eq (1.4) is a special case of (1.1) if we choose g2(u) = 1 + 2u2. Equation (1.4) has been
extensively studied, to see [3, 23, 27, 33, 34].

When l(s) =
√

1 + s, (1.3) derives the following equation

− 4u + V(x)u − [4(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

= h(x, u), x ∈ RN , (1.5)

which is used as a model of the self-channeling of a high-power ultrashort laser in matter. We obverse
that Eq (1.5) is also a particular case of (1.1) if we take g2(u) = 1 + u2

2(1+u2) .
For (1.5), there were many papers studying the existence of solutions, to see [9, 12, 32, 39] and

references therein. In [19], when the nonlinear term is autonomous, the authors obtained a positive
ground state solution by a perturbation approach. In [4], the authors proved that (1.5) has at least a
positive solution by using a change of variable, monotonicity trick developed by Jeanjean and a priori
estimate. In [16], the authors got the existence of infinitely many nontrivial solutions by using a revised
Clark theorem and a priori estimate of the solution.

Furthermore, if we take g2(u) = 1 +
[(l(u2))′]2

2 , then (1.3) turns into (1.1).
In recent years, many scholars have studied (1.1), for example [6, 7, 10, 11, 22, 24, 28, 31, 35].

Particularly, in [31], the authors obtained a positive solution with the autonomous nonlinear term.
In [6], the authors acquired the existence of ground state solutions with periodic potential. In [10, 11],
the authors established the existence of positive solutions with the critical exponents, where critical
exponents are 2∗ and α2∗, respectively. With regard to generalized quasilinear Schrödinger-Maxwell
systems and generalized quasilinear Schrödinger equation of Kirchhoff type, we can refer to [8, 26, 40]
and references therein. To the best of our knowledge, there is no work concerning with the unified
asymptotic process on V and h at infinity for general quasilinear Schrödinger equations.

Motivated by above papers, we establish the existence of a positive ground state solution for Eq (1.1)
and the corresponding periodic equation. We point out that Eq (1.1) is more general than (1.4)
and (1.5). There are several difficulties in dealing with Eq (1.1). The first one is that the energy
functional associated with Eq (1.1) is not well defined in the whole space H1(RN) due to the presence
of second order nonhomogeneous term. Another difficulty is the lack of compactness owing to
the unboundedness of the domain. The final difficulty is that the functional loses the translation
invariance because of the asymptotically periodic potential. To overcome the above difficulties, we
firstly introduce a change of variable and we reformulate quasilinear elliptic Eq (1.1) into semilinear
elliptic equation, whose associated functional is well defined in our working space. Secondly, we
employ the energy comparison method to overcome the loss of translation invariance. Finally, to find
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a positive ground state solution, we use the Concentration-Compactness Principle, Nehari manifold
method and the strong maximun principle. Our results are a complement and generalization of some
results obtained by [18, 34, 37].

Now, let us recall some basic facts. Set

H1(RN) = {u ∈ L2(RN) : ∇u ∈ L2(RN)},

with the norm
||u||H =

( ∫
RN

(|∇u|2 + |u|2)dx
) 1

2
.

It is well known that in the study of the elliptic equations, the potential function V plays an important
role in dealing with compactness problem. Let us introduce the following working space

X = {u ∈ H1(RN) :
∫
RN

V(x)|u|2dx < ∞},

endowed with the norm
||u|| =

( ∫
RN

(|∇u|2 + V(x)|u|2)dx
) 1

2
, u ∈ X.

Then, the subsequent condition (V) implies that the norm || · || is equivalent to the norm || · ||H (see [18]).
We define the energy functional associated with (1.1) by

Ψ(u) =
1
2

∫
RN

g2(u)|∇u|2dx +
1
2

∫
RN

V(x)u2dx −
∫
RN

H(x, u)dx, (1.6)

where H(x, u) =
∫ u

0
h(x, τ)dτ. However, Ψ is not well defined in the usual Sobolev space H1(RN)

because of the term
∫
RN g2(u)|∇u|2dx. To overcome this difficulty, we make use of the change of variable

introduced by [35],

v = G(u) =

∫ u

0
g(t)dt.

After the change of variable, we can obtain the following functional

Φ(v) =
1
2

∫
RN

[
|∇v|2 + V(x)(G−1(v))2

]
dx −

∫
RN

H(x,G−1(v))dx, (1.7)

where G−1(v) is the inverse function of G(u). Since g is a nondecreasing positive function, we can get
|G−1(v)| ≤ 1

g(0) |v|. From this and our hypotheses, it is easy to verify that Φ is well defined on X and
Φ ∈ C1.

In order to obtain a critical point of (1.1), it suffices to study the following semilinear equations

− ∆v + V(x)
G−1(v)

g(G−1(v))
−

h(x,G−1(v))
g(G−1(v))

= 0, x ∈ RN . (1.8)

If v is said to be a weak solution for Eq (1.8), then it should satisfy

〈Φ′(v), ϕ〉 =

∫
RN

[
∇v∇ϕ + V(x)

G−1(v)
g(G−1(v))

ϕ −
h(x,G−1(v))
g(G−1(v))

ϕ
]
dx = 0, (1.9)
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for any ϕ ∈ C∞0 (RN). We note that if v is a critical point of the functional Φ, then u = G−1(v) is a critical
point of the functional Ψ, i.e. u = G−1(v) is a solution of Eq (1.1).

Next, we give the following condition on potential V:

(V) 0 < V0 ≤ V(x) ≤ Vp(x) ∈ L∞(RN) and V(x) − Vp(x) ∈ F0, where

F0 :=
{
k(x) : ∀ε > 0, lim

|y|→∞
meas {x ∈ B1(y) : |k(x)| ≥ ε} = 0

}
,

V0 is a positive constant and Vp is 1 − periodic in xi, 1 ≤ i ≤ N.

