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Abstract: This paper is devoted to studying the transcendental directions of entire solutions of f (n) +

An−1 f (n−1) + ... + A0 f = 0, where n(≥ 2) is an integer and Ai(z)(i = 0, 1, ..., n − 1) are entire functions
of finite lower order. With some additional conditions, the set of common transcendental directions
of non-trivial solutions, their derivatives and their primitives must have a definite range of measure.
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1. Introduction and main results

In this paper, we investigate the common transcendental directions of derivatives, primitives and
Jackson difference operators of f , which is a non-trivial solution of the linear differential equation

f (n) + An−1 f (n−1) + ... + A0 f = 0, (1.1)

where n(≥ 2) is an integer and Ai(z)(i = 0, 1, ..., n − 1) are entire functions of finite lower order.
To accurately describe and study our problems, we need some basic results on complex dynamics of

transcendental meromorphic functions. Let f : C→ C∪{∞} be a transcendental meromorphic function
in the complex plane C, and f n(z) = f ◦ ( f n−1)(z), n ∈ N denote the n-th iterate of f (z). The Fatou set of
f is denoted by F ( f ), that is the set of points such that { f n}∞n=1 is defined and normal in a neighborhood
of z and the Julia set J( f ) is its complement. It is well-known that F ( f ) is open, J( f ) is closed and
non-empty. More basic knowledge of complex dynamics can be found in [3].
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For a transcendental entire function f , Baker [2] first observed that J( f ) cannot lie in finitely many
rays emanating from the origin. In 1994, Qiao [11] introduced the limiting directions of a Julia set
from a viewpoint of angular distribution.

Definition 1.1. [11] The ray arg z = θ(θ ∈ [0, 2π)) is said to be a limiting direction of J( f ) if
Ω(θ− ε, θ+ ε)∩J( f ) is unbounded for any ε > 0, where Ω(θ− ε, θ+ ε) = {z ∈ C| arg z ∈ (θ− ε, θ+ ε)}.

The set of arguments of all limit directions of J( f ) is denoted by

∆( f ) = {θ ∈ [0, 2π)| the ray arg z = θ is a limiting direction of J( f )}.

It is known that ∆( f ) is closed and measurable and we use mes∆( f ) stands for its linear measure. For
brevity, we call a limiting direction of the Julia set of f a Julia limiting direction of f . The Nevanlinna
theory is an important tool in this paper. In what follows, we use some standard notations such
as proximity function m(r, f ), counting function of poles N(r, f ), Nevanlinna characteristic function
T (r, f ) and some basic results in [7]. The order ρ( f ) and lower order µ( f ) of f (z) are defined by

ρ( f ) = lim sup
r→∞

log+ T (r, f )
log r

, µ( f ) = lim inf
r→∞

log+ T (r, f )
log r

,

respectively. The deficiency of the value a is denoted by δ(a, f ), and if δ(a, f ) > 0, we say that a is a
Nevanlinna deficient value of f (z).

Qiao [10] proved that if f (z) is a transcendental entire function of finite lower order, then mes∆( f ) ≥
min{2π, π/µ( f )}. Recall J(tan z) = R, then we know the conclusion fails for general meromorphic
functions. But under some conditions, Qiao’s result can be generalized. In [16], Zheng et al. proved
that for a transcendental meromorphic function f (z) with µ( f ) < ∞ and δ(∞, f ) > 0, if J( f ) has an

unbounded component, then mes ∆( f ) ≥ min{2π, 4
µ( f ) arcsin

√
δ(∞, f )

2 }. In [12], Qiu and Wu showed that
the conclusion is still valid without the assumption that J( f ) has an unbounded component. Some
new progress on Julia limiting directions can be found in [5, 8, 13–16]. Especially, in order to analyze
the structure of the limit directions, Wang and Yao [15] introduced a new direction in which f grows
faster than any polynomials is a limit direction of f .

Definition 1.2. [15] A value θ ∈ [0, 2π) is said to be a transcendental direction of f if there exists an
unbounded sequence of {zn} such that

lim
n→∞

arg zn = θ and lim
n→∞

log | f (zn)|
log |zn|

= +∞.

We use T D( f ) to denote the union of all transcendental directions of f . Clearly, T D( f ) is non-empty
and closed.

It is known that the growth properties of the function can affect the geometry and topology of the
Julia sets and we can find that even weak growth along some unbounded sequence could be closely
related to Julia limiting directions. Indeed, Wang and Yao obtained the following.

