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1. Introduction

For any three positive integers x, y and z, if they satisfy the equation x2 + y2 = z2, then we call
(x, y, z) is a Pythagorean triple. In other words, with these three integers as sides, we can form a right
triangle. So sometimes, we call (x, y, z) as a set of Pythagorean numbers. For example, (x, y, x) =

(3, 4, 5), (5, 12, 13) are two Pythagorean triples. It is well known that all positive integer solutions
of the equation x2 + y2 = z2 are x = t

(
a2 − b2

)
, y = 2tab, z = t

(
a2 + b2

)
, where t, a and b, are

arbitrary positive integers such that a > b, a and b have no prime divisors in common, and one of a
or b is odd, the other even. This result can be found in many elementary number theory textbooks,
e.g. [3, Theorems 2–9], the proof will not be repeated here.

On the other hand, let p be a fixed odd prime, and a is an integer with (a, p) = 1. If the congruence
equation x2 ≡ a mod p has the solution, then we call a is a quadratic residue modulo p. Otherwise, we
call a is a quadratic non-residue modulo p. For the various properties of quadratic residues modulo p,
refer to [1]. It is worth mentioning that Legendre has made an important contribution to the research in
this field, and he firstly introduced the characteristic function of quadratic residue, called Legendre’s
symbol. Let p ≥ 3 be a prime. For any integer n, the Legendre’s symbol

(
n
p

)
modulo p is defined as
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following. (
n
p

)
=


1 if (n, p) = 1 and n is a quadratic residue modulo p,
−1 if (n, p) = 1 and n is a quadratic non-residue modulo p,
0 if p | n.

In fact, this function occupies a very important position in elementary number theory and analytic
number theory, many classical number theory problems are closely related to it. For example, if p is
an odd prime with p ≡ 1 mod 4, then one has the identity (See [3, Theorems 4–11]).

p =

1
2

p−1∑
a=1

(
a + ra

p

)
2

+

1
2

p−1∑
b=1

b + sb
p


2

,

where r and s are any integers with
(

r
p

)
·
(

s
p

)
= −1, and aa ≡ 1 mod p.

Of course, the smallest quadratic non-residue, the formula for class number in the quadratic field,
and the prime distribution are all closely related to Legendre’s symbol modulo p.

In addition, Legendre’s symbol has many important properties, such as the quadratic reciprocity
law. That is, for any two odd primes p and q with p , q, we have the identity (see [1, Theorem 9.8]).(

q
p

)
·

(
p
q

)
= (−1)

(p−1)(q−1)
4 .

The main reason why this paper mentioned Pythagorean numbers and quadratic residues is related
to a conjecture proposed by Professor Z. W. Sun. In 2015, Z. W. Sun [12] proposed the following
conjecture and checked with mathematical software.

Conjecture. For any prime p > 50, there must exist a Pythagorean triple (x, y, z) with 1 ≤ x, y, z ≤
p − 1 such that (

x
p

)
=

(
y
p

)
=

(
z
p

)
= 1.

About this problem,it seems that there is still no one made any substantial progress up to now. At
least we do not see it in the existing literature. This problem is very interesting, it is actually dealing
with the quadratic residue problem in some special set of integers. Although we can not prove this
conjecture at present, we can get some results that are conducive to the correctness of the conjecture.
For convenience, we only consider the Pythagorean triples in the following special form:

(x, y, z) =
(
4a2 − (2b − 1)2, 4a(2b − 1), 4a2 + (2b − 1)2

)
, (1.1)

where a and b are any positive integers.
Now we let i, j, k = ±1. A natural problem is that for any odd prime p and integer 1 < M < p,

whether there is a Pythagorean triple (x, y, z) in (1.1) with 1 ≤ a, b ≤ M, such that(
x
p

)
= i,

(
y
p

)
= j and

(
z
p

)
= k.

If there is such a Pythagorean triple (x, y, z), let W(M, p, i, j, k) denote the number of all such
Pythagorean triples (x, y, z) in (1.1) with 1 ≤ a, b ≤ M. Then how about the asymptotic properties of
W(M, p, i, j, k)?
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In this paper, we will use the elementary and analytic methods, and the estimate for character sums
to study this problem, and obtain a sharp asymptotic formula for W(M, p, i, j, k). That is, we will prove
the following:

Theorem 1. For any odd prime p, we have the asymptotic formula

W(p, p, i, j, k) =
1
8
· p2 + O

(
p

3
2
)
.

Theorem 2. Let p be an odd prime. Then for any integer 1 < M ≤ p, we have the asymptotic
formula

W(M, p, i, j, k) =
1
8
· M2 + O

(
M · p

1
2 · ln2 p

)
.

