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Abstract: A two-patch model with additive Allee effect is proposed and studied in this paper. Our
objective is to investigate how dispersal and additive Allee effect have an impact on the above model’s
dynamical behaviours. We discuss the local and global asymptotic stability of equilibria and the
existence of the saddle-node bifurcation. Complete qualitative analysis on the model demonstrates
that dispersal and Allee effect may lead to persistence or extinction in both patches. Also, combining
mathematical analysis with numerical simulation, we verify that the total population abundance will
increase when the Allee effect constant a increases or m decreases. And the total population density
increases when the dispersal rate D1 increases or the dispersal rate D2 decreases.
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1. Introduction

With the continuous development of the country and on-going progress in society, there are more
and more empirical results show that the destruction of nature by human has affected the habitat
of the population [1]. The habitat of the population is first fragmented, then splits into patches,
and finally becomes extinct, which will seriously threaten the survival and diversity of biological
populations. However, if ecological corridor can be established to allow the species to migrate
between different patches, it may become one of the meaningful measures to protect the species from
extinction. Therefore, there have been a large body of literatures in modeling population migration and
analyzing the protection and development of ecosystem, which provide biological insight for ecological
management.

The dynamics of plaque population can be traced back to the year of 1951 (see [2]). Subsequently,
in 1977, Freedman and Waltman [3] consider a two-patch model with a single species in logistic
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population growth as follows.

dN1

dt
= r1N1

(
1 −

N1

K1

)
+ D(N2 − N1),

dN2

dt
= r2N2

(
1 −

N2

K2

)
+ D(N1 − N2),

(1.1)

where Ni(i = 1, 2) represents the population density in patch i, parameter ri is the intrinsic growth rate,
Ki is carrying capacity and D is the dispersal rate. Freedman and Waltman show that under certain
conditions, the total population abundance of a spatially distributed population with dispersal can be
larger than the total carrying capacities K1 + K2. After that, a more in-depth study of this model is
derived by DeAngelis et al. [4], Holt [5], DeAngelis and Zhang [6] and Roger Arditi et al. [7].

However, in nature, the dispersal between patches is often asymmetric. It is necessary to consider
asymmetric dispersal with general dispersal rates. Arditi et al. [8] extend the model (1.1) by
considering asymmetric dispersals. Moreover, recently, Wu et al. [9] characterize the following two-
patch model:

dN1

dt
= r1N1

(
1 −

N1

K1

)
+ D(N2 − sN1),

dN2

dt
= −r̄2N2 + D(sN1 − N2).

(1.2)

Parameter D represents the dispersal intensity and s reflects the dispersal asymmetry. The authors
show that the population persists in both patches but reaches a density which is less (higher) than that
without dispersal at intermediate (small) dispersal rates, while extremely large dispersal could result
in the population extinction. And asymmetric dispersal is more favorable than symmetric dispersal
under certain conditions. For more relevant works, one can see [10, 11]. In recent years, there has
been growing interest in understanding the roles that Allee effect [12] plays in the interaction between
population. Due to its strong possible impact on population dynamics, Allee effect has been observed
extensively in ecology, biology and epidemiology and so on [13–15]. For example, Kang et al. [16]
have considered two-patch model with Allee effect and dispersal

dx
dt

= rx(x − θ)(1 − x) + µ(y − x),

dy
dt

= ry(y − θ)(1 − y) + µ(x − y)
(1.3)

where x(t) and y(t) denote the population density at time t in different patches. The parameters µ ∈
[0, 1] and θ represent the dispersal intensity and Allee threshold, respectively. It was shown that the
dispersal parameter µ and the Allee threshold θ will affect the global dynamics. Subsequently, about
two-patch models with dispersal, studies of Allee effect on interacting population have been done
recently in [17, 18].

Particularly, the equation
dx
dt

= r
[(

1 −
x
K

)
−

m
x + a

]
x (1.4)

is suffered from the additive Allee effect which was firstly introduced in [19]. The positive parameters
m and a are the Allee effect constants. The additive Allee effect consists of two cases, i.e., weak and
strong Allee effects. That is, if 0 < m < a, it is the weak Allee effect; if m > a, it is the strong
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Allee effect. Consequently, there are a lot of excellent works in mathematical, biology and ecology
models with additive Allee effect [20–23]. For example, in [20], the authors propose a single species
logistic model with feedback control and additive Allee effect in the growth of species. The result
shows that Allee effect can make the above system’s dynamic behaviors more complex. In [21], the
authors consider an SI epidemic model incorporating additive Allee effect and time delay. They obtain
that both additive Allee effect and time delay have vital effect on the prevalence of the disease. It
brings to our attention that, the literature which has investigated the two-patch model with additive
Allee effect is rather few. To the best of the authors’ knowledge, in [24], analytical conditions for the
global stability of the patchy model in the case of weak Allee effect. However, in the case of strong
Allee effect, only numerical simulations are provided. In other words, the author [24] has not provided
a complete qualitative analysis since it involves an algebraic equation of nine-degree. Moreover, the
occurrence of bifurcation phenomenon due to the Allee effect still remain unknown. Motivated by the
above, in this paper, we will consider the following one species model with additive Allee effect and
dispersal:

dx1

dt
= −x1 + D2x2 − D1x1,

dx2

dt
= x2

(
1 − x2 −

m
x2 + a

)
+ D1x1 − D2x2

(1.5)

where x1 and x2 represent the densities of the species in patch 1 and 2, respectively. Similar to that in
[9], in this paper, we assume that patch 1 is the sink (i.e., the coefficient of x1 is negative). And the
species in patch 2 is affected by the additive Allee effect (patch 2 is the source, i.e., the coefficient of
x2 is positive). From the view point of biology, we only need to focus on the nonnegative solution of
system (1.5). Thus it is assumed that the initial conditions of (1.5) are x1(0) ≥ 0, x2(0) ≥ 0.

Different from the strong Allee effect in [16–18], this paper will pay attention to investigate the
patchy model with additive Allee effect, i.e., the system (1.5). We will try our best to present the
possible qualitative behavior and bifurcation phenomena. Firstly, we discuss the existence and stability
of all nonnegative equilibria. Throughout this paper, we will denote local asymptotically stable by LAS.
Then, by the Bendixson-Dulac discriminant, if certain condition holds, the unique positive equilibrium
in system (1.5) is globally asymptotically stable which indicates that the species will persist in both
patches. Secondly, we obtain that system (1.5) undergoes the saddle-node bifurcation. Finally, we
investigate the effect of Allee effect and dispersal on total population abundance. We notice that
comparing with [9, 24], system (1.5) is experiencing more complex dynamics such as saddle-node
bifurcation when incorporating the additive Allee effect. The main result in this paper is a good
extension and supplement that of [9, 24].

The paper is organized as follows. Sections 2 represents the existence and stability of the equilibria.
In Section 3, we will discuss the saddle-node bifurcation of the system. In Section 4, we show the effect
of Allee effect and dispersal on total population abundance. Brief discussions are presented finally in
Section 5.

2. Existence and stability of equilibria

In this section, we shall discuss the existence and stability of all nonnegative equilibria for
system (1.5). It is easy to check that the system (1.5) always has a trivial equilibrium E0(0, 0). For
other non-trivial equilibria, we shall investigate them as follows.
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The equilibrium of system (1.5) is determined by the following equation:
−x1 + D2x2 − D1x1 = 0,

x2

(
1 − x2 −

m
x2 + a

)
+ D1x1 − D2x2 = 0.

(2.1)

For the possible equilibria, we consider the positive solution of the following equation:

x2
2 − (1 − D2

1+D1
− a)x2 + [m − a(1 − D2

1+D1
)] = 0. (2.2)

Let 4(m) be the discriminant of Eq (2.2), i.e.,

4(m) =
(
1 − D2

1+D1
+ a

)2
− 4m. (2.3)

From the above, we have the unique root of 4(m) = 0 and denote it by m∗ as follows.

m∗ =
(1 − D2

1+D1
+ a)2

4
. (2.4)

It follows that 4(m) > 0, 4(m) = 0 and 4(m) < 0 when m < m∗, m = m∗ and m > m∗, respectively.
The existence of the positive equilibria is obtained as follows.

Theorem 2.1. Suppose that a < 1 − D2
1+D1

.

(i) If m ≤ a(1 − D2
1+D1

), system (1.5) has a unique positive equilibrium E1(x11, x21).
(ii) If a(1 − D2

1+D1
) < m < m∗, system (1.5) has two distinct positive equilibria E1(x11, x21) and

E2(x12, x22).
(iii) If m = m∗, system (1.5) has a unique positive equilibrium E3(x13, x23).
(iv) If m > m∗, system (1.5) has no positive equilibria.

Theorem 2.2. Suppose that a ≥ 1 − D2
1+D1

.

(i) If m < a(1 − D2
1+D1

), then system (1.5) has a unique positive equilibrium E1(x11, x21).
(ii) If m ≥ a(1 − D2

1+D1
), then system (1.5) has no positive equilibrium.

In the above, x21 = 1
2

(
1 − D2

1+D1
− a +

√
4(m)

)
, x22 = 1

2

(
1 − D2

1+D1
− a −

√
4(m)

)
, x23 = 1

2

(
1 − D2

1+D1
− a

)
and x1i = D2

1+D1
x2i, i = 1, 2, 3.

