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1. Introduction

Let G be a bounded domain in Rn. Recall that a Radon measure µ on the domain G is said to satisfy
the polynomial growth condition, if there exists a positive constant C0 such that, for all x ∈ G and
r ∈ (0,∞),

µ(B(x, r)) ≤ C0rd, (1.1)

where d is a fixed number in (0, n] and B(x, r) := {y ∈ G : |x − y| < r}. The bounded domain G with
a such Radon measure is also called a non-homogeneous space. Moreover, Tolsa [24] showed that
the analysis associated with the non-homogeneous space over Euclidean space Rn plays a key role in
solving the long-standing open Painlevé’s problem and Vitushkin’s conjecture. On the development
and research of the operators and function spaces over non-homogeneous spaces, we refer readers to
see [5, 7, 17, 19, 21–23, 25].

On the other hand, Iwaniec and Sbordone [9] introduced the theory of grand Lebesgue space Lp),
which is one of the intensively developing directions in Modern analysis. What’s more, the grand
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Lebesgue spaces have important applications in geometric function theory, Sobolev spaces theory
and PDEs; for example, see [1–3, 6, 10], respectively. Since then, many papers focus on the grand
spaces and the boundedness of operators on these spaces. For example, Kokilashvili [11] obtained
the boundedness of several well-known operators on weighted grand Lebesgue spaces. In 2019,
Kokilashvili et al. established the weighted extrapolation results in grand Morrey spaces and obtained
some applications in PDE (see [15]). In 2021, Kokilashvili and Meskhi [12] obtain the boundedness
of maximal operators, fractional integral operators and singular integral operators on generalized
weighted grand Lebesgue spaces over non-doubling measures. More researches on the boundedness
of integral operators in grand spaces can be seen [13, 14, 16, 20] and the references therein. The
interpolation result in grand spaces can be seen in [4, 8].

In this paper, we will consider the boundedness of maximal operators, fractional integral operators
and θ-type Calderón-Zygmund operators in grand generalized Morrey spaces Lp),ϕ,φ

µ (G) over non-
homogeneous spaces. For the study of maximal operators, fractional integral operators and θ-type
Calderón-Zygmund operators in generalized Morrey spaces defined on non-homogeneous spaces, we
rely on the results of references [5, 18, 21].

Now let us begin to recall some necessary notions. The following definitions of the coefficient KB,S

and (α, β)-doubling ball are from [23], also see [5].
Definition 1.1. For any two balls B ⊂ S , define

KB,S := 1 +

NB,S∑
k=1

µ(2kB)
(2krB)n , (1.2)

where rB and rS respectively denote the radii of the balls B and S , and NB,S the smallest integer
satisfying 2NB,S rB ≥ rS .
Definition 1.2. Let α, β ∈ (1,∞). A ball B ⊂ G is said to be (α, β)-doubling if µ(αB) ≤ βµ(B).

In [23], Tolsa showed that there exists a lot of ”big” doubling balls. To be precise, given any point
x ∈ supp(µ) and c > 0, there exists some (α, β)-doubling ball B centered at x with radius rB ≥ c due to
the growth condition (1.1).

Let 1 < p < ∞ and ϕ be a function on (0, p−1] which is a positive bounded and satisfies lim
x→0

ϕ(x) =

0. The class of such functions will be simply denoted by Φp. Then the norm of functions f in grand
Lebesgue space Lp),ϕ

µ (G) is defined by

‖ f ‖Lp),ϕ
µ (G) = sup

0<ε<p−1
[ϕ(ε)]

1
p−ε ‖ f ‖Lp−ε

µ (G), (1.3)

where Lr
µ(G) is the classical Lebesgue space with respect to a measure µ, and defined by the norm:

‖ f ‖Lr
µ(G) :=

( ∫
G
| f (x)|rdµ(x)

) 1
r

, 1 ≤ r < ∞.

On the base of grand Lebesgue space Lp),ϕ
µ (G), we recall the definition of grand generalized Morrey

spaces as follows.
Definition 1.3. Let 1 < p < ∞ and ϕ ∈ Φp. Suppose that φ : (0,∞)→ (0,∞) is an increasing function.
Then grand generalized Morrey space Lp),ϕ,φ

µ (G) is defined by

‖ f ‖
L

p),ϕ,φ
µ (G) :=

{
f ∈ L1

loc(µ,G) : ‖ f ‖
L

p),ϕ,φ
µ (G) < ∞

}
,
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where

‖ f ‖
L

p),ϕ,φ
µ (G)

:= sup
0<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
| f (x)|p−εdµ(x)

) 1
p−ε

= sup
0<ε<p−1

ϕ(ε)‖ f ‖
L

p−ε,φ
µ (G). (1.4)

Especially, if we take ϕ(ε) = εθ with θ > 0 in (1.4), then we can denote

‖ f ‖
L

p),ϕ,φ
µ (G) := ‖ f ‖

L
p),θ,φ
µ (G).