Taking i = j = k = 1, from our theorems we may immediately deduce the following two corollaries.
Corollary 1. Let p be a prime large enough. Then for any positive number ε > 0, there must exist

three quadratic residues x, y and z modulo p with 1 ≤ x, y, z ≤ p1+ε satisfying the equation

x2 + y2 = z2.

Corollary 2. Let p be a prime large enough. Then there must exist three elements x, y and z in the
finite field Fp satisfying the equation

x4 + y4 = z4.

Some notes It is clear that our conclusions can also be extended to any k-th residue modulo p, where
k ≥ 2 and k | (p − 1). That is, let p be an odd prime, k be any fixed positive integer with k | (p − 1).
For any positive number 1 ≤ M ≤ p − 1, let H(M, p) denotes the number of all solutions in (1.1) with
1 ≤ a, b ≤ M such that x, y, z are k-th residues modulo p. Then we have the asymptotic formula

H(M, p) =
1
k3 · M

2 + O
(
M · p

1
2 · ln2 p

)
.

For any positive number 0 < ε < 1, there must exist three k-th residues x, y and z modulo p with
1 ≤ x, y, z ≤ p1+ε such that the equation

x2 + y2 = z2.

2. Several lemmas

To complete the proofs of our main results, we need following three simple lemmas. For the sake
of simplicity, we do not repeat some elementary results of number theory and analytic number theory,
which can be found in references [1–3]. Some papers related to character sums and exponential sums
can also be found in [4–8], we do not want to repeat that here. Firstly, we have the following lemma.

Lemma 1. Let p be an odd prime, χ a d-th character modulo p, and f (x) an integral coefficient
polynomial, which is not a perfect d-th power. Then for any integer n, we have the estimate

p−1∑
a=0

χ ( f (a)) e
(
an
p

)
≤ s · p

1
2 ,
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where e (x) = e2πix and s is the number of all distinct integer roots of f (x).
Proof. For this see [9]. Some related work can also be found in [10, 11].
Lemma 2. Let p be an odd prime, χ2 =

(
∗

p

)
denotes the Legendre’s symbol modulo p. Then we

have the estimate

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2 (4a(2b − 1)) χ2

(
4a2 + (2b − 1)2

)
= O

(
p

3
2
)
.

Proof. From the properties of the complete residue system modulo p and Lemma 1 we have

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2 (4a(2b − 1)) χ2

(
4a2 + (2b − 1)2

)
=

p−1∑
a=1

p−1∑
b=0

χ2

(
4a2 − (2b − 1)2

)
χ2 (4a(2b − 1)) χ2

(
4a2 + (2b − 1)2

)
−

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2 (−4a) χ2

(
4a2 + 1

)
=

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − b2

)
χ2 (4ab) χ2

(
4a2 + b2

)
−

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(−4a)χ2

(
4a2 + 1

)
= (p − 1)

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2 (4a) χ2

(
4a2 + 1

)
−

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(−4a)χ2

(
4a2 + 1

)
= O

(
p

3
2
)
.

This proves Lemma 2.
Lemma 3. Let p be an odd prime and M an integer with 1 < M < p. Then we have the estimate

M∑
a=1

M∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
= O

(
M · p

1
2 · ln2 p

)
.

Proof. For any integer n, from the trigonometric identity

p−1∑
a=0

e
(
na
p

)
=

{
p, if p | n;
0, if p - n

we have

M∑
a=1

M∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
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=
1
p2

p−1∑
a=1

p−1∑
b=1

M∑
c=1

M∑
d=1

p−1∑
r=0

p−1∑
s=0

e
(
r(a − c)

p

)
e
(

s(b − d)
p

)
×χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
=

M2

p2

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
+

M
p2

p−1∑
r=1

M∑
c=1

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
×χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
e
(
r(a − c)

p

)
+

M
p2

p−1∑
s=1

M∑
d=1

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
×χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
e
(

s(b − d)
p

)
+

1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

p−1∑
b=1

M∑
c=1

M∑
d=1

e
(
r(a − c)

p

)
e
(

s(b − d)
p

)
×χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
= U1 + U2 + U3 + U4. (2.1)

From Lemma 2 we have

U1 =
M2

p2

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
= O

(
M2

p2 · p
3
2

)
= O

(
M2

√
p

)
. (2.2)

From the estimate
M∑

c=1

e
(
−rc

p

)
= O

 1∣∣∣∣sin
(
πr
p

)∣∣∣∣
 ,

the method of proving (2.2) and the properties of Gauss sums we have

U2 =
M
p2

p−1∑
r=1

M∑
c=1

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
×χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
e
(
r(a − c)

p

)
=

M
p2

p−1∑
r=1

M∑
c=1

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − b2

)
×χ2(4ab)χ2

(
4a2 + b2

)
e
(
r(a − c)

p

)
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−
M
p2

p−1∑
r=1

M∑
c=1

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(−4a)χ2

(
4a2 + 1

)
e
(
r(a − c)

p

)