Theorem A. [15] Let f be a transcendental meromorphic function. If either f has a direct tract or
J( f ) ∪ {∞} is uniformly perfect at some point in J( f ). Then

T D( f ) ⊂ ∆( f ).
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Remark 1.1. Actually, every transcendental entire function has at least a direct, and if J( f ) has an
unbounded component, thenJ( f )∪{∞} is uniformly perfect at some point inJ( f ). Theorem A implies
that many Julia limiting directions come from transcendental directions. Therefore, it is interesting to
study the properties of transcendental directions since this may help us study the structure of Julia
limiting direction. Although the concept of the transcendental direction is not introduced before, the
idea to associate the Julia limiting directions with the growth rate of f in the directions has already
appeared in Qiao [10] and Zheng-Wang-Huang [16]. Here, we give an example to illustrate the
concepts of the transcendental direction and the Julia limiting direction.

Example 1.1. Let f (z) = λ exp z(λ ∈ C \ {0}). Clearly, T D( f ) = [−π2 ,
π
2 ]. When 0 < λ ≤ 1

e , J( f ) is
contained in the half plane Re(z) ≥ 1, so ∆( f ) = T D( f ), while ∆(exp z) = [0, 2π) since J(exp z) = C.
This also shows that T D( f ) ⊂ ∆( f ) may happen.

By the results in [10, 12, 16], the measure of ∆( f ) has a lower bound for some transcendental
meromorphic functions, then the relationship T D( f ) ⊂ ∆( f ) in Theorem A motivates us to pose a
question : Can we estimate the lower bound of measure of T D( f )? In [15], Wang and Yao partially
answered this question.

Theorem B. [15] Let f be a transcendental meromorphic function. If µ( f ) < ∞ and δ(∞, f ) > 0, then

mes(T D( f )) ≥ min{2π,
4

µ( f )
arcsin

√
δ(∞, f )

2
}.

Remark 1.2. From Theorem B, a natural question arises: For meromorphic functions with infinite
lower order, what is sufficient conditions for the existence of lower bound of the measure of T D( f )?
Moreover, for entire functions and their derivatives, the difference between their local properties are
astonishing. Then there exists another question: What is the relation between the transcendental
directions of entire functions and that of their derivatives?

Inspired by Theorem B, we try to answer the two questions. Actually, if f is a transcendental
meromorphic function of finite lower order, then it must have sequences of Pólya peaks (see
Lemma 2.3). Therefore, we can estimate the lower bound of the measure of set of transcendental
directions of transcendental meromorphic functions of finite lower order by using sequences of Pólya
peaks. But for a transcendental meromorphic function f with infinite lower order, it is impossible to
use sequences of Pólya peaks to consider the lower bound of the measure of T D( f ) because Lemma 2.3
can only apply to a transcendental meromorphic function with finite lower order. Therefore, we need to
seek a new method to study the transcendental directions of entire solutions with infinite lower order.
Indeed, we shall show that the transcendental directions of f (z), its k-th derivatives and its k-th integral
primitive have a large amount of common transcendental directions. Set I( f ) =

⋂
k∈Z T D( f (k)), where

f (k) denotes the k-th derivative of f (z) for k ≥ 0 or k-th integral primitives of f (z) for k < 0. Our result
can be stated as follows.

Theorem 1.1. Let Ai(z)(i = 0, 1, ..., n − 1) be entire functions of finite lower order such that A0 is
transcendental and m(r, Ai) = o(m(r, A0))(i = 1, 2, ..., n−1) as r → ∞. Then, every non-trivial solution
f of Eq (1.1) satisfies mes I( f ) ≥ min{2π, π/µ(A0)}.
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Remark 1.3. It is easy to see that every non-trivial solution f of Eq (1.1) is an entire function with
infinite lower order. Since A0(z) is entire and transcendental, then lim

r→∞

m(r,A0)
log r = ∞. Applying the lemma

of logarithmic derivatives to Eq (1.1) yields

m(r, A0) ≤
n∑

i=1

m(r,
f (i)

f
) +

n−1∑
i=1

m(r, Ai) + O(1)

= O(log T (r, f ) + log r) + o(m(r, A0)),

outside of a possible exceptional set E of finite linear measure. Therefore, all non-trivial solutions of
Eq (1.1) are entire functions with infinite lower order.