Remark 1.4. (1) If we take the bounded domain G = Rn in Definition 1.1, then generalized Morrey
space Lr,φ

µ (G) is just the generalized Morrey space Lr,φ
µ (Rn) (see [21]), namely,

‖ f ‖
L

r,φ
µ (Rn) := sup

B
[φ(µ(B))]−

1
r

( ∫
B
| f (x)|rdµ(x)

) 1
r

, 1 ≤ r < ∞. (1.5)

(2) If we take function φ(t) = t
p
q−1 for t > 0 and 1 < p ≤ q < ∞, then grand generalized Morrey space

L
p),ϕ,φ
µ (G) defined as in (1.4) is just the grand Morrey space Lp),q

µ (G) which is sightly modified in [15],
that is,

‖ f ‖
L

p),q,ϕ
µ (G) = sup

0<ε<p−1
ϕ(ε) sup

B
[µ(B)]

1
q−

1
p−ε ‖ f ‖Lp−ε

µ (B). (1.6)

Throughout the whole paper, C represents a positive constant which is independent of the main
parameters. Given any q ∈ (1,∞), let q′ := q/(q − 1) denote its conjugate index. Furthermore, mB( f )
denotes the mean value of function f over ball B, that is, mB( f ) = 1

µ(B)

∫
B

f (y)dµ(y).

2. Hardy-Littlewood maximal operator on Lp),ϕ,φ
µ (G)

Let G be a bounded set inRn with non-negative Radon measure µwithout mass-point and µ(G) < ∞.
Throughout the paper, for a function f : G → R, we denote

f (x) :=
{

f (x), if x ∈ G
0, if x < G.

(2.1)

For a µ-integral function f : G → R, the Hardy-Littlewood center maximal function in [12] is defined
by

MG f (x) = sup
r>0

1
µ(B(x, r))

∫
B(x,r)

⋂
G
| f (y)|dµ(y), (2.2)

By (2.1), if the bounded set G tends to space Rn, then Hardy-Littlewood center maximal function MG

defined as in (2.2) is denoted by
M f (x) = MG f (x), x ∈ G. (2.3)

AIMS Mathematics Volume 7, Issue 1, 1000–1014.



1003

The main result of this section is stated as follows.
Theorem 2.1. Let 1 < p < ∞, ϕ ∈ Φp and φ : (0,∞)→ (0,∞) be an increasing function. Assume that
the mapping t 7→ φ(t)

t is almost decreasing: there exists a positive constant C such that

φ(t)
t
≤ C

φ(s)
s
. (2.4)

for s ≥ t. Then MG defined as in (2.2) is bounded on Lp),ϕ,φ
µ (G).

Proof. Choosing a number δ such that 0 < ε ≤ δ < p − 1, then, by applying Definition 1.3, write

‖MG f ‖
L

p),ϕ,φ
µ (G)

= sup
0<ε<p−1

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖MG f ‖Lp−ε
µ (B)

≤ sup
0<ε≤δ

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖MG f ‖Lp−ε
µ (B)

+ sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖MG f ‖Lp−ε
µ (B)

=: D1 + D2.

For D1, by applying the Lp,φ
µ (Rn)-boundedness of M (see [21]) and (1.4), we can deduce that

sup
0<ε≤δ

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖MG f ‖Lp−ε
µ (B)

= sup
0<ε≤δ

ϕ(ε)‖MG f ‖
L

p−ε,φ
µ (B) ≤ sup

0<ε≤δ
ϕ(ε)‖M f ‖

L
p−ε,φ
µ (Rn)

≤ C sup
0<ε≤δ

ϕ(ε)‖ f ‖
L

p−ε,φ
µ (G) ≤ C‖ f ‖

L
p),ϕ,φ
µ (G).