=
M
p2

p−1∑
r=1

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

)
×

p−1∑
b=1

χ2

(
b2

)
χ2(b2)χ2

(
b2

)
e
(
rab
p

) M∑
c=1

e
(
−rc

p

)

−
M
p2

p−1∑
r=1

M∑
c=1

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(−4a)χ2

(
4a2 + 1

)
e
(
r(a − c)

p

)

�
M
p2

p−1∑
r=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

)∣∣∣∣∣∣∣ · 1∣∣∣∣sin
(
πr
p

)∣∣∣∣
+

M
p2

p−1∑
r=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

)
e
(
ra
p

)∣∣∣∣∣∣∣ · 1∣∣∣∣sin
(
πr
p

)∣∣∣∣
�

M
√

p

p−1∑
r=1

1
r
�

M
√

p
· ln p. (2.3)

Similarly, we also have the estimate

U3 =
M
p2

p−1∑
s=1

M∑
d=1

p−1∑
a=1

p−1∑
b=1

χ2

(
4a2 − (2b − 1)2

)
×χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
e
(

s(b − d)
p

)
=

M
p2

p−1∑
s=1

M∑
d=1

p−1∑
a=1

χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

)
e
(
−sd

p

)

×

p−1∑
b=1

χ2
2(2b − 1)χ2

2(2b − 1)χ2
2(2b − 1)e

2s(2b − 1 + 1)
p


�

M

p
3
2

p−1∑
s=1

1∣∣∣∣sin
(
πs
p

)∣∣∣∣ � M
√

p
· ln p (2.4)

and

U4 =
1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

p−1∑
b=0

M∑
c=1

M∑
d=1

e
(
r(a − c)

p

)
e
(

s(b − d)
p

)
×χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
−

1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

M∑
c=1

M∑
d=1

e
(
r(a − c)

p

)
e
(
−sd

p

)
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×χ2

(
4a2 − 1

)
χ2(−4a)χ2

(
4a2 + 1

)
=

1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

p−1∑
b=1

M∑
c=1

M∑
d=1

e
(
r(a − c)

p

)
e
2s(b + 1 − 2d)

p


×χ2

(
4a2 − b2

)
χ2(4ab)χ2

(
4a2 + b2

)
+ O

(
p

1
2 · ln2 p

)
=

1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

p−1∑
b=1

M∑
c=1

M∑
d=1

e
(
r(ab − c)

p

)
e
2s(b + 1 − 2d)

p


×χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

)
χ2

2(b)χ2
2(b)χ2

2(b) + O
(
p

1
2 · ln2 p

)
=

1
p2

p−1∑
r=1

p−1∑
s=1

p−1∑
a=1

M∑
c=1

M∑
d=1

e
(
−rc

p

)
e
2s(1 − 2d)

p


×χ2

(
4a2 − 1

)
χ2(4a)χ2

(
4a2 + 1

) p−1∑
b=1

e
b(ra + 2s)

p

 + O
(
p

1
2 · ln2 p

)
= O


√

p
p2

p−1∑
r=1

p−1∑
s=1

1∣∣∣∣sin
(
πr
p

)∣∣∣∣ · 1∣∣∣∣sin
(
πs
p

)∣∣∣∣
 + O

(√
p · M · ln p

)
= O

(
p

1
2 · ln2 p

)
+ O

(
M · p

1
2 · ln p

)
. (2.5)

where a denotes the solution of the congruence equation ax ≡ 1 mod p.
Combining (2.1)–(2.5) we have the estimate

M∑
a=1

M∑
b=1

χ2

(
4a2 − (2b − 1)2

)
χ2(4a(2b − 1))χ2

(
4a2 + (2b − 1)2

)
= O

(
M · p

1
2 · ln2 p

)
.

This proves Lemma 3.
Some notes: If we take M = p in Lemma 3, then the estimate is significantly weaker than Lemma

2. This is because when M < p, we can not directly apply the properties of the complete (or reduced)
residue system modulo p. And to do that, we use trigonometric sums to convert the sums 1 ≤ a ≤ M
to 1 ≤ a ≤ p. In this way, some extra error terms are generated in the conversion process.

3. Proofs of the theorems

Now we prove Theorem 1. If i = ±1, then for integer x with (x, p) = 1, note that(
x
p

)
= i if and only if

1
2

(
1 + i

(
x
p

))
= 1.