On nonlinearity term h, since we look for a positive ground state solution, we assume that h(x, t) = 0
for all (x, t) ∈ RN × R−. Moreover, the function h satisfies the following assumptions:

(H1) lim
t→0+

h(x, t)
g(t)G(t)

= 0 uniformly for x ∈ RN .

(H2) lim
t→+∞

h(x, t)
g(t)G(t)2∗−1 = 0 uniformly for x ∈ RN ,where 2∗ =

2N
N − 2

for N ≥ 3.

(H3) t 7→
h(x, t)

g(t)G(t)3 is nondecreasing on (0,+∞).

(H4) There exists a periodic function hp ∈ C(RN × R+,R) and hp(x, t) = 0 for all (x, t) ∈
RN × R−, which is 1 − periodic in xi, 1 ≤ i ≤ N, such that

(1) h(x, t) ≥ hp(x, t) for all (x, t) ∈ RN × R+ and h(x, t) − hp(x, t) ∈ F , where

F :=
{
k(x, t) : ∀ε > 0, lim

|y|→∞
meas{x ∈ B1(y) : |k(x, t)| ≥ ε} = 0 uniformly for |t| bound

}
.

(2) t 7→
hp(x, t)

g(t)G(t)3 is nondecreasing on (0,+∞).

(3) lim
t→+∞

Hp(x, t)
G(t)2 = +∞ uniformly for x ∈ RN ,where Hp(x, t) =

∫ t

0
hp(x, τ)dτ.

We employ (H1), (H2) and (H4) conditions to ensure that the energy functional Φ has the mountain
pass geometry structure. However, under these hypotheses, this functional does not satisfy the Cerami
compactness condition, since the domain is all RN . We observe that the condition (H3) and (3) of (H4)
are used in the proof of the boundedness of the Cerami sequence of the functional associated with (1.1).
We also observe that the asymptotic process of (V) and (1) of (H4) is uniform at infinity due to [18],
and then was used in [17, 25, 38].

Now, we present the first result of this paper.
Theorem 1.1. (Asymptotically periodic case). Assume that (V) and (H1) − (H4) hold. Then, Eq (1.1)
has a positive ground state solution.
Remark 1.2. Compared with the known results in [6, 18, 24, 34, 37], our results are new and different
due to the following some facts:

(1) While [18, 34, 37], our model is more general and they are our special case. In our results, there
is no need to assume h(x, t) ∈ C1(RN ,R). The constrained manifold also need not be of class C1.

(2) Contrasting with [34], we give a new asymptotic process of potential and nonlinearity term at
infinity. To some extent, we extend and complement their results.

(3) In [6, 24], they verified the mountain pass geometry structure under the following condition

(H′2) |h(x, t)| ≤ C(1 + g(t)|G(t)|α) for some C > 0 and α ∈ (2, 2∗).
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Our condition (H2) is somewhat weaker than (H′2).

(4) We choose condition (H3) and (3) of (H4) to be weaker than Ambrosetti-Rabinowitz type
condition.

In the special case: V = Vp, h = hp, Theorem 1.1 clearly gives us a solution for the periodic
equation. Indeed, considering the following equation

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + Vp(x)u = hp(x, u), x ∈ RN . (1.10)

under the hypothesis:

(V1) The function Vp is 1-periodic in xi, 1 ≤ i ≤ N and there exists a constant V0 > 0 such that

0 < V0 ≤ Vp(x) ∈ L∞(RN), for all x ∈ RN .

Corollary 1.3. (Periodic case). Assume that (V1) holds, hp satisfies (H1), (H2), (2) of (H4) and (3) of
(H4). Then, Eq (1.10) has a positive ground state solution.
Remark 1.4. To the best of our knowledge, even for the periodic case, our method is new. In [26],
under condition (V1), hp satisfies (H1), (H2) and other conditions. They could get at least one nontrivial
ground state solution by the Mountain Pass Theorem. While, we obtain the existence of a positive
ground state solution with Eq (1.10) by Nehari manifold method.

The rest of this article is organized as follows: In Section 2, we present some preliminary lemmas.
In Section 3, we give the proof for our result.
Notations
• Ls(RN) is the usual Lebesgue space endowed with the norm

||u||s =
( ∫
RN
|u|sdx

) 1
s
,∀s ∈ [1,+∞).

• ||u||∞ = ess supx∈RN |u(x)| denotes the usual norm in L∞(RN).

• (X∗, || · ||∗) is the dual space of (X, || · ||).

• BR(x0) := {x ∈ RN : |x − x0| < R}.

• C represent different positive constants.

2. Some preliminary lemmas

Before we prove the existence of a positive ground state solution for Eq (1.1), we present some
useful lemmas.
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Lemma 2.1. [24, 40] The functions g,G,G−1 satisfy the following properties:

(1) the functions G(·) and G−1(·) are strictly increasing and odd;
(2) G(s) ≤ g(s)s for all s ≥ 0; G(s) ≥ g(s)s for all s ≤ 0;
(3) g(G−1(s)) ≥ g(0) = 1 for all s ∈ R;

(4) |((G−1(s))′| = |
1

g(G−1(s))
| < 1;

(5)
G−1(s)

s
is decreasing on (0,+∞) and increasing on (−∞, 0);

(6) |G−1(s)| ≤
1

g(0)
|s| = |s| for all s ∈ R;

(7)
|G−1(s)|

g(G−1(s))
≤

1
g2(0)

|s| = |s| for all s ∈ R;

(8)
G−1(s)s

g(G−1(s))
≤ |G−1(s)|2 for all s ∈ R;

(9)
G−1(s)

s3g(G−1(s))
is nonincreasing on (0,∞);

(10) lim
|s|→0

G−1(s)
s

=
1

g(0)
= 1 and

lim
|s|→∞

G−1(s)
s

=

{ 1
g(∞) , if g is bounded,
0, if g is unbounded.