Remark 1.4. In [14], Wang and Chen proved mes(
⋂

k∈Z ∆( f (k))) ≥ min{2π, π/µ(A0)} under the
conditions of Theorem 1.1. Clearly, in the case that µ(A0) < 1/2, we know all Julia limiting directions
of f come from its transcendental directions.

In [4], Cao et al. recalled the Jackson difference operator

Dq f (z) =
f (qz) − f (z)

qz − z
, z ∈ C\{0}, q ∈ C\{0, 1}.

For k ∈ N ∪ {0}, the Jackson k-th difference operator is denoted by

D0
q f (z) := f (z), Dk

q f (z) := Dq(Dk−1
q f (z)).

Clearly, if f is differentiable,
lim
q→1

Dk
q f (z) = f (k)(z).

From Theorem 1.1, we know the set of transcendental directions of derivatives of every non-trivial
solution f (z) of Eq (1.1) must have a definite range of measure with some additional conditions.
Naturally, a question arise: Can we estimate the lower bound of measure of T D(Dk

q f )? Furthermore,
what is the relation between the transcendental directions of entire functions and those of their Jackson
difference operators?

To answer these questions, we first need to figure out the growth of Dk
q f (z). In 2020, Long

et al. [9] considered the growth of q difference operator D̂q f (z) := f (qz) − f (z) of the transcendental
meromorphic function and obtained the following result.

Theorem C. [9] If f is a transcendental meromorphic function and |q| , 1, then ρ(D̂q f ) = ρ( f ) and
µ(D̂q f ) = µ( f ).

Moreover, in the introduction of [9], the authors pointed out that this result also holds for Jackson
difference operators. In fact, we know the set of transcendental directions of a transcendental entire
function with finite lower order must have a definite range of measure from Theorem B. Hence, the left
is the case of entire functions with infinite lower order. From Remark 1.3, we know that every non-
trivial solution f of Eq (1.1) is an entire function with infinite lower order, and by [9], the k-th Jackson
difference operator Dk

q f of f is also of infinite lower order if f is a transcendental meromorphic with
infinite lower order. Therefore, motivated by these facts, we try to study the common transcendental
directions of solutions of Eq (1.1) and their Jackson difference operator. Here, we denote R( f ) =⋂

k∈N∪{0} T D(Dk
q f ), where q ∈ (0,+∞)\{1}. Then we have the following result.
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Theorem 1.2. Let Ai(z)(i = 0, 1, ..., n − 1) be entire functions of finite lower order such that A0 is
transcendental and m(r, Ai) = o(m(r, A0))(i = 1, 2, ..., n−1) as r → ∞. Then, every non-trivial solution
f of Eq (1.1) satisfies mes R( f ) ≥ min{2π, π/µ(A0)} for all q ∈ (0,+∞)\{1}.

Remark 1.5. Although limq→1 Dk
q f (z) = f (k)(z), it just means that the k-th derivative is the limit of

a family of Jackson difference operator. In Theorem 1.1, our calculation of the integral primitives of
f (z) depends on the lemma of logarithmic derivatives in the angular domain. At present, we only have
the Jackson difference analogue of logarithmic derivative lemma for meromorphic functions with zero
order in the whole plane, see [4]. Therefore, for k < 0, we do not have sufficient conditions to estimate
the lower bound of measure of T D(Dk

q f ). Thus, Theorem 1.1 still makes sense.

Usually, we cannot expect too much close relations of transcendental directions between D̂q f and f .
But Theorem C shows us that f and D̂q f have both the same order and lower order. So we may
also consider the measure of transcendental directions of k-th q difference operators of meromorphic
functions with infinite lower order. Now, we denote the k-th q difference operator by

D̂0
q f (z) := f (z), D̂k

q f (z) := D̂q(D̂k−1
q f (z)),

where k ∈ N ∪ {0}. Here, we denote E( f ) =
⋂

k∈N∪{0} T D(D̂k
q f ), where q ∈ (0,+∞)\{1}. Then we have

the following result.

Theorem 1.3. Let Ai(z)(i = 0, 1, ..., n − 1) be entire functions of finite lower order such that A0 is
transcendental and m(r, Ai) = o(m(r, A0))(i = 1, 2, ..., n−1) as r → ∞. Then, every non-trivial solution
f (z) of Eq (1.1) satisfies mes E( f ) ≥ min{2π, π/µ(A0)} for all q ∈ (0,+∞)\{1}.