Moreover, the Jacobian matrix at E(x1, x2) of system (1.5) is

JE =

[
−1 − D1 D2

D1 1 − 2x2 −
ma

(x2+a)2 − D2

]
. (2.5)

Thus, the determinant and the trace of the Jacobian matrix at E0(0, 0) is

Det[JE0] =
(m

a
− 1

)
(1 + D1) + D2,

Tr[JE0] = −
m
a
− D1 − D2 < 0.

AIMS Mathematics Volume 7, Issue 1, 536–551.



540

So if m < a(1 − D2
1+D1

), we have Det[JE0] < 0, then E0(0, 0) is a saddle. If m > a(1 − D2
1+D1

), we have
Det[JE0] > 0, then E0(0, 0) is stable. If m = a(1 − D2

1+D1
), we have Det[JE0] = 0, i.e., JE0 has a unique

zero eigenvalue. We will analyze that E0 is an attracting saddle-node as follows. For system (1.5), we
apply the Taylor expansion of m

x2+a , it can be rewritten as
ẋ1 = (−1 − D1)x1 + D2x2,

ẋ2 = −
D1D2

1 + D1
x2 + D1x1 +

(
− 1 +

m
a2

)
x2

2 −
m
a3 x3

2 + Q(x2)
(2.6)

where Q(x2) denotes the power sery with term x j
2 satisfying j ≥ 4. Moreover, we make the following

transformation: (
x1

x2

)
=

(
1 −

1+D1
D1

1+D1
D2

1

) (
x̄1

x̄2

)
, (2.7)

then system (1.5) becomes{
˙̄x1 = p20 x̄2

1 + p11 x̄1 x̄2 + p02 x̄2
2 + p30 x̄3

1 + p12 x̄1 x̄2
2 + p21 x̄2

1 x̄2 + p03 x̄3
2 + P1(x̄1, x̄2),

˙̄x2 = q01 x̄2 + q02 x̄2
2 + q11 x̄1 x̄2 + q20 x̄2

1 + q21 x̄2
1 x̄2 + q12 x̄1 x̄2

2 + q03 x̄3
2 + q30 x̄3

1 + P2(x̄1, x̄2)
(2.8)

where P1(x̄1, x̄2), P2(x̄1, x̄2) denote the power series with term x̄i
1 x̄ j

2 satisfying i + j ≥ 4 and

p20 =
(1+D1)3(m−a2)

a2D2[D1D2+(1+D1)2] , p11 =
2(1+D1)2(m−a2)

a2[D1D2+(1+D1)2] , p02 =
D2(1+D1)(m−a2)

a2[D1D2+(1+D1)2] ,

p30 = −
m(1+D1)4

a3D2
2[D1D2+(1+D1)2] , p12 = −

3m(1+D1)2

a3[D1D2+(1+D1)2] , p21 = −
3m(1+D1)3

a3D2[D1D2+(1+D1)2] ,

p03 = −
m(1+D1)D2

a3[D1D2+(1+D1)2] , q01 = −
D1D2+(1+D1)2

1+D1
, q02 =

D1D2(m−a2)
a2[D1D2+(1+D1)2] ,

q11 =
2(D1+D2

1)(m−a2)
a2[D1D2+(1+D1)2] , q20 =

(1+D1)2D1(m−a2)
a2D2[D1D2+(1+D1)2] , q21 = −

3m(1+D1)2D1
a3D2[D1D2+(1+D1)2] ,

q12 = −
3m(1+D1)D1

a3[D1D2+(1+D1)2] , q03 = − mD1D2
a3[D1D2+(1+D1)2] , q30 = −

m(1+D1)3D1

a3D2
2[D1D2+(1+D1)2] .

Introducing a new time variable τ = −
D1D2+(1+D1)2

1+D1
t, for the sake of simplicity, we still retain t to τ

and obtain{
˙̄x1 = v20 x̄2

1 + v11 x̄1 x̄2 + v02 x̄2
2 + v30 x̄3

1 + v12 x̄1 x̄2
2 + v21 x̄2

1 x̄2 + v03 x̄3
2 + Q1(x̄1, x̄2),

˙̄x2 = x̄2 + w02 x̄2
2 + w11 x̄1 x̄2 + w20 x̄2

1 + w21 x̄2
1 x̄2 + w12 x̄1 x̄2

2 + w03 x̄3
2 + w30 x̄3

1 + Q2(x̄1, x̄2)
(2.9)

where vi j = −
pi j(1+D1)

D1D2+(1+D1)2 , wi j = −
qi j(1+D1)

D1D2+(1+D1)2 , pi j, qi j(i + j = 2, 3) are the same as those in (2.8). When

m = a(1 − D2
1+D1

), the coefficient of x̄2
1 can be simplified as v20 = −

(1+D1)4(1− D2
1+D1

−a)

aD2[D1D2+(1+D1)2]2 < 0. Considering
the new time variable τ and using Theorem 7.1 in [25], we can conclude that the equilibrium E0 is
an attracting saddle-node. Here that the domain of E3 consists of a parabolic sector and a hyperbolic
sector. Also, in the parabolic sector, the solution trajectory tends to the equilibrium E3 when t is large
sufficiently.