Lemma 2.2. Assume that (H1) − (H4) hold, then for all (x, s) ∈ RN × R, we have

h(x,G−1(s))
4g(G−1(s))

− H(x,G−1(s)) ≥ 0,
hp(x,G−1(s))
4g(G−1(s))

− Hp(x,G−1(s)) ≥ 0. (2.1)

For any δ > 0, there exist rδ > 0,Cδ > 0 and α ∈ (2, 2∗) such that

0 ≤
hp(x,G−1(s))

g(G−1(s))
≤

h(x,G−1(s))
g(G−1(s))

≤ δ|s|, ∀(x, s) ∈ RN × [−rδ, rδ], (2.2)

0 ≤
hp(x,G−1(s))

g(G−1(s))
≤

h(x,G−1(s))
g(G−1(s))

≤ δ|s| + Cδ|s|2
∗−1, ∀(x, s) ∈ RN × R, (2.3)

0 ≤
hp(x,G−1(s))

g(G−1(s))
≤

h(x,G−1(s))
g(G−1(s))

≤ Cδ|s| + δ|s|2
∗−1, ∀(x, s) ∈ RN × R, (2.4)

0 ≤
hp(x,G−1(s))

g(G−1(s))
≤

h(x,G−1(s))
g(G−1(s))

≤ δ(|s| + |s|2
∗−1) + Cδ|s|α−1, ∀(x, s) ∈ RN × R, (2.5)

0 ≤ Hp(x,G−1(s)) ≤ H(x,G−1(s)) ≤
δ

2
|s|2 +

Cδ

2∗
|s|2

∗

, ∀(x, s) ∈ RN × R, (2.6)

0 ≤ Hp(x,G−1(s)) ≤ H(x,G−1(s)) ≤
δ

2
|s|2 +

δ

2∗
|s|2

∗

+
Cδ

α
|s|α, ∀(x, s) ∈ RN × R. (2.7)
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Proof. We give the proof the first inequality of (2.1). From (H3), we have

H(x, t) =

∫ t

0
h(x, τ)dτ =

∫ t

0

h(x, τ)
g(τ)G(τ)3 g(τ)G(τ)3dτ

≤
h(x, t)

g(t)G(t)3

∫ t

0
g(τ)G(τ)3dτ =

h(x, t)
g(t)G(t)3

∫ t

0
G(τ)3dG(τ) =

h(x, t)G(t)
4g(t)

,

that is

H(x, t) ≤
h(x, t)G(t)

4g(t)
,

then, taking t = G−1(s), (2.1) is proved. According to (H1) − (H4) conditions, it is easy to deduce the
inequalities of (2.2)–(2.7).
Lemma 2.3. [18] Assume that condition (V) holds. Then, there are two positive constants d1 and d2

such that d1||u||H ≤ ||u|| ≤ d2||u||H for all u ∈ X.
Define the Nehari manifold

N := {v ∈ X \ {0} : 〈Φ′(v), v〉 = 0},

and set c := infv∈N Φ(v).
Lemma 2.4. Assume that (V) and (H1) − (H4) are satisfied, then for any v ∈ X, v , 0, there exists a
unique tv > 0 such that tvv ∈ N . Moreover, the maximun of Φ(tv) for t ≥ 0 is arrived at tv.
Proof. Let v ∈ X \ {0} and define a function f (t) := Φ(tv) on [0,∞). It follows from Lemma 2.1-(10),
(H1) and the Lebesgue dominated convergence theorem that

f (t)
t2 =

1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)
(G−1(tv))2

t2 dx −
∫
RN

H(x,G−1(tv))
t2 dx

=
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)
(G−1(tv))2

t2v2 v2dx −
∫
RN

H(x,G−1(tv))
t2v2 v2dx

→
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)v2dx,

when t → 0, which shows that f (t) > 0 for t > 0 small enough. Set Ω = {x ∈ RN : v(x) > 0}. Using the
fact that (1), (3) of (H4) and the Fatou lemma, We have

lim inf
t→+∞

∫
Ω

H(x,G−1(tv))
t2v2 v2dx ≥ lim inf

t→+∞

∫
Ω

Hp(x,G−1(tv))
t2v2 v2dx = +∞. (2.8)

Hence, from Lemma 2.1-(6) and (2.8), we can get

lim sup
t→+∞

f (t)
t2 ≤

1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)v2dx − lim inf
t→+∞

∫
Ω

Hp(x,G−1(tv))
t2v2 v2dx,

which deduces f (t) → −∞ as t → +∞. So there exists tv > 0 such that f (tv) = maxt>0 f (t) and
f ′(tv) = 0, i.e., Φ(tvv) = maxt>0 Φ(tv) and tvv ∈ N .
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The condition f ′(t) = 0 is equivalent to

1
t2 ||∇v||22 =

∫
v,0

[ h(x,G−1(tv))
g(G−1(tv))t3v3 − V(x)

G−1(tv)
g(G−1(tv))t3v3

]
v4dx. (2.9)

By (H3) and Lemma 2.1-(9), the right side of (2.9) is increasing for t > 0. So, there is a unique tv > 0
such that f ′(tv) = 0.