So from the definition of W(p, p, i, j, k) and the properties of Legendre’s symbol modulo p we have the
estimate

W(p, p, i, j, k) =
1
8

p−1∑
a=1

p−1∑
b=1

(
1 + i

(
4a2 − (2b − 1)2

p

)) (
1 + j

(
4a(2b − 1)

p

))
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×

(
1 + k

(
4a2 + (2b − 1)2

p

))
+ O(p), (3.1)

where the big-O term O(p) comes from p |
(
4a2 − (2b − 1)2

)
and p |

(
4a2 + (2b − 1)2

)
.

For any integer c with (c, p) = 1, note that the identity

p−1∑
a=0

(
a2 + c

p

)
= χ2(c) +

p−1∑
a=1

(1 + χ2(a)) χ2(a + c) =

p−1∑
a=1

χ2(1 + ca) = −1.

From the properties of the complete residue system modulo p and Lemma 2 we have

p−1∑
a=1

p−1∑
b=1

(
4a2 − (2b − 1)2

p

)
=

p−1∑
a=1

p−1∑
b=0

(
4a2 − b2

p

)
−

p−1∑
a=1

(
4a2 − 1

p

)

= (p − 1)
p−1∑
a=1

(
a2 − 1

p

)
+ p − 1 −

p−1∑
a=1

(
a2 − 1

p

)
= O(p). (3.2)

p−1∑
a=1

p−1∑
b=1

(
4a(2b − 1)

p

)
= O(1). (3.3)

p−1∑
a=1

p−1∑
b=1

(
4a2 + (2b − 1)2

p

)
=

p−1∑
a=1

p−1∑
b=0

(
4a2 + b2

p

)
−

p−1∑
a=1

(
4a2 + 1

p

)

= (p − 1)
p−1∑
a=1

(
a2 + 1

p

)
+ p − 1 −

p−1∑
a=1

(
a2 + 1

p

)
= O(p). (3.4)

From Lemma 1 we also have

p−1∑
a=1

p−1∑
b=1

(
4a2 − (2b − 1)2

p

) (
4a(2b − 1)

p

)

=

p−1∑
a=1

p−1∑
b=1

(
a2 − b2

p

) (
2ab

p

)
−

p−1∑
a=1

(
4a2 − 1

p

) (
−4a

p

)

= (p − 1)
p−1∑
a=1

(
a2 − 1

p

) (
2a
p

)
−

p−1∑
a=1

(
a2 − 1

p

) (
−2a

p

)
= O

(
p

3
2
)
. (3.5)

p−1∑
a=1

p−1∑
b=1

(
4a2 + (2b − 1)2

p

) (
4a(2b − 1)

p

)

=

p−1∑
a=1

p−1∑
b=1

(
a2 + b2

p

) (
2ab

p

)
−

p−1∑
a=1

(
4a2 + 1

p

) (
−4a

p

)
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= (p − 1)
p−1∑
a=1

(
a2 + 1

p

) (
2a
p

)
−

p−1∑
a=1

(
a2 + 1

p

) (
−2a

p

)
= O

(
p

3
2
)
. (3.6)

p−1∑
a=1

p−1∑
b=1

(
4a2 + (2b − 1)2

p

) (
4a2 − (2b − 1)2

p

)

=

p−1∑
a=1

p−1∑
b=0

(
a2 + b2

p

) (
a2 − b2

p

)
−

p−1∑
a=1

(
4a2 + 1

p

) (
4a2 − 1

p

)

= (p − 2)
p−1∑
a=1

(
a2 + 1

p

) (
a2 − 1

p

)
+ (p − 1) = O

(
p

3
2
)
. (3.7)

Now combining (3.1)–(3.7) and Lemma 2 we have the asymptotic formula

W(p, p, i, j, k) =
1
8
· p2 + O

(
p

3
2
)
.

This proves Theorem 1.
Now we prove Theorem 2. In fact from the definition of W(M, p, i, j, k) we also have

W(M, p, i, j, k) =
1
8

M∑
a=1

M∑
b=1

(
1 + i

(
4a2 − (2b − 1)2

p

)) (
1 + j

(
4a(2b − 1)

p

))
×

(
1 + k

(
4a2 + (2b − 1)2

p

))
+ O(M). (3.8)

From Lemma 3 and the methods of proving Theorem 1 we can easily deduce the asymptotic formula

W(M, p, i, j, k) =
1
8
· M2 + O

(
M · p

1
2 · ln2 p

)
.

This proves Theorem 2. In order to save the space, details are omitted here.

4. Conclusions

The main results of this paper are two theorems, which are closely related to Pythagorean triples
and quadratic residues modulo an odd prime p. It describes that when prime p is large enough, then
there must exist three quadratic residues x, y and z modulo p such that the equation x2 + y2 = z2. At
the same time, we also give a sharp asymptotic formula for the counting function of all such solutions
(x, y, z). Of course, our conclusion can also be generalized to other special integer sets, such as D. H.
Lehmer numbers and k-th residue modulo p, etc.
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