Following, we concentrate on the stability of coexistence equilibria Ei(x1i, x2i), i = 1, 2. The
corresponding Jacobian matrix at Ei(x1i, x2i) is given by

JEi =

[
−1 − D1 D2

D1 1 − 2x2i −
ma

(x2i+a)2 − D2

]
. (2.10)
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Combining with (2.1), the determinant and trace of the Jacobian matrix can be simplified as

Det[JEi] =
x2i

(x2i + a)2

(
(x2i + a)2 − m

)
(1 + D1),

Tr[JEi] = −D1 − 2x2i −
ma

(x2i + a)2 − D2 < 0.

Furthermore, we can get

Det[JE1] =
x21
√

∆(m)
(√

∆(m) +
√

∆(m) + 4m
)
(1 + D1)

2(x21 + a)2 > 0,

Det[JE2] =
x22
√

∆(m)
(√

∆(m) −
√

∆(m) + 4m
)
(1 + D1)

2(x22 + a)2 < 0.

Thus E1 is LAS and E2 is a saddle.
We present the above discussion in Theorem 2.3 and Theorem 2.4.

Theorem 2.3. Suppose that a < 1 − D2
1+D1

.

(i) If m < a(1 − D2
1+D1

), then E0(0, 0) is a saddle and E1(x11, x21) is LAS;
(ii) If m = a(1 − D2

1+D1
), then E0(0, 0) is an attracting saddle-node and E1(x11, x21) is LAS;

(iii) If a(1 − D2
1+D1

) < m < m∗ =

(
1− D2

1+D1
+a
)2

4 , then E0(0, 0) and E1(x11, x21) are LAS and E2(x12, x22) is a
saddle;
(iv) If m = m∗, then E0(0, 0) is LAS and E3(x13, x23) is an attracting saddle-node;
(v) If m > m∗, then E0(0, 0) is LAS and there exists no positive equilibrium.

Proof. We will only need to prove that E3 is an attracting saddle-node when m = m∗. Let X = x1 − x13,
X̄ = x2 − x23, system (1.5) can be transformed to the following system:

Ẋ = −X + D2X̄ − D1X,

˙̄X = (X̄ + x23)
[
1 − X̄ − x23 −

m
X̄ + x23 + a

]
+ D1(X + x13) − D2(X̄ + x23).

(2.11)

Applying the Taylor expansion of m
X̄+x23+a , system (2.11) can be rewritten as

Ẋ = −X + D2X̄ − D1X,

˙̄X = −
D1D2

1 + D1
X̄ + D1X +

(
− 1 +

ma
(x23 + a)3

)
X̄2 −

m
(x23 + a)3 X̄3 + Q(X̄)

(2.12)

where Q(X̄) denotes the power sery with term X̄ j satisfying j ≥ 4. The Jacobian matrix of
system (2.12) evaluated at the origin can be calculated as

JE3 =

[
−1 − D1 D2

D1 −
D1D2
1+D1

]
, (2.13)
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then the eigenvalues of JE3 are λ1 = 0 and λ2 = −1−D1−
D1D2
1+D1

. We make the following transformation:(
X
X̄

)
=

(
1 −

1+D1
D1

1+D1
D2

1

) (
x1

x2

)
, (2.14)

then system (2.12) becomes{
ẋ1 = c20x2

1 + c11x1x2 + c02x2
2 + c30x3

1 + c12x1x2
2 + c21x2

1x2 + c03x3
2 + P1(x1, x2),

ẋ2 = d01x2 + d02x2
2 + d11x1x2 + d20x2

1 + d21x2
1x2 + d12x1x2

2 + d03x3
2 + d30x3

1 + P2(x1, x2)
(2.15)

where P1(x1, x2), P2(x1, x2) denote the power series with term xi
1x j

2 satisfying i + j ≥ 4 and

c20 =
(1+D1)3[−(x23+a)3+ma]

(x23+a)3D2[D1D2+(1+D1)2] , c11 =
2(1+D1)2[−(x23+a)3+ma]
(x23+a)3[D1D2+(1+D1)2] , c02 =