2. Preliminary lemmas

Before introducing lemmas, we recall the Nevanlinna characteristic in an angle, see [6, 17].
Assuming 0 < α < β < 2π, we denote

Ω(α, β) = {z ∈ C| arg z ∈ (α, β)},

Ω(α, β, r) = {z ∈ C|z ∈ Ω(α, β), |z| < r},

Ω(r, α, β) = {z ∈ C|z ∈ Ω(α, β), |z| > r},

and use Ω(α, β) to denote the closure of Ω(α, β).
Let g(z) be meromorphic on the angular Ω(α, β), we define

Aα,β(r, g) = ω
π

∫ r

1

(
1
tω −

tω
r2ω

) {
log+

∣∣∣∣g (
teiα

)∣∣∣∣ + log+
∣∣∣∣g (

teiβ
)∣∣∣∣} dt

t ,

Bα,β(r, g) = 2ω
πrω

∫ β

α
log+

∣∣∣∣g (
reiθ

)∣∣∣∣ sinω(θ − α)dθ,

Cα,β(r, g) = 2
∑

1<|bn |<r

(
1
|bn |

ω −
|bn |

ω

r2ω

)
sinω (βn − α) ,

where ω = π/(β − α), and bn = |bn|eiβn are the poles of g(z) in Ω(α, β) according to their multiplicities.
The Nevanlinna angular characteristic is defined as follows:

S α,β(r, g) = Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g).
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In particular, we use σα,β(g) = lim supr→∞
log S α,β(r,g)

log r to denote the order of S α,β(r, g). The following
lemmas play the key roles in proving our results.

Lemma 2.1. [17] Let f (z) be a meromorphic function on Ω(α−ε, β+ε) for ε > 0 and 0 < α < β < 2π.
Then

Aα,β(r,
f ′

f
) + Bα,β(r,

f ′

f
) ≤ K(log+ S α−ε,β+ε(r, f ) + log r + 1).

Lemma 2.2. [8] Let z = r exp(iψ), r0 + 1 < r and α ≤ ψ ≤ β, where 0 < β − α ≤ 2π. Suppose that
n(≥ 2) is an integer, and that g(z) is analytic in Ω(r0, α, β) with σα,β < ∞. Choose α < α1 < β1 < β,
then, for every ε ∈ (0, β j−α j

2 )( j = 1, 2, ..., n − 1) outside a set of linear measure zero with

α j = α +

j−1∑
s=1

εs and β j = β +

j−1∑
s=1

εs, j = 2, 3, ..., n − 1,

there exist K > 0 and M > 0 only depending g, ε1, ..., εn−1 and Ω(αn−1, βn−1), and not depending on z
such that ∣∣∣∣∣g′(z)

g(z)

∣∣∣∣∣ ≤ KrM(sin k(ψ − α))−2

and ∣∣∣∣∣∣g(n)(z)
g(z)

∣∣∣∣∣∣ ≤ KrM

sin k(ψ − α)
n−1∏
j=1

sin k j

(
ψ − α j

)
−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set D, where k = π/(β−α) and kε j = π/(β j−α j( j = 1, 2, ..., n−1)).

To estimate the measure of T D( f ), we need to find the directions in which f grows faster than any
polynomial. For this we will use the following result of Baernstein.

Lemma 2.3. [1] Let f (z) be a transcendental meromorphic function of finite lower order µ, and have
one deficient value a. Let Λ(r) be a positive function with Λ(r) = o(T (r, f )) as r → ∞. Then for any
fixed sequence of Pólya peaks {rn} of order µ, we have

lim inf
r→∞

mes DΛ (rn, a) ≥ min

2π,
4
µ

arcsin

√
δ(a, f )

2

 , (2.1)

where DΛ(r, a) is defined by

DΛ(r,∞) =

{
θ ∈ [−π, π) :

∣∣∣∣ f (
reiθ

)∣∣∣∣ > eΛ(r)
}
,

and for finite a,

DΛ(r, a) =

{
θ ∈ [−π, π) :

∣∣∣∣ f (
reiθ

)
− a

∣∣∣∣ < e−Λ(r)
}
.