From Lemma 2.4, we can obtain the following lemma easily.
Lemma 2.5. Assume that (V) and (H1) − (H4) are satisfied. Then, the functional Φ satisfies the
following mountain pass geometry structure:

(i) there exist positive constants ρ and b such that Φ(v) ≥ b for ||v|| = ρ;
(ii) there exists a function v0 ∈ X such that ||v0|| > ρ and Φ(v0) < 0.

Lemma 2.6. Assume that (V) and (H1) − (H4) hold, then there exists a bounded Cerami sequence
{vn} ⊂ X for Φ.
Proof. From Lemma 2.5, we know that Φ satisfies the mountain pass geometry structure. Thus, the
mountain pass theorem deduces that there exists a Cerami sequence {vn} ⊂ X such that

Φ(vn)→ c and (1 + ||vn||)||Φ′(vn)||∗ → 0, (2.10)

where c := infv∈N Φ(v).
We claim that a Cerami sequence {vn} ⊂ X satisfies∫

RN
|∇vn|

2dx +

∫
RN

V(x)(G−1(vn))2dx ≤ M, (2.11)

for some M > 0.
From (2.10), we have

Φ(vn) =
1
2

∫
RN

[
|∇vn|

2 + V(x)(G−1(vn))2
]
dx −

∫
RN

H(x,G−1(vn))dx→ c, (2.12)

and

〈Φ′(vn), vn〉 =

∫
RN

[
|∇vn|

2 + V(x)
G−1(vn)

g(G−1(vn))
vn −

h(x,G−1(vn))
g(G−1(vn))

vn

]
dx = on(1)||vn||. (2.13)

From (2.1), (2.12), (2.13) and Lemma 2.1-(8), we obtain

c + 1 ≥ Φ(vn) −
1
4
〈Φ′(vn), vn〉

=
1
4

∫
RN
|∇vn|

2dx +
1
4

∫
RN

V(x)(G−1(vn))2dx +
1
4

∫
RN

V(x)
[
(G−1(vn))2 −

G−1(vn)vn

g(G−1(vn)

]
+

∫
RN

[h(x,G−1(vn))vn

4g(G−1(vn))
− H(x,G−1(vn))

]
dx

≥
1
4

∫
RN
|∇vn|

2dx +
1
4

∫
RN

V(x)(G−1(vn))2dx,

that is ∫
RN
|∇vn|

2 +

∫
RN

V(x)(G−1(vn))2dx ≤ 4(c + 1) := M. (2.14)
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Thus, (2.11) holds.
Next, we claim that

∫
RN v2

ndx is bounded. In fact, by Lemma 2.1-(2) and (2.14), we have∫
|G−1(vn)|≤1

v2
ndx ≤ g2(1)

∫
|G−1(vn)|≤1

(G−1(vn))2dx

≤
C2

V0

∫
|G−1(vn)|≤1

V(x)(G−1(vn))2dx ≤
C2

V0
M.

(2.15)

Moreover, by the Sobolev inequality and (2.14), we deduce that∫
|G−1(vn)|>1

v2
ndx ≤

∫
|G−1(vn)|>1

v2∗
n dx ≤ C

( ∫
|G−1(vn)|>1

|∇vn|
2dx

) 2∗
2

≤ C
( ∫
RN
|∇vn|

2dx
) 2∗

2
≤ CM

2∗
2 .

(2.16)

Obviously, there is a constant C > 0 such that∫
RN

v2
ndx =

∫
|G−1(vn)|≤1

v2
ndx +

∫
|G−1(vn)|>1

v2
ndx ≤ C. (2.17)

The claim is proved, then combining (2.14) with (2.17), {vn} ⊂ X is bounded.

3. Proof of Theorem 1.1

In this section, before proving Theorem 1.1, we give three important lemmas to help us complete
the proof of Theorem 1.1.
Lemma 3.1. [18] Assume that (V) and (H1) − (H4) are satisfied. If v ∈ N and Φ(v) = c, then v is a
solution of problem (1.1).

Since V(x) is asymptotically periodic. In this case, the functional Φ loses the translation invariance.
The following two lemmas give careful estimates among V and Vp, h and hp, H and Hp, which is
inspired by [18, 37].
Lemma 3.2. Assume that (V), (H1), (H2) and (1) of (H4) hold. Suppose that {vn} is bounded in X and
vn → 0 in Lγloc(R

N), for any γ ∈ [2, 2∗), then up to a subsequence, one has

(i)
∫
RN

(
V(x) − Vp(x)

)
(G−1(vn))2dx = on(1). (3.1)

(ii)
∫
RN

[
H(x,G−1(vn)) − Hp(x,G−1(vn))

]
dx = on(1). (3.2)

Proof. (i) The proof of (3.1). Firstly, we assert that for any given k(x) ∈ F0 and ε > 0, there exists
Rε > 0 such that ∫

{x:|k(x)|≥ε}
|v|2dx ≤ C

∫
BRε+1(0)

|v|2dx + Cε
2
N ||v||2H, ∀v ∈ X, (3.3)

where C is a constant and independent on ε. (3.3) has already been proved in [18]. For the convenience
of readers, we give a brief proof as following. According to the definition of F0, for any ε > 0, there
exists Rε > 0 such that

meas{x ∈ B1(y) : |k(x)| ≥ ε} < ε, ∀|y| ≥ Rε.
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Covering RN by balls B1(yi), i ∈ N, where each point of RN is contained in at most N + 1 balls. Without
loss of generality, we assume that |yi| < Rε, i = 1, 2, · · ·, nε and |yi| ≥ Rε, i = nε + 1, nε + 2, · · ·,+∞. By
the Hölder and Sobolev inequalities, we have