Now let us estimate D2. Since δ < ε < p − 1, then we have p−δ
p−ε > 1. Further, by applying Hölder’s

inequality and Lp,φ
µ (Rn)-boundedness of M, we have

D2 = sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖M f ‖Lp−ε
µ (B)

≤ sup
δ<ε<p−1

ϕ(ε) sup
B

[φ(µ(B))]−
1

p−ε ‖M f ‖Lp−δ
µ (B)[µ(B)]

1
p−ε−

1
p−δ

= sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ

×[φ(µ(B))]−
1

p−δ ‖M f ‖Lp−δ
µ (B)[µ(B)]

1
p−ε−

1
p−δ

= sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B

[φ(µ(B))]
1

p−δ−
1

p−ε [µ(B)]
1

p−ε−
1

p−δ

×[φ(µ(B))]−
1

p−δ ‖M f ‖Lp−δ
µ (B)

≤ sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1[µ(G)]
1

p−ε−
1

p−δ
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×ϕ(δ) sup
B

[φ(µ(B))]−
1

p−δ ‖M f ‖Lp−δ
µ (B)

≤ ‖ f ‖
L

p),ϕ,φ
µ (G) sup

δ<ε<p−1
ϕ(ε)[ϕ(δ)]−1[µ(G)]

ε−δ
(p−ε)(p−δ)

≤ C‖ f ‖
L

p),ϕ,φ
µ (G).

Which, together with the estimate for D1, the proof of Theorem 2.1 is finished. �

With an argument similar to that used in the proof of Theorem 2.1, it is easy to obtain the following
result on the maximal operator M̃r,G.
Corollary 2.2. Let 1 < p < ∞, ϕ ∈ Φp and φ : (0,∞) → (0,∞) be an increasing function. Assume
that the mapping t 7→ φ(t)

t is almost decreasing function satisfying (2.4). Then non-centered maximal
operator M̃r,G is bounded on Lp),ϕ,φ

µ (G), where M̃r,G is defined by

M̃r( f )(x) = M̃r,G( f )(x) := sup
x∈B

( 1
µ(B)

∫
B

⋂
G
| f (y)|rdµ(y)

) 1
r

. (2.5)

3. Fractional integral operator on Lp),ϕ,φ
µ (G)

Let G be a bounded domain in Rn, then fractional integral operator IG
α being associated with G is

defined by

IG
α f (x) :=

∫
G

f (y)
|x − y|n−α

dµ(y), 0 < α < n. (3.1)

By applying (2.1), it is easy to see that (3.1) is equivalent to the following form

IG
α f (x) = Iα f (x). (3.2)

Theorem 3.1. Let G be a bounded domain in Rn, 0 < α < n, 1 < p < q < ∞ and 1
q = 1

p −
α
n . Suppose

that measure µ satisfies (1.1), and φ satisfies (2.4) and the following inequality∫ ∞

r

φ(t)

t
p
q

dt
t
≤ C

φ(r)

r
q
p
. (3.3)

We set

ψ(ε) =

[
ϕ
(
p −

n(q − ε)
n + α(q − ε)

)] n
α(q−ε)+n

, 0 < ε < q − 1,

where ϕ ∈ Φp. Then IG
α is bounded from Lp),ϕ,φ

µ (G) to Lq),ψ,φ
p
q

µ (G).
To prove the above theorem, we need the following lemma in [21].

Lemma 3.2. Let 0 < α < n, 1 < p < q < ∞ and 1
q = 1

p −
α
n . Suppose that measure φ satisfies (2.4) and

(3.3). Then Iα is bounded from Lp,ϕ,φ
µ (G) to Lq,ψ,φ

p
q

µ (G).

Proof of Theorem 3.1. Via the definition of ψ and ϕ ∈ Φp, it is easy to see that ψ ∈ Φq. Let us fix σ
with σ ∈ (0, q − 1), then write

‖IG
α f ‖

L
q),ψ,φ

p
q

µ (G)
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= sup
0<ε<q−1

ψ(ε) sup
B

[φ(µ(B))]−
p

q−ε

( ∫
B
|IG
α f (x)|q−εdµ(x)

) 1
q−ε

= max
{

sup
0<ε<σ

ψ(ε) sup
B

[φ(µ(B))]−
p

q−ε

( ∫
B
|IG
α f (x)|q−εdµ(x)

) 1
q−ε

,

sup
σ≤ε<q−1

ψ(ε) sup
B

[φ(µ(B))]−
p

q−ε

( ∫
B
|IG
α f (x)|q−εdµ(x)

) 1
q−ε

}
= max{E1,E2}.