3. Proofs of theorems

Proof of Theorem 1.1. The assertion mes I( f ) ≥ σ := min{2π, π/µ(A0)} would be obtained by
reduction to absurdity. Suppose on the contrary that mes I( f ) < σ := min{2π, π/µ(A0}. Then
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t := σ − mes I( f ) > 0. For every k ∈ Z, T D( f (k)) is closed, and so I( f ) is a closed set. Denoted
by S := (0, 2π)\I( f ) the complement of I( f ). Then S is open, so it consists of at most countably many
open intervals. We can choose finitely many open intervals Ii = (αi, βi)(i = 1, 2, ...,m) in S such that

mes(S \
m⋃

i=1

Ii) <
t
4
. (3.1)

For every θi ∈ Ii, arg z = θi is not a transcendental direction of f (k) for some k ∈ Z. Then there exists
an angular domain Ω(θi − ξθi , θi + ξθi) such that

(θi − ξθi , θi + ξθi) ⊂ Ii and Ω(θi − ξθi , θi + ξθi) ∩ T D( f (k)) = ∅, (3.2)

where ξθi is a constant depending on θi. Hence,
⋃

θi∈Ii
(θi−ξθi , θi+ξθi) is an open covering of [αi+ε, βi−ε]

with 0 < ε < min{(βi − αi)/6, i = 1, 2, ...,m}. By Heine-Borel theorem, we can choose finitely many
θi j, such that

[αi + ε, βi − ε] ⊂
si⋃

j=1

(θi j − ξθi j , θi j + ξθi j).

From (3.2) and the definition of transcendental direction, we have

| f (k)(z)| = O(|z|d), z ∈ Ω(α∗i j, β
∗
i j), (3.3)

where d is a positive constant, α∗i j = θi j − ξθi j + ε and β∗i j = θi j + ξθi j − ε.
Case 1. Suppose k ≥ 0. We note the fact that

f (k−1)(z) =

∫ z

0
f (k)(ζ)dζ + c,

where c is a constant, and the integral path is the segment of a straight line from 0 to z. From this
and (3.3), we can deduce f (k−1)(z) = O(|z|d+1) for z ∈ Ω(α∗i j, θ

∗
i j). Repeating the discussion k times, we

can obtain
f (z) = O(|z|d+k), z ∈ Ω(α∗i j, β

∗
i j).

It means that
S α∗i j,β

∗
i j
(r, f ) = O(log r). (3.4)

Case 2. Suppose k < 0. Clearly, for f (k)(z), there is not just one primitive, but a whole family. However,
for any integral primitive f (k+1)(z), we have

S α∗i j+ε
′,β∗i j−ε

′(r, f (k+1)) ≤ S α∗i j+ε
′,β∗i j−ε

′(r,
f (k+1)

f (k) ) + S α∗i j+ε
′,β∗i j−ε

′(r, f (k))

for |k|ε′ = ε.
By (3.3) and Lemma 2.1, we can obtain

S α∗i j+ε
′,β∗i j−ε

′(r, f (k+1)) = O(log r).

Using the discussion |k| times, we have

S α∗i j+ε,β
∗
i j−ε

(r, f ) = O(log r). (3.5)
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It follows from (3.4) and (3.5) that whatever k is positive or not, we always have

S α∗i j+ε,β
∗
i j−ε

(r, f ) = O(log r). (3.6)

Therefore, by Lemma 2.2, there exists two constants M > 0 and K > 0 such that

|
f (s)(z)
f (z)

| ≤ KrM, (s = 1, 2, ..., n) (3.7)

for all z ∈
⋃m

i=1
⋃si

j=1 Ω(θi j − ξθi j + 3ε, θi j + ξθi j − 3ε) outside a R-set H.
Next, we define

Λ(r) = max{
√

log r,
√

m(r, A1), ...,
√

m(r, An−1)}
√

m(r, A0).

It is clear that Λ(r) = o(m(r, A0)) and m(r, Ai) = o(Λ(r)), i = 1, 2, ..., n. Since A0 is entire, ∞ is
a deficient value of A0 and δ(∞, A0) = 1. By Lemma 2.3, there exists an increasing and unbounded
sequence {rk} such that

mes DΛ (rk) ≥ σ − t/4, (3.8)

where
DΛ(r) := DΛ(r,∞) =

{
θ ∈ [−π, π) : log

∣∣∣∣A0

(
reiθ

)∣∣∣∣ > Λ(r)
}
, (3.9)

and all rk < {|z| : z ∈ H}. Set

U :=
∞⋂

n=1

En with En :=
∞⋃

k=n

DΛ(rk), (3.10)

one can see that

mes(U) = mes(
∞⋂

n=1

En) = lim
n→∞

mes(En). (3.11)

From (3.10), we know DΛ(rn) ⊂ En for each n. Then

lim
n→∞

mes(En) ≥ lim inf
n→∞

mes(DΛ(rn)). (3.12)

It follows from (3.8), (3.11) and (3.12) that

mes(U) ≥ lim inf
n→∞

mes(DΛ(rn)) ≥ σ − t/4.