∫
{x:|k(x)|≥ε}

|v|2dx ≤
+∞∑
i=1

∫
Ωi

|v|2dx

=

nε∑
i=1

∫
Ωi

|v|2dx +

+∞∑
i=nε+1

∫
Ωi

|v|2dx

≤ (N + 1)
∫
{x∈BRε+1(0):k(x)≥ε}

|v|2dx +

+∞∑
i=nε+1

(measΩi)
2
N
( ∫

Ωi

|v|2
∗

dx
) N−2

N

≤ (N + 1)
∫

BRε+1(0)
|v|2dx + Cε

2
N

+∞∑
i=nε+1

∫
Ωi

(|∇v|2 + v2)dx

≤ C
∫

BRε+1(0)
|v|2dx + Cε

2
N ||v||2H,

where Ωi = {x ∈ B1(yi) : |k(x)| ≥ ε}.
Set k(x) := V(x) − Vp(x) ∈ F0, by Lemma 2.1-(6), we have

∣∣∣∣ ∫
RN

(
V(x) − Vp(x)

)
(G−1(vn))2dx

∣∣∣∣ ≤ ∫
RN
|k(x)||G−1(vn)|2dx

≤

∫
RN
|k(x)v2

n|dx =

∫
{x:|k(x)|≥ε}

|k(x)v2
n|dx +

∫
{x:|k(x)|<ε}

|k(x)v2
n|dx

≤ 2||Vp||∞

[
C

∫
BRε+1(0)

v2
ndx + Cε

2
N ||vn||

2
H

]
+ ε

∫
RN
|vn|

2dx

= Cε
2
N + Cε + on(1).

Let ε→ 0, this completes the proof of (3.1).
(ii) The proof of (3.2). Let h(x, s) := h(x, s) − hp(x, s) ∈ F . By the definition of F , for any ε > 0,

there exists Rε > 0 such that

meas {x ∈ B1(y) : |h̄(x, s)| ≥ ε} < ε, ∀ |y| ≥ Rε, |s| ≤
1
ε
,

covering RN by balls B1(yi), i ∈ N, where each point of RN is contained in at most N + 1 balls. Without
loss of generality, we assume that |yi| < Rε, i = 1, 2, · · ·, nε and |yi| ≥ Rε, i = nε + 1, nε + 2, · · ·,+∞.
Using the mean value theorem and Lemma 2.1-(4), there exists tn ∈ (0, 1) such that

H(x,G−1(vn)) − Hp(x,G−1(vn)) =
[
h(x,G−1(tnvn)) − hp(x,G−1(tnvn))

]
(G−1(tnvn))′vn

=

[
h(x,G−1(tnvn)) − hp(x,G−1(tnvn))

]
vn

g(G−1(tnvn))
.

AIMS Mathematics Volume 7, Issue 1, 1015–1034.



1025

Set
Ω1 := {x ∈ B1(yi) : |h(x,G−1(tnvn))| < ε},

Ω2 := {x ∈ B1(yi) : |G−1(tnvn)| ≤
1
ε
, |h(x,G−1(tnvn))| ≥ ε},

Ω3 := {x ∈ B1(yi) : |G−1(tnvn)| >
1
ε
, |h(x,G−1(tnvn))| ≥ ε}.

Then, we obtain ∣∣∣∣ ∫
RN

[
H(x,G−1(vn)) − [Hp(x,G−1(vn))

]
dx

∣∣∣∣
≤

+∞∑
i=1

∫
B1(yi)

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

=

nε∑
i=1

∫
B1(yi)

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

+

+∞∑
i=nε+1

∫
B1(yi)

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

=

nε∑
i=1

∫
B1(yi)

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

+

+∞∑
i=nε+1

∫
Ω1

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

+

+∞∑
i=nε+1

∫
Ω2

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

+

+∞∑
i=nε+1

∫
Ω3

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

:= Φ1 + Φ2 + Φ3 + Φ4.

From (2.4), we have

Φ1 ≤ (N + 1)
∫

BRε+1(0)

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn)
dx

≤ (N + 1)
∫

BRε+1(0)
2(Cδ|tnvn| + δ|tnvn|

2∗−1)|vn|dx

≤ 2(N + 1)Cδ

∫
BRε+1(0)

|vn|
2dx + 2(N + 1)δ

∫
BRε+1(0)

|vn|
2∗dx

≤ Cδ + on(1).

Set
Ω11 := {x ∈ B1(yi) : |h(x,G−1(tnvn))| < ε, |G−1(tnvn)| ≤ rδ},

Ω12 := {x ∈ B1(yi) : |h(x,G−1(tnvn))| < ε, |G−1(tnvn)| > rδ}.
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By (2.2), we obtain

Φ2 =

+∞∑
i=nε+1

∫
Ω11

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

+

+∞∑
i=nε+1

∫
Ω12

|h(x,G−1(tnvn)) − hp(x,G−1(tnvn))||vn|

g(G−1(tnvn))
dx

≤

+∞∑
i=nε+1

∫
Ω11

2δ|tnvn||vn|dx +

+∞∑
i=nε+1

∫
Ω12

ε

rδ
|tnvn||vn|dx

≤ 2δ
+∞∑

i=nε+1

∫
Ω11

|vn|
2dx +

ε

rδ

+∞∑
i=nε+1

∫
Ω12

|vn|
2dx

≤ 2(N + 1)δ
∫
RN
|vn|

2dx +
(N + 1)ε

rδ

∫
RN
|vn|

2dx

≤ Cδ + Cε.