For E2. By applying Hölder’s inequality and Definition 1.3, we obtain that

sup
σ≤ε<q−1

ψ(ε) sup
B

[φ(µ(B))]−
p

q−ε

( ∫
B
|IG
α f (x)|q−εdµ(x)

) 1
q−ε

≤ sup
σ≤ε<q−1

ψ(ε) sup
B

[φ(µ(B))]−
p

q−ε

{( ∫
B
|IG
α f (x)|q−σdµ(x)

) q−ε
q−σ

[µ(B)]1− q−ε
q−σ

} 1
q−ε

= sup
σ≤ε<q−1

ψ(ε) sup
B

[φ(µ(B))]−
p(ε−σ)

(q−ε)(q−σ) [µ(B)]
ε−σ

(q−ε)(q−σ)

×[φ(µ(B))]−
p

q−σ

( ∫
B
|IG
α f (x)|q−σdµ(x)

) 1
q−σ

≤ sup
σ≤ε<q−1

ψ(ε)[µ(G)]
ε−σ

(q−ε)(q−σ) sup
B

[φ(µ(B))]−
p

q−σ

( ∫
B
|Iα f (x)|q−σdµ(x)

) 1
q−σ

≤ [µ(G)]q−1−σ sup
σ≤ε<q−1

ψ(ε)‖Iα f ‖
L

q−σ,φ
p

q−σ
µ (G)

≤ Cσ,q sup
0<ε≤σ

ψ(ε)‖Iα f ‖
L

q−ε,φ
p

q−ε
µ (G)

.

Thus, for small constant σ > 0,

‖IG
α f ‖

L
q),ψ,φ

p
q

µ (G)
≤ Cσ,q sup

0<ε≤σ
ψ(ε)‖Iα f ‖

L
q−ε,φ

p
q−ε

µ (G)
.

By applying Lemma 3.2 and (1.4) , we find that there exist 0 < ε ≤ σ and 0 < η ≤ δ such that

1
p − η

−
1

q − ε
=
α

n
=

1
p
−

1
q
.

holds. So we have

ψ(ε)‖Iα f ‖
L

q−ε,φ
p

q−ε
µ (G)

≤ ψ(ε)‖Iα f ‖
L

q−ε,φ
p

q−ε
µ (Rn)

≤ Cψ(ε)‖ f ‖
L

q−ε,φ
p

q−ε
µ (Rn)

≤ Cψ
(
q −

n(p − η)
n − α(p − η)

)
‖ f ‖

L
p−η,φ
µ (G)

≤ C[ϕ(η)]
p−η
q−ε [ϕ(η)]−1ϕ(η)‖ f ‖

L
p−η,φ
µ (G)

≤ C‖ f ‖
L

p),φ
µ (G).
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Further, taking the supremum on ε, we can obtain that

‖IG
α f ‖

L
q),ψ,φ

p
q

µ (G)
≤ C‖ f ‖

L
p),φ
µ (G).

Thus, the proof of Theorem 3.1 is completed. �

4. θ-Type Calderón-Zygmund operators on Lp),ϕ,φ
µ (G)

Definition 4.1. Let θ be a non-negative and non-decreasing function on (0,∞) with satisfying∫ 1

0

θ(t)
t

dt < ∞. (4.1)

A kernel Kθ ∈ L1
loc(R

n × Rn \ {(x, x) : x ∈ Rn}) is called a θ-type kernel if there exists a constant C > 0
such that

|K(x, y)| ≤
C

|x − y|n
. (4.2)

for all x, y ∈ Rn with x , y, and for all x, x′, y ∈ Rn with |x − y| ≥ 2|x − x′|,

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ Cθ
(
|x − x′|
|x − y|

) 1
|x − y|n

. (4.3)

Remark 4.2. If we take the function θ(t) = tε with t > 0 and ε > 0, then θ-type kernel Kθ defined as in
Definition 4.1 is just the standard kernel K on non-doubling measure space (see [21]).
Definition 4.3. Let ρ ∈ (1,∞) and G be a bounded domain in Rn. A locally integrable function f is
said to be in the space RBMO(µ) if there exist a positive constant C and, for any ball B ⊂ G, a number
fB such that

1
µ(ρB)

∫
B
| f (x) − fB|dµ(x) ≤ C. (4.4)

and, for any two balls B and S such that B ⊂ S ,

| fB − fS | ≤ CKB,S , (4.5)

where fB represents the mean value of function f over ball B, that is,

fB :=
1

µ(B)

∫
B

f (y)dµ(y).