Clearly,

mes

 m⋃
i=1

Ii

 ∩ U

 = mes (S ∩ U) −mes

S \ m⋃
i=1

Ii

 ∩ U


≥ mes (U) −mes I( f ) −mes

S \ m⋃
i=1

Ii


≥ σ −

t
4
−mes I( f ) −

t
4

=
t
2
.
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Let Ji j = (θi j − ξθi j + 3ε, θi j + ξθi j − 3ε). Then

mes

 m⋃
i=1

si⋃
j=1

Ji j

 ≥ mes

 m⋃
i=1

Ii

 − (3m + 6ζ)ε,

where ζ =
∑m

i=1 si. Choosing ε small enough, we can deduce

mes


 m⋃

i=1

si⋃
j=1

Ji j

 ∩ U

 ≥ t
4
.

Thus there exists an open interval Ji0 j0 such that

mes
(
Ji0 j0 ∩ U

)
>

t
4ζ

> 0.

Let F = Ji0 j0 ∩ U, from (3.9), there exists a subsequence {rk j} of {rk} such that∫
F

log+
∣∣∣∣A0

(
rk je

iθ
)∣∣∣∣ dθ ≥ t

4ζ
Λ

(
rk j

)
. (3.13)

On the other hand, coupling (1.1) and (3.7) leads to∫
F

log+
∣∣∣∣A0

(
rk je

iθ
)∣∣∣∣ dθ ≤ ∫

F

 n−1∑
i=1

log+
∣∣∣∣Ai

(
rk je

iθ
)∣∣∣∣ dθ + O

(
log rk j

)
≤

n−1∑
i=1

m
(
rk j , Ai

)
+ O

(
log rk j

)
.

(3.14)

(3.13) and (3.14) give out

t
4ζ

Λ
(
rk j

)
≤

n∑
i=1

m
(
rk j , Ai

)
+ O

(
log rk j

)
, (3.15)

which is impossible since m (r, Ai) = o(Λ (r)) (i = 1, ..., n − 1) as r → ∞. Hence, we get

mes I( f ) ≥ σ.

Proof of Theorem 1.2. Firstly, we suppose that

mes R( f ) < σ := min{2π, π/µ(A0}. (3.16)

Then t := σ −mes R( f ) > 0. Similarly as in the proof of Theorem 1.1, we have

|Dk
q f (z)| = O(|z|d), z ∈ Ω(α∗i j, β

∗
i j), (3.17)

where d is a positive constant, α∗i j = θi j − ξθi j + ε and β∗i j = θi j + ξθi j − ε.
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By the definition of Jackson k-th difference operator,

|Dk
q f (z)| =

|Dk−1
q f (qz) − Dk−1

q f (z)|

|qz − z|
= O(|z|d), z ∈ Ω(α∗i j, β

∗
i j). (3.18)

Therefore,
|Dk−1

q f (qz) − Dk−1
q f (z)| = O(|z|d+1), z ∈ Ω(α∗i j, β

∗
i j). (3.19)

Thus, there exists a positive constants C such that

|Dk−1
q f (qz) − Dk−1

q f (z)| ≤ C(|z|d+1), z ∈ Ω(α∗i j, β
∗
i j). (3.20)

Case 1. Suppose q ∈ (0, 1). Clearly, there exists a positive integer m such that (1
q )m ≤ |z| ≤ (1

q )m+1

for sufficiently large |z|. Therefore, 1 ≤ |qmz| ≤ 1
q . Then there exists a positive constant M1 such that

|Dk−1
q f (qmz)| ≤ M1 for all z ∈ {z|1 ≤ |qmz| ≤ 1

q }. Using inequality (3.20) repeatedly, we have

|Dk−1
q f (z) − Dk−1

q f (qz)| ≤ C(|z|d+1),

|Dk−1
q f (qz) − Dk−1

q f (q2z)| ≤ C(|qz|d+1),

...

|Dk−1
q f (qm−1z) − Dk−1

q f (qmz)| ≤ C(|qm−1z|d+1).