From (2.4), Hölder and Sobolev inequalities, we get

Φ3 ≤

+∞∑
i=nε+1

∫
Ω2

2
[
(Cδ|tnvn| + δ|tnvn|

2∗−1)vn

]
dx

≤

+∞∑
i=nε+1

[
2Cδ

∫
Ω2

|vn|
2dx + 2δ

∫
Ω2

|vn|
2∗dx

]
≤ 2Cδ

+∞∑
i=nε+1

(meas Ω2)
2
N
( ∫

Ω2

|vn|
2∗dx

) N−2
N

+ 2(N + 1)δ
∫
RN
|vn|

2∗dx

≤ 2Cδ(N + 1)ε
2
N

∫
RN

(|∇vn|
2 + |vn|

2)dx + Cδ

≤ Cε
2
N + Cδ.

Due to (2.5), one has

Φ4 ≤

+∞∑
i=nε+1

∫
Ω3

2
[
(δ|tnvn| + δ|tnvn|

2∗−1 + Cδ|tnvn|
α−1)vn

]
dx

≤

+∞∑
i=nε+1

∫
Ω3

2
(
δ|vn|

2 + δ|vn|
2∗ + Cδ|vn|

α
)
dx

≤ 2δ(N + 1)
∫
RN

(|vn|
2 + |vn|

2∗)dx + 2Cδε
2∗−α

+∞∑
i=nε+1

∫
Ω3

|vn|
2∗dx

≤ Cδ + Cε2∗−α.

Now, let ε→ 0 and then δ→ 0, we have Φi → 0, i = 1, 2, 3, 4, the proof of (3.2) is completed.
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Lemma 3.3. Assume that (V), (H1), (H2) and (1) of (H4) are satisfied. If {vn} is bounded in X
and |yn| → +∞. Then, for any ϕ ∈ C∞0 (RN), one has

(i)
∫
RN

(
V(x) − Vp(x)

) G−1(vn)
g(G−1(vn))

ϕ(x − yn)dx = on(1). (3.4)

(ii)
∫
RN

h(x,G−1(vn)) − hp(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)dx = on(1). (3.5)

Proof. (i) The proof of (3.4). By Lemma 2.1-(3) and (6), we have

∣∣∣∣ G−1(vn)
g(G−1(vn))

ϕ
∣∣∣∣ ≤ |G−1(vn)ϕ| ≤ |vnϕ|. (3.6)

Due to ϕ ∈ C∞0 (RN), one has ∫
BRε+1(0)

|ϕ(x − yn)|2dx = on(1). (3.7)

Set k(x) := V(x) − Vp(x) ∈ F , in view of (3.3), (3.6), (3.7) and the Hölder inequality, we have

∣∣∣∣ ∫
RN

(
V(x) − Vp(x)

) G−1(vn)
g(G−1(vn))

ϕ(x − yn)dx
∣∣∣∣ ≤ ∫

RN

∣∣∣∣(V(x) − Vp(x)
) G−1(vn)
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

=

∫
{x:|k(x)|≥ε}

∣∣∣∣k(x)
G−1(vn)

g(G−1(vn))
ϕ(x − yn)

∣∣∣∣dx +

∫
{x:|k(x)|<ε}

∣∣∣∣k(x)
G−1(vn)

g(G−1(vn))
ϕ(x − yn)

∣∣∣∣dx

≤ 2||Vp||∞

∫
{x:|k(x)|≥ε}

|vnϕ(x − yn)|dx + ε

∫
{x:|k(x)|<ε}

|vnϕ(x − yn)|dx

≤ 2||Vp||∞||vn||2

( ∫
{x:|k(x)|≥ε}

|ϕ(x − yn)|2dx
) 1

2
+ ε||vn||2||ϕ||2

≤ 2||Vp||∞||vn||2

(
C

∫
BRε+1(0)

|ϕ(x − yn)|2dx + Cε
2
N ||ϕ||2H

) 1
2

+ ε||vn||2||ϕ||2

≤ Cε
1
N + Cε + on(1).

Let ε→ 0, (3.4) is proved.
(ii) The proof of (3.5). Let h(x, s) := h(x, s) − hp(x, s) ∈ F . As the proof of Lemma 3.2, covering

RN by balls B1(yi). Set

Ω4 := {x ∈ B1(yi) : |h(x,G−1(vn))| < ε},

Ω5 := {x ∈ B1(yi) : |G−1(vn)| ≤
1
ε
, |h(x,G−1(vn))| ≥ ε},

Ω6 := {x ∈ B1(yi) : |G−1(vn)| >
1
ε
, |h(x,G−1(vn))| ≥ ε}.
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We obtain

∫
RN

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

≤

nε∑
i=1

∫
B1(yi)

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx +

+∞∑
i=nε+1

∫
B1(yi)

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

=

nε∑
i=1

∫
B1(yi)

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx +

+∞∑
i=nε+1

∫
Ω4

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

+

+∞∑
i=nε+1

∫
Ω5

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx +

+∞∑
i=nε+1

∫
Ω6

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

:= Φ5 + Φ6 + Φ7 + Φ8.

From (2.4) and (3.7), we have

Φ5 ≤ (N + 1)
∫

BRε+1(0)

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

≤ (N + 1)
∫

BRε+1(0)
2(Cδ|vn| + δ|vn|

2∗−1)|ϕ(x − yn)|dx

≤ 2(N + 1)Cδ

∫
BRε+1(0)

|vn||ϕ(x − yn)|dx + 2(N + 1)δ
∫

BRε+1(0)
|vn|

2∗−1|ϕ(x − yn)|dx

≤ 2Cδ||vn||2

( ∫
BRε+1(0)

|ϕ(x − yn)|2
) 1

2
+ 2(N + 1)δ||vn||

2∗−1
2∗ ||ϕ||2∗

≤ Cδ + on(1).