The infimum of the positive constants C satisfying both (4.4) and (4.5) is defined to be the RBMO(µ)
norm of f , and it will be denoted by ‖ f ‖RBMO(µ) (or ‖ f ‖∗).

Let L∞b (µ) be the space of all L∞(µ) functions with bounded support. A linear operator TG
θ is called

a θ-type Calderón-Zygmund operator TG
θ with kernel Kθ satisfying (4.2) and (4.3) if, for all f ∈ L∞b (µ)

and x < supp( f ),

TG
θ ( f )(x) :=

∫
G

Kθ(x, y) f (y)dµ(y) =

∫
Rn

Kθ(x, y) f (y)dµ(y). (4.6)
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Thus, we also denote TG
θ ( f )(x) = Tθ( f )(x).

Given a function b ∈ RBMO(µ), the commutator [b,TG
θ ] which is generated by b and TG

θ is defined by

[b,Tθ]( f )(x) = [b,TG
θ ]( f )(x) :=

∫
G

(b(x) − b(y))Kθ(x, y) f (y)dµ(y). (4.7)

The main theorems of this section is stated as follows.
Theorem 4.4. Let p ∈ (1,∞), ϕ ∈ Φp and µ satisfy condition (1.1). Suppose that φ is a function
satisfying (2.4), the doubling condition

sup
0<r≤s≤2r

φ(r)
φ(s)

< ∞. (4.8)

and ∫ ∞

r

φ(t)
t

dt
t
≤ C

φ(r)
r
. (4.9)

Then TG
θ defined as in (4.6) is bounded on Lp),ϕ,φ

µ (G), that is, there exists a constant C > 0 such that,
for all f ∈ Lp),ϕ,φ

µ (G),
‖TG

θ ( f )‖
L

p),ϕ,φ
µ (G) ≤ C‖ f ‖

L
p),ϕ,φ
µ (G).

Theorem 4.5. Let θ be a non-negative and non-decreasing function on (0,∞) with satisfying (4.1),
p ∈ (1,∞) and K satisfy (4.2) and (4.3). Suppose that µ satisfies condition (1.1) and G is a bounded
domain in Rn. Then TG

θ,ε is bounded on Lp),ϕ,φ
µ (G), that is, there exists a constant C > 0 such that, for

any f ∈ Lp),ϕ,φ
µ (G),

‖TG
θ,ε( f )‖

L
p),ϕ,φ
µ (G) ≤ C‖ f ‖

L
p),ϕ,φ
µ (G),

where the truncated operator TG
θ,ε is defined by

TG
θ,ε f (x) :=

∫
{y∈G:|x−y|>ε}

K(x, y) f (y)dµ(y), x ∈ G. (4.10)

Moreover, we also denote TG
θ,ε f (x) = Tθ,ε f (x).

Remark 4.6. Once we prove that {TG
θ,ε}ε>0 is bounded in grand generalized Morrey space Lp,ϕ,φ

µ (G)
uniformly on ε > 0, then it is east to obtain that TG

θ is bounded in grand generalized Morrey space
L

p,ϕ,φ
µ (G). Thus, we only need to prove the Theorem 4.5.

Theorem 4.7. Let p ∈ (1,∞), b ∈ RBMO(µ), ϕ ∈ Φp and µ satisfy condition (1.1). Suppose that
TG
θ is bounded on L2

µ(G), and φ is a function satisfying (2.4), (4.8) and (4.9). Then, the commutator
[b,TG

θ ] defined as in (4.7) is bounded on Lp),ϕ,φ
µ (G), that is, there exists a constant C > 0 such that, for

all f ∈ Lp),ϕ,φ
µ (G),

‖[b,TG
θ ] f ‖

L
p),ϕ,φ
µ (G) ≤ C‖b‖RBMO(µ)‖ f ‖Lp),ϕ,φ

µ (G).

To prove the above theorems, we should recall the following lemma which is slightly modified
in [5].
Lemma 4.8. Let θ be a non-negative and non-decreasing function on (0,∞) with satisfying (4.1),
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p ∈ (1,∞) and K satisfy (4.2) and (4.3). Suppose that µ satisfies condition (1.1). Then Tθ,ε is bounded
on Lp

µ(Rn), that is, there exists a constant C > 0 such that, for all f ∈ Lp
µ(Rn),

‖Tθ,ε( f )‖Lp
µ(Rn) ≤ C‖ f ‖Lp

µ(Rn),

where the truncated operator Tθ,ε is defined by

Tθ,ε f (x) =

∫
|x−y|>ε

K(x, y) f (y)dµ(y), x ∈ Rn. (4.11)

Also, we should establish the following lemmas about Tθ,ε and commutator [b,Tθ].
Lemma 4.9. Let θ be a non-negative and non-decreasing function on (0,∞) with satisfying (4.1),
p ∈ (1,∞), and K satisfy (4.2) and (4.3). Suppose that φ is a function satisfying (2.4), (4.8) and (4.9).
Then Tθ,ε defined as in (4.11) is bounded on Lp,φ

µ (Rn).