D2(1+D1)[−(x23+a)3+ma]
(x23+a)3[D1D2+(1+D1)2] ,

c30 = −
m(1+D1)4

(x23+a)3D2
2[D1D2+(1+D1)2] , c12 = −

3m(1+D1)2

(x23+a)3[D1D2+(1+D1)2] , c21 = −
3m(1+D1)3

(x23+a)3D2[D1D2+(1+D1)2] ,

c03 = −
m(1+D1)D2

(x23+a)3[D1D2+(1+D1)2] , d01 = −
1+2D1+D1D2+D2

1
1+D1

, d02 =
D1D2[−(x23+a)3+ma]

(x23+a)3[D1D2+(1+D1)2] ,

d11 =
2(D1+D2

1)[−(x23+a)3+ma]
(x23+a)3[D1D2+(1+D1)2] , d20 =

(1+D1)2D1[−(x23+a)3+ma]
(x23+a)3D2[D1D2+(1+D1)2] , d21 = −

3m(1+D1)2D1
(x23+a)3D2[D1D2+(1+D1)2] ,

d12 = −
3m(1+D1)D1

(x23+a)3[D1D2+(1+D1)2] , d03 = − mD1D2
(x23+a)3[D1D2+(1+D1)2] , d30 = −

m(1+D1)3D1

(x23+a)3D2
2[D1D2+(1+D1)2] .

Introducing a new time variable τ = −
D1D2+(1+D1)2

1+D1
t, for the sake of simplicity, we still retain t to

denote τ and obtain{
ẋ1 = e20x2

1 + e11x1x2 + e02x2
2 + e30x3

1 + e12x1x2
2 + e21x2

1x2 + e03x3
2 + Q1(x1, x2),

ẋ2 = x2 + f02x2
2 + f11x1x2 + f20x2

1 + f21x2
1x2 + f12x1x2

2 + f03x3
2 + f30x3

1 + Q2(x1, x2)
(2.16)

where ei j = −
ci j(1+D1)

D1D2+(1+D1)2 , fi j = −
di j(1+D1)

D1D2+(1+D1)2 , ci j, di j(i + j = 2, 3) are the same as those in (2.15).

When m = m∗, the coefficient of x2 can be simplified as e20 = −
(1+D1)4[−(x23+a)3+m∗a]

(x23+a)3D2[D1D2+(1+D1)2]2 > 0. Here we
use −(x23 + a)3 + m∗a = 1

8 (a − 1 + D2
1+D1

)(a + 1 − D2
1+D1

)2 < 0. Considering the new time variable τ and
using Theorem 7.1 in [25], we can conclude that the equilibrium E3 is an attracting saddle-node. This
completes the proof. �

Similarly, we can obtain the result as follows.

Theorem 2.4. Suppose that a ≥ 1 − D2
1+D1

.

(i) If m < a(1 − D2
1+D1

), then E0(0, 0) is a saddle and E1(x11, x21) is LAS;
(ii) If m = a(1 − D2

1+D1
), then E0(0, 0) is an attracting saddle-node and E1(x11, x21) is LAS;

(iii) if m > a(1 − D2
1+D1

), then E0(0, 0) is LAS and there exists no positive equilibrium.

Corollary 2.1. When m ≤ a(1 − D2
1+D1

), for system (1.5), the unique positive equilibrium E1(x11, x21) is
globally asymptotically stable.

Proof. As was shown in Theorems 2.3 and 2.4, E1 is LAS when m ≤ a(1 − D2
1+D1

). To prove
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that E1 is globally asymptotically stable, we consider the Dulac function u(x1, x2) = 1. We can get

∂(uP)
∂x1

+
∂(uQ)
∂x2

= −2 − D1 − 2x2 −
ma

(x2 + a)2 − D2 < 0

where

P(x1, x2) = −x1 + D2x2 − D1x1,

Q(x1, x2) = x2
(
1 − x2 −

m
x2 + a

)
+ D1x1 − D2x2.

According to the Bendixson-Dulac discriminant, system (1.5) has no limit cycle in the first quadrant.
And when m ≤ a(1 − D2

1+D1
), E0 is unstable in the first quadrant. Thus one can deduce that E1(x11, x21)

is global asymptotically stable when m ≤ a(1 − D2
1+D1

). The proof of Corollary 2.1 is finished.

Corollary 2.2. When a < 1 − D2
1+D1

and m > m∗, for system (1.5), the trivial equilibrium
E0(0, 0) is globally asymptotically stable.