On account of Lemma 2.1-(3), we obtain

Φ6 =

+∞∑
i=nε+1

∫
Ω4

∣∣∣∣h(x,G−1(vn))
g(G−1(vn))

ϕ(x − yn)
∣∣∣∣dx

≤ ε

+∞∑
i=nε+1

∫
Ω4

|ϕ(x − yn)|dx

≤ (N + 1)ε
∫
RN
|ϕ(x − yn)|dx

≤ Cε.
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From (2.4), the Hölder, Yong and Sobolev inequalities, one has

Φ7 ≤

+∞∑
i=nε+1

∫
Ω5

2(Cδ|vn| + δ|vn|
2∗−1)|ϕ(x − yn)|dx

≤

+∞∑
i=nε+1

∫
Ω5

2Cδ|vnϕ(x − yn)|dx +

+∞∑
i=nε+1

∫
Ω5

2δ|vn|
2∗−1|ϕ(x − yn|dx

≤ 2Cδ

+∞∑
i=nε+1

(meas Ω5)
2
N ×

( ∫
Ω5

(|vnϕ(x − yn)|)
N

N−2 dx
) N−2

N
+ 2(N + 1)δ||vn||

2∗−1
2∗ ||ϕ||2∗

≤ 2Cδε
2
N

+∞∑
i=nε+1

( ∫
Ω5

(
|vn|

2∗

2
+
|ϕ(x − yn)|2

∗

2
)dx

) N−2
N

+ Cδ

≤ 2Cδε
2
N

+∞∑
i=nε+1

[(1
2

∫
Ω5

|vn|
2∗dx

) N−2
N

+
(1
2

∫
Ω5

|ϕ(x − yn)|2
∗

dx
) N−2

N
]

+ Cδ

≤ 2Cδε
2
N (N + 1)(

1
2

)
N−2

N C
[ ∫
RN

(|∇vn|
2 + |vn|

2)dx +

∫
RN

(|∇ϕ(x − yn)|2 + |ϕ(x − yn)|2)dx
]

+ Cδ

= Cε
2
N + Cδ.

By using (2.5) and Hölder inequality, we have

Φ8 ≤

+∞∑
i=nε+1

∫
Ω6

2
(
δ|vn| + δ|vn|

2∗−1 + Cδ|vn|
α−1

)
|ϕ(x − yn)|dx

≤ 2δ(N + 1)
∫
RN
|vnϕ(x − yn)|)|dx + 2δ(N + 1)

∫
RN
|vn|

2∗−1|ϕ(x − yn)|dx

+ 2Cδε
2∗−α

+∞∑
i=nε+1

∫
Ω6

|vn|
2∗−1|ϕ(x − yn)|dx

≤ 2δ(N + 1)(||vn||2||ϕ||2 + ||vn||
2∗−1
2∗ ||ϕ||2∗) + 2(N + 1)Cδε

2∗−α||vn||
2∗−1
2∗ ||ϕ||2∗

≤ Cδ + Cδε
2∗−α.

As before, let ε→ 0 and then δ→ 0, we get Φi → 0, i = 5, 6, 7, 8, we complete the proof of (3.5).
Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. We can follow the energy comparison method in [15] to give the proof of

Theorem 1.1. The functional Φ is rewritten as

Φ(v) =
1
2

∫
RN

[
|∇v|2 + V(x)(G−1(v))2

]
dx −

∫
RN

H(x,G−1(v))dx.

We also need to consider the corresponding periodic functional Φp : X → R,

Φp(v) =
1
2

∫
RN

[
|∇v|2 + Vp(x)(G−1(v))2

]
dx −

∫
RN

Hp(x,G−1(v))dx.

By Lemma 2.5, there exists a Cerami sequence {vn} ⊂ X, such that

Φ(vn)→ c and (1 + ||vn||)||Φ′(vn)||∗ → 0.
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According to Lemma 2.6, the Cerami sequence {vn} is bounded in X. Thus, there exists v ∈ X such that
vn ⇀ v in X and then Φ′(v) = 0, that is v is a weak solution of problem (1.8). The proof of this result
is standard, so we omit here.

(i) The case v = 0. Then vn ⇀ 0 in X, vn → 0 in Lγloc(R
N), 2 ≤ γ < 2∗ and vn(x) → 0 a.e. on RN .

From Lemma 3.2 and Lemma 3.3, we can deduce that∣∣∣∣Φ(vn) − Φp(vn)
∣∣∣∣ ≤ 1

2

∫
RN

∣∣∣∣(V(x) − Vp(x)
)
(G−1(vn))2

∣∣∣∣dx

+

∫
RN

∣∣∣∣H(x,G−1(vn)) − Hp(x,G−1(vn))
∣∣∣∣dx = on(1),

(3.8)

and taking ϕ ∈ X with ||ϕ|| = 1, we obtain that∣∣∣∣∣∣∣∣〈Φ′(vn) − Φ′p(vn)
∣∣∣∣∣∣∣∣
∗
≤ sup

ϕ∈X,||ϕ||=1

[ ∫
RN

∣∣∣∣(V(x) − Vp(x)
) G−1(vn)
g(G−1(vn))

ϕ
∣∣∣∣dx

+

∫
RN

∣∣∣∣h(x,G−1(vn)) − hp(x,G−1(vn))
g(G−1(vn))

ϕ
∣∣∣∣dx

]
= on(1).