Proof. Let B := B(cB, rB) be a fixed ball with center at cB and radius rB, and set ε < rB. Decompose
function f as

f := f1 + f2 := fχ2B + fχRn\(2B).

Then write
‖Tθ,ε( f )‖

L
p,φ
µ (Rn) ≤ ‖Tθ,ε( f1)‖

L
p,φ
µ (Rn) + ‖Tθ,ε( f2)‖

L
p,φ
µ (Rn) =: F1 + F2.

With an argument similar to that used in the estimate of Theorem 1.1 in [21], it is easy to see that

F2 = ‖Tθ,ε( f2)‖
L

p,φ
µ (Rn) ≤ C‖ f ‖

L
p,φ
µ (Rn).

For F1. By applying (1.3), (2.4) and Lemma 4.8, we can deduce that

‖Tθ,ε( f1)‖
L

p,φ
µ (Rn) = sup

B⊂Rn
[φ(µ(B))]−

1
p

( ∫
B
|Tθ,ε( f1)(x)|pdµ(x)

) 1
p

≤ sup
B⊂Rn

[φ(µ(B))]−
1
p

( ∫
Rn
|Tθ,ε( f1)(x)|pdµ(x)

) 1
p

≤ C sup
B⊂Rn

[φ(µ(B))]−
1
p

( ∫
2B
| f (x)|pdµ(x)

) 1
p

≤ C sup
B⊂Rn

[φ(µ(B))]−
1
p [φ(µ(2B))]

1
p [φ(µ(2B))]−

1
p

( ∫
2B
| f (x)|pdµ(x)

) 1
p

≤ C‖ f ‖
L

p,φ
µ (Rn) sup

B⊂Rn

[
µ(2B)
µ(B)

] 1
p

≤ C‖ f ‖
L

p,φ
µ (Rn).

Which, combing the estimate of F1, the proof of Lemma 4.9 is finished. �

Moreover, we say that Tθ is bounded in Lebesgue space Lp
µ(Rn) if the family of truncate operators

{Tθ,ε}ε>0 is bounded in Lp
µ(Rn) uniformly on ε > 0, and Tθ is bounded in generalized Morrey space

L
p,φ
µ (Rn) if {Tθ,ε}ε>0 is bounded in Lp,φ

µ (Rn) uniformly on ε > 0, where Tθ is defined by

Tθ f (x) =

∫
Rn

K(x, y) f (y)dµ(y), x ∈ Rn. (4.12)
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Respectively, given a function b ∈ RBMO(µ), commutator [b,Tθ] which is generated by Tθ and b is
defined by

[b,Tθ] f (x) = b(x)Tθ f (x) − Tθ(b f )(x). (4.13)

Lemma 4.10. Let b ∈ RBMO(µ), θ be a non-negative and non-decreasing function on (0,∞) with
satisfying (4.1), p ∈ (1,∞), and K satisfy (4.2) and (4.3). Suppose that φ is a function satisfying (2.4),
(4.8) and (4.9). Then [b,Tθ] defined as in (4.13) is bounded on Lp,φ

µ (Rn).
To prove Lemma 4.10, we should recall the sharp maximal function M]

M] f (x) = sup
B3x

1
µ( 3

2 B)

∫
B
| f (y) − mB̃( f )|dµ(y) + sup

B⊂S : x∈B

B,S doubling

|mB( f ) − mS ( f )|
KB,S

,

and the non-centered doubling maximal operator

N f (x) = sup
B3x

B doubling

1
µ(B)

∫
B
| f (y)|dµ(y).

By applying Lebesgue differential theorem, it is easy to see that for any f ∈ L1
loc(µ),

| f (x)| ≤ N f (x), (4.14)

for µ-a.e. x ∈ Rn; see [22].