Proof. As was mentioned in Theorem 2.3, E0 is LAS when a < 1 − D2
1+D1

and m > m∗. Also,
for system (1.5), we can declare that under the initial conditions x1(0) ≥ 0 and x2(0) ≥ 0, the solution
(x1(t), x2(t)) satisfies xi(t) ≥ 0(i = 1, 2) when t ≥ 0. Actually, we can prove x1(t) ≥ 0(t ≥ 0) as
follows. If not, one can suppose that there exists t0 > 0 such that x1(t0) = 0, x1(t) ≥ 0(t ∈ (0, t0)) and
ẋ1(t0) < 0. Thus, from the second equation of system (1.5), we have ẋ2(t) ≥ x2(t)(1−D2− x2(t)− m

x2(t)+a )

when t ∈ (0, t0). As a result, x2(t) ≥ x2(0) exp
∫ t

0
(1 − D2 − x2(s) − m

x2(s)+a )ds ≥ 0, t ∈ (0, t0). From
the continuity of x2(t), it follows that x2(t0) ≥ 0. Moreover, from the first equation of system (1.5),
we can obtain that ẋ1(t0) = D2x2(t0) ≥ 0. The above leads to a contradiction with ẋ1(t0) < 0.
So it follows that x1(t) ≥ 0(t ≥ 0). Similarly, we have x2(t) ≥ 0(t ≥ 0). Moreover, we have
d(x1+x2)

dt
= −x1 + x2(1 − x2 −

m
x2+a ) ≤ −x1 + x2(1 − x2) = −(x1 + x2) + x2(2 − x2) ≤ 1 − (x1 + x2) which

shows that lim
t→+∞

sup xi(t) ≤ 1, i = 1, 2. In other words, the solution of system (1.5) is ultimately
bounded and then the solution can’t extend to the infinity when t is large sufficiently. Also, there exists
no limit cycle since system (1.5) has no other equilibrium. Thus E0(0, 0) is global asymptotically
stable. The proof of Corollary 2.2 is finished.

Similarly, we can obtain the result as follows.

Corollary 2.3. When a ≥ 1 − D2
1+D1

and m > a(1 − D2
1+D1

), for system (1.5), the trivial equilibrium
E0(0, 0) is globally asymptotically stable.

From Corollaries 2.1–2.3, we can conclude that the additive Allee effect m and a is closely related
with the population survival. In detail, when m ≤ a(1 − D2

1+D1
), the species in both patches can survive.

However, when m > a(1 − D2
1+D1

), the species may still be persistent or become extinguished. Actually,
when a ≥ 1 − D2

1+D1
, m > a(1 − D2

1+D1
) or a < 1 − D2

1+D1
, m > m∗, both species will be extinct. In other

words, the larger the Allee effect constant m, the more likely the species will become extinct. The
phase ports of system (1.5) is given in Figure 1.

AIMS Mathematics Volume 7, Issue 1, 536–551.



544

x
1
 ’ = − x

1
 + 0.5 x

2
 − 0.6 x

1
                            

x
2
 ’ = x

2
 (1 − x

2
 − 0.12/(x

2
 + 0.18)) + 0.6 x

1
 − 0.5 x

2

 
 

 
 

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
1

x 2

E
1

E
0

(a) m < a(1 − D2
1+D1

)

x
1
 ’ = − x

1
 + 0.5 x

2
 − 0.6 x

1
                               

x
2
 ’ = x

2
 (1 − x

2
 − 0.12375/(x

2
 + 0.18)) + 0.6 x

1
 − 0.5 x

2

 
 

 
 

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
1

x 2

E
0

E
1

(b) m = a(1 − D2
1+D1

)

x
1
 ’ = − x

1
 + 0.5 x

2
 − 0.6 x

1
                            

x
2
 ’ = x

2
 (1 − x

2
 − 0.15/(x

2
 + 0.18)) + 0.6 x

1
 − 0.5 x

2

 
 

 
 

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

x
1

x 2

E
0

E
2

E
1

(c) a(1 − D2
1+D1

) < m < a

x
1
 ’ = − x

1
 + 0.5 x

2
 − 0.6 x

1
                                    

x
2
 ’ = x

2
 (1 − x

2
 − 0.1881390625/(x

2
 + 0.18)) + 0.6 x

1
 − 0.5 x

2

 
 

 
 

 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
1

x 2

E
0

E
3

(d) m = m∗

Figure 1. The phase portraits of system (1.5). (a) E0 is a saddle and E1 is LAS; (b) E0 is an
attracting saddle-node and E1 is LAS; (c) E0, E1 are LAS and E2 is a saddle; (d) E0 is LAS
and E3 is an attracting saddle-node.