(3.21)

Taking the sum of all inequalities, we get

|Dk−1
q f (z)| ≤ |Dk−1

q f (z) − Dk−1
q f (qz)| + |Dk−1

q f (qz) − Dk−1
q f (q2z)| + ...

+ |Dk−1
q f (qm−1z) − Dk−1

q f (qmz)| + |Dk−1
q f (qmz)|

≤ C(|z|d+1) + C(|qz|d+1) + ... + C(|qm−1z|d+1) + M1

≤ mC(1 + qd+1 + ... + q(m−1)(d+1))|z|d+1 + M1

= O(|z|d+1), z ∈ Ω(α∗i j, β
∗
i j).

(3.22)

Therefore,
|Dk−1

q f (z)| = O(|z|d+1), z ∈ Ω(α∗i j, β
∗
i j). (3.23)

Repeating the operations from (3.17) to (3.23), we have

| f (z)| = O(|z|d+k−1), z ∈ Ω(α∗i j, β
∗
i j). (3.24)

Case 2. Suppose q ∈ (1,+∞). If |z| is sufficiently large, there exists a positive integer n such that
qn ≤ |z| ≤ qn+1. And this is exactly 1 ≤ | z

qn | ≤ q. Thus, there exists a positive constant M2 such that
|Dk−1

q f ( z
qn )| ≤ M2 for all z ∈ {z|1 ≤ | z

qn | ≤ q}. Using inequality (3.20) repeatedly, we have

|Dk−1
q f (z) − Dk−1

q f (
z
q

)| ≤ C(|
z
q
|d+1),

|Dk−1
q f (

z
q

) − Dk−1
q f (

z
q2 )| ≤ C(|

z
q2 |

d+1),

...

|Dk−1
q f (

z
qn−1 ) − Dk−1

q f (
z
qn )| ≤ C(|

z
qn |

d+1).

(3.25)
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Taking the sum of all inequalities, we get

|Dk−1
q f (z)| ≤ |Dk−1

q f (z) − Dk−1
q f (

z
q

)| + |Dk−1
q f (

z
q

) − Dk−1
q f (

z
q2 )| + ...

+ |Dk−1
q f (

z
qn−1 ) − Dk−1

q f (
z
qn )| + |Dk−1

q f (
z
qn )|

≤ C(|
z
q
|d+1) + C(|

z
q2 |

d+1) + ... + C(|
z
qn |

d+1) + M2

≤ nC(
1

qd+1 +
1

q2(d+1) + ... +
1

qn(d+1) )|z|d+1 + M2

= O(|z|d+1), z ∈ Ω(α∗i j, β
∗
i j).

(3.26)

Therefore,
|Dk−1

q f (z)| = O(|z|d+1), z ∈ Ω(α∗i j, β
∗
i j). (3.27)

Similarly as in (3.17)–(3.20), we have

| f (z)| = O(|z|d+k−1), z ∈ Ω(α∗i j, β
∗
i j). (3.28)

It means that
S α∗i j,β

∗
i j
(r, f ) = O(log r). (3.29)

By the same reasoning as in (3.6) to (3.15), we can get a contradiction. Hence, we get

mes R( f ) ≥ σ.

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Using D̂k
q f (z) instead of Dk

q f (z) in the proof of Theorem 1.2 and by the definition
of k-th q difference operator, we can prove Theorem 1.3 similarly.

4. Conclusions

In this article, we obtained the lower bound of the measure of the set of transcendental directions
of a class of transcendental entire functions with infinite lower order, which are solutions of linear
differential equations. We also discussed the case for the Jackson difference operators and q difference
operators of such functions. Actually, we know the set of transcendental directions of a transcendental
entire function with finite lower order must have a definite range of measure from Theorem B. Hence,
the left is the case of entire functions with infinite lower order. Usually, it is difficult to estimate the
lower bound of measure of the set of transcendental directions of a transcendental entire function with
infinite lower order. However, our article obtained some results on the transcendental directions for
a class of entire functions with infinite lower order. But for more general cases, we still need to find
other ways to investigate the lower bound of the measure of the set of transcendental directions.
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