Proof of Lemma 4.10. With a slightly modified argument similar to that used in the estimate of (9.4)
in [22], we also obtain the following pointwise inequality on the commutator [b,Tθ] f , that is,

M]([b,Tθ] f )(x) ≤ C‖b‖RBMO(µ){M̃r,(9/8) f (x) + M̃r,(3/2)(Tθ f )(x) + Tθ,ε( f )(x)}, (4.15)

where, for any ρ > 1, M̃r,(ρ) is the non-centered maximal operator defined by

M̃r,(ρ)( f )(x) = sup
B

( 1
µ(ρB)

∫
B
| f (y)|rdµ(y)

) 1
r

.

From (4.14), the Lp,φ
µ (Rn)-boundedness of M̃r,(ρ) (see [21]) and Lemma 4.9, it follows that

‖[b,Tθ] f ‖
L

p,φ
µ (Rn)

= sup
B

[φ(B)]−
1
p ‖[b,Tθ] f ‖Lp

µ(B) ≤ sup
B

[φ(B)]−
1
p ‖N([b,Tθ] f )‖Lp

µ(B)

≤ C sup
B

[φ(B)]−
1
p ‖M]([b,Tθ] f )‖Lp

µ(B) ≤ C‖M]([b,Tθ] f )‖
L

p,φ
µ (Rn)

≤ C‖b‖RBMO(µ)

{
‖M̃r,(9/8) f ‖

L
p,φ
µ (Rn) + ‖M̃r,(3/2)(Tθ f )‖

L
p,φ
µ (Rn) + ‖Tθ,ε( f )‖

L
p,φ
µ (Rn)

}
≤ C‖b‖RBMO(µ)

{
‖ f ‖

L
p,φ
µ (Rn) + ‖Tθ f ‖

L
p,φ
µ (Rn)

}
≤ C‖b‖RBMO(µ)‖ f ‖Lp,φ

µ (Rn).

which is our desired result. �
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Now we state the proofs of Theorems 4.5 and 4.7 as follows.

Proof of Theorem 4.5. Let δ be a fixed constant satisfying 0 < ε < δ < p − 1. By applying Definition
1.3, write

‖TG
θ,ε( f )‖

L
p),ϕ,φ
µ (G) = sup

0<ε<p−1
ϕ(ε)‖TG

θ,ε( f )‖
L

p−ε,φ
µ (G)

≤ sup
0<ε<δ

ϕ(ε)‖TG
θ,ε( f )‖

L
p−ε,φ
µ (G) + sup

δ<ε<p−1
ϕ(ε)‖TG

θ,ε( f )‖
L

p−ε,φ
µ (G)

= G1 + G2.

The estimates for G1 goes as follows. From Definition 1.3 and Lemma 4.9, it follows that

sup
0<ε<δ

ϕ(ε)‖TG
θ,ε( f )‖

L
p−ε,φ
µ (G) ≤ sup

0<ε<δ
ϕ(ε)‖Tθ,ε( f )‖

L
p−ε,φ
µ (Rn)

≤ C sup
0<ε<δ

ϕ(ε)‖ f ‖
L

p−ε,φ
µ (Rn) ≤ C sup

0<ε<δ
ϕ(ε)‖ f ‖

L
p−ε,φ
µ (G)

≤ C‖ f ‖
L

p),ϕ,φ
µ (G).

Since 0 < δ < ε < p − 1, we notice that p−δ
p−ε > 1. Applying Hölder inequality and the boundedness of

TG
θ,ε in Lp

µ(Rn) (see Lemma 4.8), we can deduce that

sup
δ<ε<p−1

ϕ(ε)‖TG
θ,ε( f )‖

L
p−ε,φ
µ (G)

= sup
δ<ε<p−1

ϕ(ε)‖Tθ,ε( f )‖
L

p−ε,φ
µ (G)

= sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
|Tθ,ε( f )(x)|p−εdµ(x)

) 1
p−ε

≤ sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
|Tθ,ε( f )(x)|p−δdµ(x)

) 1
p−δ

[µ(B)]
1

p−ε−
1

p−δ

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

[µ(B)]
1

p−ε−
1

p−δ

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
1

p−ε−
1

p−δ

×[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
ε−δ

(p−δ)(p−ε)

×[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

.

For the above result, we divide into the following cases.
Case I If rB > 1, then, by applying (2.4), we obtain that

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
ε−δ

(p−δ)(p−ε) =

[
µ(B)
φ(µ(B))

] ε−δ
(p−δ)(p−ε)
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=

[
φ(µ(B(cB, 1)))

φ(µ(B))
×

µ(B)
φ(µ(B(cB, 1)))

] ε−δ
(p−δ)(p−ε)

≤ C
[
µ(B(cB, 1))
φ(µ(B(cB, 1)))

] ε−δ
(p−δ)(p−ε)

≤ C.