3. Saddle-node bifurcation

From Section 2, we know that if a < m < m∗, system (1.5) has two positive equilibria, i.e.,
E1(x11, x21) and E2(x12, x22); if m = m∗, the system has a unique positive equilibrium E3(x13, x23);
if m > m∗, the system has no positive equilibria. The above indicates that there will be the occurrence
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of saddle-node bifurcation. Next we will prove that system (1.5) undergoes the saddle-node bifurcation

when m = mS N ,

(
1− D2

1+D1
+a
)2

4 . And the numerical simulation of the saddle-node bifurcation is shown in
Figure 2.
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Figure 2. The saddle-node bifurcation of system (1.5).

Theorem 3.1. System (1.5) undergoes the saddle-node bifurcation when m = mS N .

Proof. We use Sotomayor’s theorem in [26] to verify the transversality condition for the occurrence
of saddle-node bifurcation at m = mS N . Notice that the determinant and the trace of the corresponding
Jacobian matrix can be given by Det[JE3] = 0 and Tr[JE3] = −1−D1−

D1D2
1+D1

< 0. Then JE3 has a unique
zero eigenvalue, named by λ1.

For the matrices JE3 and JT
E3

, let V and W represent two eigenvectors corresponding to the eigenvalue
λ1, respectively. Then we can get

V =

(
V1

V2

)
=

(
1

1+D1
D2

)
, W =

(
W1

W2

)
=

(
1

1+D1
D1

)
. (3.1)
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Furthermore, we obtain

Fm(E3; mS N) =


0(

1− D2
1+D1

−a
)[

2
(
−1+

D2
1+D1

−a
)
+
(

1− D2
1+D1

+a
)2]

2
(

1− D2
1+D1

+a
)2

, (3.2)

D2F(E3; mS N)(V,V) =


∂2F1
∂x2

1
V2

1 + 2 ∂2F1
∂x1∂x2

V1V2 + ∂2F1
∂x2

2
V2

2

∂2F2
∂x2

1
V2

1 + 2 ∂2F2
∂x1∂x2

V1V2 + ∂2F2
∂x2

2
V2

2


(E3;mS N )

=

 0
2
(
−1+

D2
1+D1

+a
)

(1+D1)2(
1− D2

1+D1
+a
)

D2
2

.
(3.3)

Here F1 = −x1 + D2x2 − D1x1 and F2 = x2
(
1 − x2 −

m
x2+a

)
+ D1x1 − D2x2. According to (3.2) and (3.3),

it follows that

WT Fm(E3; mS N) =
(1+D1)

(
1− D2

1+D1
−a
)[

2
(
−1+

D2
1+D1

−a
)
+
(

1− D2
1+D1

+a
)2]

2D1

(
1− D2

1+D1
+a
)2 , 0,

WT [D2F(E3; mS N)(V,V)] =
2
(
−1+

D2
1+D1

+a
)

(1+D1)3(
1− D2

1+D1
+a
)

D1D2
2

, 0

which means that the saddle-node bifurcation occurs at E3 when m = mS N . Thus we complete the
proof. �

4. Effect of Allee effect and dispersal

Through the previous analysis, we can see that when the parameters satisfy certain conditions,
the unique positive equilibrium E1(x11, x21) is globally asymptotically stable. At this time, the total
population abundance is

T1 = x11 + x21 =
(1 + D1 + D2)(1 − D2

1+D1
− a +

√
4(m))

2(1 + D1)
.

Following, we will explore the effect of Allee effect and dispersal on the total population abundance,
respectively.

Firstly, by simple calculation, we have

dT1

da
=

1 + D1 + D2

2(1 + D1)

(
− 1 +

1 − D2
1+D1

+ a
√

∆(m)

)
> 0,

dT1

dm
= −

1 + D1 + D2

(1 + D1)
√

∆(m)
< 0.

Thus we can obtain that the total population abundance will increase when the Allee effect constant
a increases or m decreases. Let D1 = 1, D2 = 0.5. In Figure 3(a),(b), we have used the software
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of matlab to plot the bifurcation diagram when a = 0.2 or m = 0.2, respectively. The bifurcation
diagram shows the maximum and minimum density of species 1, i.e., x11 and x21 as Allee effect m or
a is increasing. Here x11 and x12 are regarded as functions of m, a which are plotted in Figure 3(a),(b),
respectively. It follows that Allee effect has a vital influence on the species. In detail, the density of the
species decreases when the Allee effect coefficients m increases or a decreases.
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Figure 3. The bifurcation diagram showing the maximum and minimum density of species
1, i.e., x11 and x21 as Allee effect m or a is increasing. Solid(dotted) curves represent
the stable(unstable) singularities, i.e., x11(x21), respectively. SN denotes the saddle-node
bifurcation.