(3.9)

From (3.8) and (3.9), we can get that {vn} is also a Cerami sequence for Φp. Namely,

Φp(vn)→ c and (1 + ||vn||)||Φ′p(vn)||∗ → 0. (3.10)

Define
β := lim sup

n→∞
sup
y∈RN

∫
B1(y)

v2
ndx,

if β = 0, the Lions lemma [14], we have vn → 0 in Lα(RN) for all α ∈ (2, 2∗).
From (2.5) and (2.7), we have

lim
n→∞

∫
RN

H(x,G−1(vn))dx = lim
n→∞

∫
RN

h(x,G−1(vn))vn

g(G−1(vn)
dx = 0. (3.11)

It is implied by Lemma 2.1-(8) that

0 ≤ |G−1(s)|2 −
G−1(s)s

g(G−1(s))
→ 0(s→ 0). (3.12)

Then, combining with (3.11) and (3.12), we obtain

c = Φ(vn) −
1
2
〈Φ′(vn), vn〉 + on(1)

=
1
2

∫
RN

V(x)
[
(G−1(vn))2 −

G−1(vn)vn

g(G−1(vn)

]
dx +

∫
RN

[h(x,G−1(vn))vn

2g(G−1(vn))
− H(x,G−1(vn))

]
dx + on(1)

→ 0.

This contradiction shows β > 0. Up to a subsequence, there exist a sequence {yn} ⊂ Z
N and r > 0 such

that |yn| → ∞, ∫
Br(0)

w2
ndx =

∫
Br(yn)

v2
ndx ≥

β

2
> 0, (3.13)
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where wn(x) := vn(x + yn). Since ||wn|| = ||vn||, we see that {wn} is bounded. Going if necessary to a
subsequence, we have wn ⇀ w in X, wn → w in Lγloc(R

N), 2 ≤ γ < 2∗ and wn(x) → w(x) a.e. on RN .
Thus, (3.13) implies that w , 0. For any ϕ ∈ C∞0 (RN), we have

〈Φ′p(w), ϕ〉 = lim
n→∞
〈Φ′p(wn), ϕ〉 = 0.

Hence Φ′p(w) = 0. Next, our task is to verify that Φp(w) ≤ c. Since

||wn|| = ||vn||, Φp(vn) = Φp(wn), Φ′p(vn) = Φ′p(wn). (3.14)

From (2.1), (3.10), (3.14), Lemma 2.1-(8), (1) of (H4) and the Fatou lemma, we obtain

c = lim inf
n→∞

[
Φp(wn) −

1
4
〈Φ′p(wn),wn〉

]
= lim inf

n→∞

1
4

∫
RN

[
|∇wn|

2 + Vp(x)(G−1(wn))2
]
dx + lim inf

n→∞

1
4

∫
RN

Vp(x)
[
(G−1(wn))2 −

G−1(wn)wn

g(G−1(wn)

]
dx

+ lim inf
n→∞

∫
RN

[hp(x,G−1(wn))wn

4g(G−1(wn))
− Hp(x,G−1(wn))

]
dx

≥
1
4

∫
RN

[
|∇w|2 + Vp(x)(G−1(w))2

]
dx +

1
4

∫
RN

Vp(x)
[
(G−1(w))2 −

G−1(w)w
g(G−1(w)

]
dx

+

∫
RN

[hp(x,G−1(w))wn

4g(G−1(w))
− Hp(x,G−1(w))

]
dx

= Φp(w) −
1
4
〈Φ′p(w),w〉 = Φp(w).

(3.15)
By (3.15), (1) of (H4) and the definition of c

c ≤ Φ(tww) ≤ Φp(tww) ≤ Φp(w) ≤ c.

This implies that Φ(tww) = c. Let w0 = tww, then w0 ∈ N and Φ(w0) = c. In view of Lemma 3.1,
Φ′(w0) = 0. This shows that w0 is a ground state solution of problem (1.8).

(ii) The case v , 0. Since v is a weak solution of problem (1.8), Φ(v) ≥ c. It follows from (2.1),
Lemma 2.1-(8) and Fatou’s lemma that

c = lim inf
n→∞

[
Φ(vn) −

1
4
〈Φ′(vn), vn〉

]
= lim inf

n→∞

1
4

∫
RN

[
|∇vn|

2 + V(x)(G−1(vn))2
]
dx + lim inf

n→∞

1
4

∫
RN

V(x)
[
(G−1(vn))2 −

G−1(vn)vn

g(G−1(vn)

]
dx

+ lim inf
n→∞

∫
RN

[h(x,G−1(vn))vn

4g(G−1(vn))
− H(x,G−1(vn))

]
dx

≥
1
4

∫
RN

[
|∇v|2 + V(x)(G−1(v))2

]
dx +

1
4

∫
RN

V(x)
[
(G−1(v))2 −

G−1(v)v
g(G−1(v)

]
dx

+

∫
RN

[h(x,G−1(v))v
4g(G−1(v))

− H(x,G−1(v))
]
dx

= Φ(v) −
1
4
〈Φ′(v), v〉 = Φ(v).
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This shows that Φ(v) = c and Φ′(v) = 0, which implies that v is a ground state solution of problem (1.8).
From (i) and (ii), we can obtain that Eq (1.8) has a ground state solution v ∈ X. By using the strong

maximum principle [36], we can get that v is a positive ground state solution of (1.8). Namely, Eq (1.1)
possesses a positive ground state solution u = G−1(v) and the proof is completed.

4. Conclusions

In this paper, we have established the existence of a positive ground state solution for Eqs (1.1)
and (1.10) by the variational method. In comparison with previous works, this paper has several new
features. Firstly, we consider a more general model than the literature [18, 34, 37]. Secondly, compared
to the literature [34], we give a new asymptotic process of potential and nonlinearity term. Finally, we
choose the more general nonlinear term than Ambrosetti-Rabinowitz condition. Therefore, to some
extent, we have improved and extended the results of the existing literature.
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