Case II If rB ≤ 1, then, by applying the monotonicity of φ, we can deduce that

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
ε−δ

(p−δ)(p−ε) ≤ [φ(µ(B))]−
1

p−δ [φ(µ(B))]
1

p−δ [µ(B)]
ε−δ

(p−δ)(p−ε)

≤ [µ(B(cB, 1))]p−1−δ ≤ C.

Combing the cases I and II, we further obtain that

sup
δ<ε<p−1

ϕ(ε)‖TG
θ,ε( f )‖

L
p−ε,φ
µ (G)

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
ε−δ

(p−δ)(p−ε)

×[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

≤ C sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

≤ C sup
δ<ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ) sup
B⊂G

[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

≤ Cϕ(p − 1)[ϕ(δ)]−1‖ f ‖Lp),ϕ,φ
µ (Rn)

≤ C‖ f ‖Lp),ϕ,φ
µ (Rn).

Which, together with estimate of G1, we obtain the desired result. �

Proof of Theorem 4.7. Let δ be a fixed constant satisfying 0 < ε < δ < p − 1. By applying Definition
1.3, write

‖[b,TG
θ ]( f )‖

L
p),ϕ,φ
µ (G)

= sup
0<ε<p−1

ϕ(ε)‖[b,TG
θ, ]( f )‖

L
p−ε,φ
µ (G)

≤ sup
0<ε<δ

ϕ(ε)‖[b,TG
θ ]( f )‖

L
p−ε,φ
µ (G) + sup

δ<ε<p−1
ϕ(ε)‖[b,TG

θ ]( f )‖
L

p−ε,φ
µ (G)

= F1 + F2.

The estimates for F1 is given as follows. By applying Lemma 4.10 and Definition 1.3, we obtain that

sup
0<ε<δ

ϕ(ε)‖[b,TG
θ ]( f )‖

L
p−ε,φ
µ (G)

= sup
0<ε<δ

ϕ(ε)‖[b,Tθ]( f )‖
L

p−ε,φ
µ (G) ≤ sup

0<ε<δ
ϕ(ε)‖[b,Tθ]( f )‖

L
p−ε,φ
µ (Rn)
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≤ C‖b‖RBMO(µ) sup
0<ε<δ

ϕ(ε)‖ f ‖
L

p−ε,φ
µ (Rn) ≤ C‖b‖RBMO(µ)‖ f ‖Lp),ϕ,φ

µ (G),

where f is defined as in (2.1).
Now let us estimate F2. By virtue of Hölder’s inequality, the Lp

µ(Rn)-boundedness of [b,TG
θ ] (see

Lemma 4.10) and Cases I and II, it then follows that

sup
δ<ε<p−1

ϕ(ε)‖[b,TG
θ ]( f )‖

L
p−ε,φ
µ (G)

= sup
δ<ε<p−1

ϕ(ε)‖[b,Tθ]( f )‖
L

p−ε,φ
µ (G)

= sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
|[b,Tθ]( f )(x)|p−εdµ(x)

) 1
p−ε

≤ C‖b‖RBMO(µ) sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

[µ(B)]
1

p−ε−
1

p−δ

≤ C‖b‖RBMO(µ) sup
δ<ε<p−1

ϕ(ε) sup
B⊂G

[φ(µ(B))]−
1

p−ε [φ(µ(B))]
1

p−δ [µ(B)]
1

p−ε−
1

p−δ

×[φ(µ(B))]−
1

p−δ

( ∫
B
| f (x)|p−δdµ(x)

) 1
p−δ

≤ C‖b‖RBMO(µ)‖ f ‖Lp),ϕ,φ
µ (G).

Which, together with the estimate of F1, we complete the proof of Theorem 4.7 �

5. Conclusions

In this paper, we mainly obtain the boundedness of Hardy-Littlewood maximal operator, fractional
integral operators and θ-type Calderón-Zygmund operators on the non-homogeneous grand generalized
Morrey space Lp),ϕ,φ

µ (G). In addition, the boundedness of commutator [b,TG
θ ] which is generated by

θ-type Calderón-Zygmund operator Tθ and b on spaces Lp),ϕ,φ
µ (G) is also established.
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