Secondly, we will explore the possible impact of dispersal on the total population abundance
through numerical simulation. We regard the total population abundance T1 as a function of D1 or
D2, respectively. In Figure 4(a), let m = 0.2, a = 0.5, D2 = 1, it follows that T1 increases when
D1 increases. In Figure 4(b), let m = 0.02, a = 0.5, D1 = 10, it follows T1 decreases when D2

increases. Especially, when m = m∗, the system (1.5) has a unique positive equilibrium E3. Then the

corresponding total population abundance T1 = x13 + x23 =
(1+D1+D2)

(
1− D2

1+D1
−a
)

2(1+D1) . A direct computation

shows dT1

dD1
= D2

2(1+D1)2

[
a + 2D2

1+D1

]
> 0, dT1

dD2
= − 1

2(1+D1)

(
a + 2D2

1+D1

)
< 0. This observation is consistent

with the numerical simulation in Figure 4. Actually, it is not difficult to understand the above result
biologically. Notice that D1(D2) is the dispersal rate of the species from patch 1(2) to patch 2(1) and
the intrinsic growth rate of the species is negative (positive) in patch 1(2) when there is no dispersal.
As a result, once D1 increases, the species easily migrates from patch 1 to patch 2, that is, migrates
to a patch with a larger growth rate. The migration will result in the increase of the total population
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abundance. On the contrary, when D2 increases, the species easily migrates from patch 2 to patch 1,
which makes the species more likely to be extinct and then reduce the total population abundance.
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Figure 4. The total population abundance T1 as D1 or D2 is increasing.

5. Conclusions

In this paper, we have proposed and studied a two-patch model with additive Allee effect and
dispersal. Our goal of this investigation is to discuss how the above model’s dynamical behaviour
such as the persistence and extinction is influenced by the additive Allee effect and dispersal. The
model always has a trivial equilibrium E0(0, 0) which is a saddle or a stable node when m < a(1− D2

1−D1
)

or m > a(1 − D2
1−D1

), respectively. For the existence and stability of the positive equilibrium, we have
considered two cases, i.e., a < 1 − D2

1−D1
and a ≥ 1 − D2

1−D1
in Theorems 2.3 and 2.4. In detail, when

a < 1− D2
1−D1

, there may exist a stable positive equilibrium E1, two different positive equilibria E1, E2(E1

is stable and E2 is a saddle), an attracting saddle-node E3 or no positive equilibrium under the case
m ≤ a(1 − D2

1−D1
), a(1 − D2

1−D1
) < m < m∗, m = m∗, m > m∗, respectively. On the other hand, when

a < 1− D2
1−D1

, there may exist a stable positive equilibrium E1 or no positive equilibrium under the case
m ≤ a(1 − D2

1−D1
), m > a(1 − D2

1−D1
), respectively. Furthermore, in Theorem 3.1, we have revealed that

the system can undergo the saddle-node bifurcation around the unique positive equilibrium E3.
In all, the above results indicate that the additive Allee effect and dispersal have great impact on

the species permanence, extinction and stability. Especially, according to Corollary 2.1, E1 is globally
asymptotically stable which shows that the species in both patches coexist when m ≤ a(1 − D2

1−D1
).

From Corollaries 2.2 and 2.3, one can find that both species go extinct when a < 1 − D2
1−D1

, m > m∗

or a ≥ 1 − D2
1−D1

, m > a(1 − D2
1−D1

). Furthermore, in order to study the effect of the Allee effect and
dispersal on the population more concisely, we also investigate the total population abundance and
have found that it will increase when the Allee effect constant a increases or m decreases. Also, we
find that the total population density increases when the dispersal rate D1 increases or D2 decreases.
Additive Allee effect can reduce complex dynamics and bifurcation. Actually, many literatures have
investigated system (1.5) when m = 0. For example, in [9], system (1.5) with m = 0 has at most a
positive equilibrium. However, when m > 0, there may exist one or two positive equilibria and even
the emergence of the bifurcation. Also, for the strong Allee effect case in (1.5), we provide a rigorous
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qualitative analysis other than numerical simulation which has been done in [24]. The main results in
this paper can be seen as a good supplement to the work in [9] and [24].

Here we have to point out that this paper investigates a patchy model in which the species in patch 1
is assumed to die exponentially and the system only admits saddle-node bifurcation. As we know, it is
also meaningful to consider the logistic growth rate for the species in one of the patches and the species
in the other patch is suffered from the additive Allee effect. In this case, the above system may exhibit
at most six positive equilibria and even undergo complex bifurcation such as Hopf bifurcation and
Bogdanov-Takens bifurcation. It is rather difficult for us to present a rigorous qualitative analysis at
present. We hope to consider this aspect for future work by use of “bifurcation control” and “parametric
normal forms” in [27–33].
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